Tema 5: PROCESOS ESTOCÁSTICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5: PROCESOS ESTOCÁSTICOS"

Transcripción

1 Tema 5: PROCESOS ESTOCÁSTICOS Carlos Alberola Lóez Lab. Procesado de Imagen, ETSI Telecomunicación Desacho D04 h://

2 Proceso esocásico (PE) Término sinónimo de señal aleaoria En ese ema conecaremos los conceos de Teoría de la Probabilidad con conceos de Traamieno de Señal (mediane Sisemas Lineales). Las señales úiles en Telecomunicación recisan de herramienas de modelado robabilísico: A) Toda señal que ransora información iene algún grado de aleaoriedad. B) Sobre oda señal deseada se suerone de forma naural algún io de señal erurbadora Se reende disoner de alguna herramiena que caracerice las señales del mismo io con indeendencia de su conenido concreo. Y ener herramienas que ermian minimizar el efeco del ruido.

3 Conceo de VA Y (,Y) Exensión a comosición de N exerimenos ε i (,, ), L N

4 Conceo de Proceso Esocásico (,a) a a a a

5 INTERPRETACIÓN Colección de funciones deerminísicas del iemo (cada una de ellas se denomina realización del roceso) INTERPRETACIÓN ( 0,a) Colección de VAs indexadas or índice

6 Sea el roceso esocásico: con Conceo de Proceso Esocásico Θ ~ U( -π,π ) Como hicimos en emas aneriores, daremos or suuesa la deendencia con el resulado del exerimeno aleaorio. Escribiremos Si enemos : función deerminísica del iemo 4 Si enemos 0 que es una variable aleaoria, la cual odemos denoar or Y, Z, Si y enemos: que es un número real. (, a) Acos( ω ) + Θ 0 ( ) Acos( ω ) + Θ 0 Θ π / 4 π () Acos ω0 + ( ) A ( ω + Θ) 0 Θ π / cos ( ) 0 Acos ω00 π + 4

7 Una osible clasificación En función del índice emoral Proceso esocásico (PE): Secuencia aleaoria (SA): En función de que cada VA sea coninua o discrea PE coninuo PE discreo SA coninua SA discrea Predecible/no redecible Predecible: ( ) [ n] ( ) ~ N( 0,σ ( ) ) ( ) ~ B( N ( ), ( ) ) [ n] ~ N( 0, σ [ n] ) [ n ] ~ B( N[ n], [ n] ) No redecible: sin exresión analíica asociada ( ) Acos( ω ) + Θ 0

8 Caracerización de PEs Funciones de rimer orden: caracerización de las VAs del roceso or searado. Se requiere un único índice emoral. Función de disribución: Función de densidad: Funciones de segundo orden: caracerización de ares de VAs del roceso. Hacen fala dos índices ara indicar sobre qué dos VAs se definen las funciones: I

9 Caracerización de PEs Eliminación de deendencias: se lleva a cabo siguiendo las reglas visas en los emas aneriores. Por ejemlo: Funciones de orden N: caracerización de VAs N-dimensionales exraídas del roceso. Hacen fala N índices ara indicar sobre qué N VAs se definen las funciones:

10 (,a ) ( ) x (,a ) (,a 3 ) Aroximación muesral al cálculo de: F ( x; ) P( ( ) x)

11 (,a 3 ) ( ) (,a ) x x (,a ) Aroximación muesral al cálculo de: F ( x, x ; ) P( ( ) x I ( ) x ), 3

12 Caracerización de PEs Si uviésemos dos rocesos esocásicos, su caracerización vendría dada or la función de densidad conjuna de órdenes N y M, es decir: En la rácica, salvo ara rocesos gaussianos, es imensable oder disoner de esa información. Por ello, lo normal es rabajar con arámeros de caracerización arcial de los PEs.

13 Caracerización arcial de PEs Media VCM Varianza

14 Caracerización arcial de PEs Correlación (Auocorrelación) Covarianza (Auocovarianza) Coeficiene de correlación

15 Caracerización arcial de PEs Procesos comlejos: Secuencias aleaorias: reemlazar or n Procesos de variables discreas: oeradores discreos

16 Caracerización arcial de PEs Proceso de ruido blanco (definición): Ruido blanco en senido amlio: roceso consiuido or VAs incorreladas: Si fuese una secuencia aleaoria: Ruido blanco en senido esrico: roceso consiuido or VAs indeendienes ( ) N

17 Caracerización arcial de dos PEs Correlación cruzada Covarianza cruzada

18 Caracerización arcial de dos PEs Procesos incorrelados Procesos orogonales Procesos indeendienes

19 Conceo de esacionariedad La esacionariedad hace referencia al manenimieno de las roiedades del roceso a lo largo del iemo. Se disinguen dos senidos: Senido esrico (SSS, de sric sense saionary): las roiedades de las que hablaremos se definen sobre la función de densidad del roceso. Senido amlio (WSS, de wide sense saionary): en ese caso las roiedades se definen sobre momenos de la función de densidad. Emezaremos or SSS.

20 Esacionariedad en sen. esrico SSS: equidisribución de los dos gruos de VAs. 3 4 L N + c + c + c c L N + c

21 Esacionariedad en sen. esrico Por ano un roceso es SSS si se verifica que N y ara odo valor de la consane c. Si esa roiedad se verifica sólo hasa un ciero valor de N (y no se verifica ara valores de N mayores) el roceso se denominaría esacionario de orden N. Dos casos ariculares de la exresión anerior son

22 Esacionariedad en sen. amlio Un roceso esocásico es WSS si se verifica que Evidenemene si un roceso es SSS (o esacionario al menos de orden ) ambién es WSS. Eso se debe a que El recíroco, en general, no es ciero.

23 Un roceso esocásico es gaussiano si la función de densidad conjuna de orden N es conjunamene gaussiana. En aricular, un roceso gaussiano iene una función de densidad de orden del io: Caso de rocesos gaussianos ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + x x x, x, e,, ;,x x f σ η σ σ η η ρ σ η ρ ρ π σ σ

24 Si un roceso gaussiano es WSS se verifica que: Sucede igual ara la función de orden N: or ello es SSS ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) + x x x x e, ;,x x f σ η σ σ η η ρ σ η ρ ρ π σ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + x x x, x, e,, ;,x x f σ η σ σ η η ρ σ η ρ ρ π σ σ Caso de rocesos gaussianos ( ) ;,x x f

25 Esacionariedad conjuna Dos rocesos son conjunamene esacionarios si lo son cada uno de ellos or searado y, además, se verifica que: Si se raa de senido amlio, cada roceso debe ser WSS y debe cumlirse, adicionalmene, que Aceemos como convenio que:

26 Proiedades de rocesos WSS

27 Proiedades de rocesos WSS Solución: recordando la linealidad del oerador eseranza: indeendencia incorrelación (media consane)

28 Proiedades de rocesos WSS Reseco de la auocorrelación: ( ) ( ) ( ) { } * E, R ( ) ( ) + + q 0 0 q j K q q j K e e E Θ Θ A A ω ω ( ) ( ) + + K K q q j j q q 0 0 e e E Θ Θ A A ω ω ( ) { } K K q j j q q j q 0 0 e e E e Θ Θ A A ω ω ( ) { } { } K K q j j q q j q 0 0 e E e E e Θ Θ A A ω ω incorrelación

29 Proiedades de rocesos WSS ( ) ( ) ( ) { } * E, R ( ) { } { } K K q j j q q j q 0 0 e E e E e Θ Θ A A ω ω Si q Si q Por ello, enemos { } { } { } E e E e e e E q q j j j j Θ Θ Θ Θ { } { } E e e E e j0 j j Θ Θ ( ) ( ) { } { } ( ) τ ω τ ω A A R E e E e, R K j K j 0 0

30 La auocorrelación resena un máximo en el cero: La auocorrelación es una función con simería conjugada: Si el roceso es eriódico, su auocorrelación ambién lo es (y del mismo eriodo) Proiedades de rocesos WSS ( ) ( ) 0 R R τ ( ) { } { } { } () K K j K j 0 R E E e E e R 0 0 A A A ω τ ω τ τ ( ) ( ) τ τ R R ( ) { } ( ) τ τ τ ω A R E e R K j 0 ( ) { } K j 0 e E R ω τ τ A () ( ) + K j 0 e Θ A ω

31 Proiedades de rocesos WSS El ruido blanco WSS iene una función de covarianza del io: ( τ ) qδ ( τ ) C Nóese que la covarianza de un roceso WSS es Luego la covarianza en el cero es C C ( ) C ( ) τ ( τ 0) C ( ) σ Por ello, un ruido blanco iene varianza infinia

32 (,a 3 ) Ergodicidad de un PE ( ) (,a ) (,a ) Aroximación muesral al cálculo de: 0 η ( ) xf ( x; ) 0 0 dx lim N N N i (,a ) 0 i

33 (,a 3 ) Ergodicidad de un PE ( ) (,a ) η (,a ) Si el roceso fuese (al menos) WSS ( 0 ) η η 0

34 Ergodicidad de un PE ( ) M T T T [ () ] () T d η En la rácica se observa una única realización. La reguna es: se uede hallar el valor medio de un roceso WSS únicamene observando una realización y alicando un oerador emoral?

35 Ergodicidad de un PE Se dice que un roceso WSS es ergódico con reseco a la media si se verifica que: η T [ () ] lim () lim MT T T T T d Si dice que un roceso WSS es ergódico reseco de la auocorrelación si se verifica que: R [ ] T lim ( + τ ) ( ) ( τ ) lim M ( + τ ) ( ) T lim T A T T [ ( ) ] T T T d

36 Algunas consecuencias de la ergodicidad Si un roceso es ergódico de media cero, una realización íica flucuará con reseco a ese valor de forma más o menos simérica alrededor del mismo.

37 Algunas consecuencias de la ergodicidad Jusificación del máximo de la correlación en cero: ( ) R T ( τ ) lim ( + τ ) ( ) T T T d τ

38 Algunas consecuencias de la ergodicidad Jusificación del eriodicidad en auocorrelación ara PE eriódico ( ) R T ( τ ) lim ( + τ ) ( ) T T T d τ

39 Algunas consecuencias de la ergodicidad La osición relaiva de las curvas se maniene consane ( ) τ + T

40 Densidad esecral de oencia de un PE Vamos a definir una función que caracerice a un roceso esocásico en el dominio de la frecuencia. Bien es ciero que, dado que un roceso esocásico es una colección de funciones del iemo, nos odríamos limiar a calcular una colección de Transformadas de Fourier. Eso sería oco rácico. Se raa de definir una única función que caracerice a odas las realizaciones del roceso de forma conjuna. A al función se le denomina densidad esecral de oencia.

41 Densidad esecral de oencia de un PE Con el objeivo de garanizar convergencia de la inegral de Fourier arimos del roceso envenanado: ( ) T T ( )

42 Densidad esecral de oencia de un PE Por ser una señal de duración finia, es de cuadrado inegrable: y resula en energía disiada finia sobre una resisencia de Ω. El Teorema de Parseval ermie escribir de forma alernaiva

43 Densidad esecral de oencia de un PE De energía asamos a oencia dividiendo or el iemo de inegración: Calculamos la oencia media mediane el oerador eseranza y exraemos el límie ara considerar odo el roceso:

44 Densidad esecral de oencia de un PE Por ello, se define la densidad esecral de oencia de la forma : es decir, la función que inegrada en odo el eje de frecuencias da lugar a la oencia media desarrollada or el roceso.

45 Densidad esecral ara rocesos WSS Para el caso en el que los rocesos sean (al menos) WSS las exresiones aneriores aricularizan a resulados mucho más sencillos (y recordables). En efeco:

46 Densidad esecral ara rocesos WSS Reseco de la densidad esecral: El cambio naural de variables es:

47 Densidad esecral ara rocesos WSS El resulado anerior: exresado en las nuevas variables:

48 Densidad esecral ara rocesos WSS Calculando ahora el límie enemos: Por ano Exresiones conocidas como relaciones de Wiener-Khinchin.

49 Proiedades de la dens. esecral Es una función real y no negaiva: Para un roceso real y WSS, la densidad esecral es una función ar: El área bajo ella coincide con el VCM ara un roceso WSS

50 Densidad esecral cruzada Se define, or conveniencia, como la ransformada de Fourier de la correlación cruzada enre dos rocesos WSS: Surge de forma naural en el caso de suma de rocesos. Por ejemlo, si, enonces ( ) ( ) Y( ) Z +

51 Sisemas lineales con enradas esocásicas ( ) Y( ) h( ) Y () ( τ ) h( τ ) dτ Se raa de obener los arámeros de caracerización (arcial) del roceso de salida como función de esos arámeros del roceso de enrada y de la resuesa al imulso del sisema lineal e invariane.

52 SLs con enradas esocásicas Emecemos con el valor medio: Si el roceso de enrada es (al menos) WSS DC

53 VCM: SLs con enradas esocásicas Si el roceso de enrada es WSS

54 SLs con enradas esocásicas ( ) Caso aricular de inerés: ruido blanco de media nula y función de auocorrelación N0 R ( τ ) δ ( τ )

55 SLs con enradas esocásicas Correlación cruzada: WSS τ R ( ) τ + α h ( α ) h ( α ) R ( ) α τ α τ α

56 SLs con enradas esocásicas Auocorrelación de salida: Que con el resulado anerior da lugar a

57 SLs con enradas esocásicas Densidad cruzada Densidad esecral de oencia de salida: A arir de obenemos

58

59

60 Se 97, núm. 3

61 Se 97, núm.

62

63

64

65

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos socásicos Procesos socásicos I Inroducción y concepos básicos sadísicos de un proceso esocásico Referencias: Capíulo 8 de Inroducción a los Sisemas de Comunicación. Sremler, C.G. 993 Apunes de

Más detalles

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico Curso 6/7 Economería II Tema : Procesos Esocásicos. Caracerización de los procesos ARIMA. Concepo de proceso esocásico sico. Esacionariedad fuere y débil de los procesos esocásicos. Teoremas de ergodicidad

Más detalles

Análisis estocástico de series temporales

Análisis estocástico de series temporales Análisis esocásico de series emporales Ernes Pons (epons@ub.edu) Análisis esocásico de Series Temporales Moivación Ejemplos 4500000 8 4000000 6 3500000 4 3000000 2 0 2500000-2 2000000-4 500000-6 000000-8

Más detalles

Probabilidades y Estadística (M) Práctica 10 Distribuciones condicionales y esperanza condicional

Probabilidades y Estadística (M) Práctica 10 Distribuciones condicionales y esperanza condicional Probabilidades y Esadísica (M) Prácica 10 Disribuciones condicionales y eseranza condicional 1. a) Sean e variables aleaorias indeendienes con Bi(n; ) e Bi(m; ), resecivamene. Probar que j + = k H(m +

Más detalles

Sesión 2 Análisis univariado de series de tiempo

Sesión 2 Análisis univariado de series de tiempo Banco Cenral de Reserva del Perú 55º Curso de Exensión Universiaria Economería Prof. Juan F. Casro Sesