- 2,5% de cargas verticales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "- 2,5% de cargas verticales"

Transcripción

1 Drminación d la slz d las pards Espsor d las pards 11 cm (sin conar rvoqus) Eslz gomérica = λ g 27 Dond: Con: c λg = = disancia lir nr apoyos orizonals d la pard (nrpisos, ord suprior d la fundación) = spsor fcivo (sin rvoqus) c = coficin sgún condicions d apoyo d la pard Valors d c: Apoyo d pard: Drminación d la slz d las pards Condicions d ord Valors d c D sr capaz d llvar la racción a las furzas orizonals acuans - 2,5% d cargas vricals - Si l 6 cumpl c Valors d c n función d las condicions d ord dl muro L 065 c L 065 c 1 Ej: Muro con conrafurs: El muro d spsor 1 drá rsisir la carga d vino y las ransmiirá a los conrafurs (d spsor 1 n l jmplo) y drá sr suficin como para qu l conrafur rsisa las cargas orizonals Si no fus así, s conrafur no podría sr considrado como apoyo vrical n la vrificación dl muro Ejmplos d aluras fcivas d pards: Rsring l dsplazamino orizonal pro no l giro Rsring l dsplazamino orizonal pro no l giro f = Losa d Hormigón Rsring l dsplazamino orizonal y l giro n cira mdida S pud considrar qu no ay giro n l apoyo infrior f = 075

2 Cálculo d : Tipo d lmno Esquma Valor d Espsor fcivo " " d difrns lmnos d mamposría srucural Pard simpl Pard con cavidad 2 1 Maximo valor d: a) 2 ( ) 3 ) 1 c) 2 Simpl c K K = cof d rigidz (Tala 11 d la Rcomndación) Pard con conrafurs Con cavidad lc c 2 1 Maximo valor d: a) 2 ( 1 + K 2 ) 3 ) 1 c) K 2 Valors d K para l cálculo Rlación nr l spsor dl conrafur y la pard C dl spsor fcivo n pards con conrafurs ,4 2 Rlación d spaciado l ,2 1,4 d conrafurs l C Columna o 4 dpndindo d la dircción n qu flxa Efcos a considrar n l cálculo d una pard a comprsión: a Esfuzos normals por cargas vricals Flxión por xcnricidad d forma d carga dl nrpiso sor la pard c Flxión por no coincidncia d js d pard suprior con pard considrada d Efcos d slz Excnricidad accidnal d la carga (por jmplo por dsplom) f Excnricidad por cargas orizonals Efcos a considrar n l cálculo d una pard a comprsión: Flxión por xcnricidad d forma d carga dl nrpiso sor la pard Losa xrma: Losa coninua (ó mjor: muro inrior): Efcos a considrar n l cálculo d una pard a comprsión: Flxión por xcnricidad d forma d carga dl nrpiso sor la pard Pards con cavidad: Pards inriors con cavidad: Si las losas inn coninuidad, sus lucs no difirn n mas d 40% y P1~P2 racción oal cnrada Calcular una sola xcnricidad con P=P 1 +P 2 con dscarga riangular no sirv

3 Efcos a considrar n l cálculo d una pard a comprsión: Flxión por xcnricidad d forma d carga dl nrpiso sor la pard Efcos a considrar n l cálculo d una pard a comprsión: c Flxión por no coincidncia d js d pard suprior con pard considrada P Efcos a considrar n l cálculo d una pard a comprsión: Efcos a considrar n l cálculo d una pard a comprsión: Con lo viso n los punos ) y c) s pud calcular la xcnricidad n la scción suprior dl muro Para conocr la influncia d la xcnricidad d las cargas xrnas n las difrns sccions dl muro, s oma como ipósis qu sa xcnricidad disminuy asa llgar complamn cnrada a la as dl muro 0 0 d Efcos d slz Los fcos d slz s ndrán n cuna a ravés d una xcnricidad complmnaria: c 2 λg = * sirv para l cálculo d c ( y λ g ) Pud sr n amas dirccions! C

4 Efcos a considrar n l cálculo d una pard a comprsión: Efcos a considrar n l cálculo d una pard a comprsión: Excnricidad accidnal d la carga (por jmplo por dsplom) a 0 a a = Excnricidad n cada scción 04 * = alura lir d la pard considrada (no s l aplica l coficin c) Pud sr n amas dirccions! Dn considrars n cada caso las xcnricidads gnradas por cargas orizonals C Esquma d cálculo: k u /2-* * f (Sgún BS: 11 ) f k UR * = (1 2 * ) 2 2 2* = 1 f K 2 * 1 f [ unidad _ d _ longiud] A β f M AM UR = K = K Con β =1 2* Vrificación d cálculo: γ UR m U En pards dols vrificar so n cada pard U = carga vrical sor la pard (ampliada por γ f ) UR = β f k A M Dond: UR = carga vrical úlima rsisida por la pard β= facor d rducción por xcnricidads y slz f k = rsisncia caracrísica A M = ára rua (sin rvoqus)

5 Vrificación d cálculo: 2 β = 1 * * = xcnricidad d disño y s l mayor valor d: Dond: * = o + a + En la scción suprior d la pard * = 0,6 ( o + a ) + c+ En la zona cnral d la alura d la pard o = xcnricidad por y c: apoyo d losas y no coincidncia d js d muros (s n scción suprior) a = xcnricidad accidnal por (s n scción suprior) c = xcnricidad por slz, por d (s n zona cnral d la pard) = xcnricidad dida al sfurzo orizonal acuan mom Rgla prácica: carga _ vr (vr cuando nrlo n cuna!!) * Vrificación d cálculo uilizada por la BS5628: Onción d β: Eslz U β f < 1 1 γ m K A Coficin β sgún orma BS 5628 f f Exnricidad n l ord suprior dl muro ( 0 ) Hasa 0,05 0,1 0,2 0,3 0 1,00 0,88 0,66 0,44 6 1,00 0,88 0,66 0,44 8 1,00 0,88 0,66 0, ,97 0,88 0,66 0, ,93 0,87 0,66 0, ,89 0,83 0,66 0, ,83 0,77 0,64 0, ,77 0,7 0,57 0, ,70 0,64 0,51 0, ,62 0,56 0,43 0,3 24 0,53 0,47 0, ,45 0, ,40 0,33 oa 1: o s ncsario considrar fcos d xcnricidads asa 0,05 oa 2: S prmi inrpolar linalmn nr xcnricidads y slcs m Comparación IET - BS5628: BS Toma 1,1 con lo cual corrig β γm (quda β=1 para = 0,05 ) IET no lo ac mayor sguridad pro s conrarrsa con pnalización d BS para muros con un solo mampuso d anco f k (oma ) 1,15 f k S nind por columna a aqul lmno cuya scción cumpl qu (sindo 1 > 2 ), si sa condición no s cumpl s considra qu s un muro y y x x P y 1 2 y x x Pando sgún y: = y y = y Pando sgún x: = x y = x Pando sgún y: = máximo d: Pando sgún x: = ( + ) 1 2

6 Eslz (alura fciva): Eslz (alura fciva): En cada posil dircción d pando s drán nr n cuna las condicions d ord corrspondins para allar λ y y λ x Columnas formadas nr aruras: Columnas o pards d pquña scción Si 2 A M 0,2m s rduc f k n un facor: 1 ( 0,7 + 1,5 AM ) 1 2 En ralidad s un incrmno d γ m Alura fciva: f f = (con simpl apoyos) = 0,75 + 0,25 amax

7 Localmn, s prmi incrmnar la rsisncia úlima d la pard para vrificar su rsisncia a los sfurzos concnrados qu s dan n la zona d una dscarga d viga o pilar Disriución d nsions para difrns ipos d dscarga: S asum qu: - La carga s disriuy uniformmn n l ára d apoyo - Por dajo dl ára d apoyo la carga s disriuy a 45º Tipos d apoyo: S dfinn 2 ipos d apoyo y s vrifican con UR n l ára d apoyo: para apoyo ipo 1: para apoyo ipo 2: UR UR = 1,25 f A * k M = 1,50 f A * k M Tipos d apoyo 1: Con A * M ára rua d apoyo dl lmno qu dscarga n la pard (sin rvoqus) * Admás s raliza ora vrificación a una disancia 0,4 por dajo d la scción d dscarga con: A * UR β fk M = (Como ya s vió) = alura d la pard n considración nr la scción d apoyo (o dscarga) y l apoyo infrior d la pard

8 Tipos d apoyo 2: Vrificación a 04 : Disriución d nsions y vrificacions: Tipo d apoyo 3 (d la BS5628): Valor máximo calculado por oría d la lasicidad

9 Vrificación a cor V UR V U γm Dond:V UR = rsincia úlima al cor V U = soliciación d cor n la scción (orizonal) considrada Dscarga d muros sor póricos d ormigón VUR = ( τok + 06 σo ) A M Dond: τ ok = rsincia caracrísica al cor (con comprsión nula) σ o = nsión mdia a comprsión sgún cargas vricals con 85% d carga prmann A M = ára rua d la scción considrada µ=0,6 valor adcuado? Admás: VUR 1,5 τok A M

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

EJEMPLO PRÁCTICO Nº 16: Cálculo de una cercha de cordones paralelos

EJEMPLO PRÁCTICO Nº 16: Cálculo de una cercha de cordones paralelos Construccions Mtáicas d Madra EJEMPLO PRÁCTICO Nº 6: Cácuo d una crcha d cordons paraos En st jmpo s pondrá cácuo d as sccions d una crcha tipo How d cordons paraos, sgún s mustra n a figura. Las barras

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

Perfiles Estructurales Laminados en Caliente

Perfiles Estructurales Laminados en Caliente Prfils Esrucurals Laminados n Calin COPOMET S.A., innovando prmannmn, musra n sa nuva dición un imporan incrmno n su lína d Vigas Laminadas WF qu, al igual qu odos nusros producos, podrá conar con los

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF)

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF) Dinsionaino d un ódulo hollow fibr para ulrafilración (UF) Alan Didir Pérz Ávila Rsun S dinsionó un ódulo d ulrafilración con branas hollow fibr, ralizándos un análisis d snsibilidad d algunas d las variabls

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

GEOLOGIA Y GEOTECNIA

GEOLOGIA Y GEOTECNIA GEOLOGIA Y GEOTECNIA 004 CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions cando

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilacions (9 hs). Moiino Arónico Sipl (MAS). Oscilacions Aoriguadas 3. Oscilacions forzadas y rsonancia 4. Suprposición d MAS. Furza d fricción iscosa. Oscilacions arónicas aoriguadas.3 Tipos

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

5. PERFILES DE CARPINTERÍA

5. PERFILES DE CARPINTERÍA PRONTUARIO UAHE-2001 97 5. ES DE CARPINTERÍA 5.1. ES ABIERTOS NORMALIZADOS 5.1.1. ES ABIERTOS CONFORMADOS EN FRÍO. LF. (UNE 36-571-79) Tabla 5-1 Prfils abirtos normalizados - Prfil L d alas iguals Mdidas

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Miércols 2 d abril d 2014 Todos alumnos dbn qudars una copia d la prácica nrgada Prácica a ralizar n grupos

Más detalles

PRONTUARIO DE PERFILES DE ACERO ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS

PRONTUARIO DE PERFILES DE ACERO ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS PRONTURIO DE PERFILES DE CERO ESCUEL TÉCNIC SUPERIOR DE INGENIEROS GRÓNOMOS UTORES: ljandro GLLEGO MOY Migul Ángl GRCIMRTÍN MOLIN Jordi MSSN GUITRT NOV. 2008 2 CONTENIDO PERFIL EUROPEO IPE... 4 PERFIL

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone CONSOLIDACIÓN DE SUELOS Ing. Silia Anglon Bibliografía Jár Badillo Cap. X Brry y Rid Cap. 4 Inrodcción Todos los marials xprimnan dformacions cando s los sja a n cambio n las condicions d sfros. Las caracrísicas

Más detalles

EJEMPLO PRÁCTICO Nº 15: Cálculo de columnas compuestas metálicas

EJEMPLO PRÁCTICO Nº 15: Cálculo de columnas compuestas metálicas EJEMPLO PRÁCTICO Nº 5 EJEMPLO PRÁCTICO Nº 5: Cálculo d columnas compustas mtálicas S prtnd l dimnsionaminto d una columna mtálica formada por PNU sgún la figura La columna dbrá soportar una carga d 50

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

TRABAJO PRÁCTICO N 1 ANÁLISIS DE CARGAS GRAVITATORIAS

TRABAJO PRÁCTICO N 1 ANÁLISIS DE CARGAS GRAVITATORIAS TRABAJO PRÁCTICO N 1 ANÁLISIS DE CARGAS GRAVITATORIAS EJERCICIO 1 Analizar las cargas propias del siguiene enrepiso y deerminar la carga de servicio q s a soporar por la losa, para una sobrecarga o carga

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

El transistor bipolar de unión (BJT)

El transistor bipolar de unión (BJT) l rasisor biolar d uió (JT roducció 1948-1949: illia hockly, Joh ard y alr H. raai dscubr s disosiivo y modla su riciio d fucioamio. s l rasisor más uilizado circuios discros. Prsa mayors vlocidad d rsusa

Más detalles

DIFRACCIÓN DE LA LUZ. Difracción de la luz 1/9

DIFRACCIÓN DE LA LUZ. Difracción de la luz 1/9 DIFRACCIÓN D LA LUZ OBJTIVOS Osrvación xprimnal d la difracción d Fraunhofr corrspondin a divrsos osáculos, y sudio cuaniaivo d la difracción d la luz por una rndia, así como su aplicación a la mdida d

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

Puentes prefabricados

Puentes prefabricados Manual Técnico P - apítulo 15 prfabricad La structura d un punt s pud subdividir n substructura y suprstructura. En substructura s incluyn bastis y pilas, l cuals pudn sr prfabricad o colad n sitio. Su

Más detalles

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son :

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son : RDICTIVIDD El Carbono 4, 4 C, s un misor β - con un priodo d smidsintgración d 576 años. S pid: a) Dscribir todas las formas d dsintgración radiactiva d los núclos xplicando los cambios n los mismos y

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica Políica Monaria y Cambiaria Solucions al problma d la crdibilidad y la inconsisncia dinámica Simbr 01 1.1 Plano dl Problma Ancdns: Inconsisncia dinámica como una nación d políica conómica qu prmi sorprndr

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalras scamotabls AET 3 ISO madra 3 tramos 3 NORM 8/2 ISO madra 2 tramos 3 EM-3 ISO lacada 3 tramos 4 K-4 mtálica galvanizada 4 tramos 4 Escalras d tijra

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Introducción al método de los

Introducción al método de los Introducción al método d los Elmntos Finitos n D Lcción Discrtizacion Intrpolación n D Adaptado por Jaim Puig-Py (UC) d:. Zabaras, N. Curso FE Analysis for Mch&Arospac Dsign. U. Cornll. 0.. Fish, J., Blytschko,

Más detalles

Desintegración radiactiva

Desintegración radiactiva Daramno Física Fac. Cincias Exacas - UNLP Dsingración raiaciva El núclo y sus raiacions Página 1 (DF Facor caimino DF DF = x (- = x {(- ln2/t 1/2 } Una amolla connino 99m Tc (T 1/2 = 6h sá roulaa 75 kbq/ml

Más detalles

Trabajador por cuenta ajena y autónomo a la vez. Es posible?

Trabajador por cuenta ajena y autónomo a la vez. Es posible? Trabajador por cunta ajna y autónomo a la vz. Es posibl? ES POSIBLE SER TRABAJADOR POR CUENTA AJENA Y AUTÓNOMO A LA VEZ? MERECE LA PENA ESPERAR A ENERO 2018? QUÉ OPCIONES TENGO? PUEDO ACOGERME A LA TARIFA

Más detalles

Dimensionamiento a flexión y corte de vigas con secciones compactas, no compactas y esbeltas. Aplicación Capítulos A, B, F, K, y Apéndices F y G.

Dimensionamiento a flexión y corte de vigas con secciones compactas, no compactas y esbeltas. Aplicación Capítulos A, B, F, K, y Apéndices F y G. 79 EJEPLO N 14 Dimensionamieno a flexión core de vigas con secciones compacas, no compacas esbelas. Aplicación Capíulos A, B,, K, Apéndices G. Enunciado: En el enrepiso de la figura dimensionar las vigas

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

conducto circular conecte con

conducto circular conecte con 2007 conducto circular Hlicoidal simpl Hlicoidal autoconctabl Accsorios obl tubo aislado Tubría Shunt Tubo liso Pizas spcials Tubo aluminio comprimido 7 conducto circular El conducto circular s la solución

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

9 Momentos y funciones generatrices de Momentos

9 Momentos y funciones generatrices de Momentos 9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s

Más detalles

Modelo monocompartimental. Administración endovenosa tipo bolus. Tema 9

Modelo monocompartimental. Administración endovenosa tipo bolus. Tema 9 Modlo monocompartimntal. Administración ndovnosa tipo bolus Tma 9 Índic d contnidos Introducción Ecuacions dl modlo Curvas concntración-timpo Constant d liminación Smivida d liminación Volumn aparnt d

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión.

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión. HORMIGÓN II 74.5 ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO Definición de zonas a y b Zona a: Zona en la cual no es de esperar fisuras por flexión. Zona b: Zona en la cual las fisuras por corte

Más detalles

6. Elementos tipo viga

6. Elementos tipo viga Univrsidad Simón Bolívar. Elmntos tipo viga En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una viga d scción transvrsal variabl A, módulo d lasticidad E, momnto d inrcia

Más detalles

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales Elemenos de acero 3 PROPIEDADES GEOMÉTRICAS 2.1 Áreas de las secciones ransversales Área oal de un miembro (A ) Es el área complea de su sección ransversal. El área oal A es igual a la suma de los producos

Más detalles

Curvas de excreción urinaria. Tema 13

Curvas de excreción urinaria. Tema 13 Cuvas d xcción uinaia Tma 13 Índic d connidos 2 Excción nal Cuvas d xcción uinaia Facos qu afcan a la xcción nal d fámacos Aclaamino nal Excción nal 3 Dosis sang oina n : consan d xcción nal n : consan

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Reguladores de compensación

Reguladores de compensación Rgulaors compnsación Dfinimos la salia saa para l sistma m D N La función transfrncia gnraliaa pos un rtaro ao por m. n n n q q q q A a a a b b b b G 0 0 Conicions: 0 q b, timpo murto la planta, G tin

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Alta Direccion Funeraria

Alta Direccion Funeraria S m i n a r i o Alta Dirccion Funraria 14 d novimbr d 2016 Auditorio Fournir d la Facultad d Mdicina d la Univrsidad Nacional Autónoma d México (UNAM) T E M A R I O Calidad n l Srvicio Funrario. Ejrcicio

Más detalles

APÉNDICE G. VIGAS ARMADAS DE ALMA ESBELTA

APÉNDICE G. VIGAS ARMADAS DE ALMA ESBELTA APÉNDIC G. VIGAS ARMADAS D ALMA SBLTA se Apéndice es aplicable a igas armadas de alma esbela de sección ransersal "doble Te", oros ipos de igas de alma esbela esán excluidos del campo de alidez de ese

Más detalles

PROCESOS ALEATORIOS DE POISSON

PROCESOS ALEATORIOS DE POISSON PP Dinición d Procso Puntual PROCESOS ALEAORIOS DE POISSON PP I a. óms un instant cualquira como orign d la variabl timpo. Lláms t 0 a dicho instant. Supóngas qu los instants t, t,, postriors a t 0, caractricn

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Sistemas Trifásicos. Índice Definiciones y diagramas vectoriales

Sistemas Trifásicos. Índice Definiciones y diagramas vectoriales Fundamntos d cnología Eléctrica (2º M) ma istmas riásicos Damián Laloux, 200 Índic Dinicions y diagramas vctorials istma triásico quilibrado cuncia d ass Conxión n strlla nsions d as o simpls, corrints

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

Aire Acondicionado (I.I.)

Aire Acondicionado (I.I.) Air Acondicionado (I.I.) T.- Transmisión d Calor Las rasparncias son l marial d apoyo dl profsor para imparir la clas. No son apuns d la asignaura. Al alumno l pudn srvir como guía para rcolar información

Más detalles

TEMA 3. Superficies Adicionales. Aletas.

TEMA 3. Superficies Adicionales. Aletas. TEMA 3. Suprficis Adicionals. Altas. Introducción Alta rcta d spsor uniform y alta d aguja d scción transvrsal constant La alta anular d spsor constant La alta d prfil triangular Efctividad d la alta Las

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6 Índic Escalras scamotabls AET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 4 ALU 3 IO aluminio 3 tramos 5 ALU 2 IO aluminio 2 tramos 6 Escalras d tijra ZX E TEO 7 ZX E ARE 8 ZX E TERRAZA 9 Escalras

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

Sesión 3 Análisis de series de tiempo multiecuacional

Sesión 3 Análisis de series de tiempo multiecuacional Banco Cnral d Rsrva dl Prú 55º Curso d Exnsión Univrsiaria Ssión 3 Análisis d sris d impo mulicuacional 7. La modología d los vcors auorrgrsivos (VAR) 7.1. Nusro sing: forma srucural vs. forma rducida

Más detalles

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico ADM- 00 DEL 23 1 de 44 ADM- 00 DEL 23 2 de 44 ADM- 00 DEL 23 3 de 44 ADM- 00 DEL 23 4 de 44 ADM- 00 DEL 23 5 de 44 ADM- 00 DEL 23 6 de 44 ADM- 00 DEL 23 7 de 44 ADM- 00 DEL 23 8 de 44 ADM- 00 DEL 23 9

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalra scamotabl Modlo ET 3 IO madra 3 tramos Escalras scamotabls ET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 3 EM-3 IO lacada 3 tramos 4 K-4 mtálica

Más detalles

MEDICAMENTOS Y DEMAS INSUMOS PARA LA SALUD

MEDICAMENTOS Y DEMAS INSUMOS PARA LA SALUD Clav: CEMA-PR-FC-MCMI-16 Vrsión: 0001 Sustituy a: Ninguno Próxima rvisión: cada 30 días. Página 1 d 9 Contnido 1. Objtivo 2. Alcanc 3. Rsponsabilidads 4. Dsarrollo dl procso 5. Rfrncias Bibliográficas

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles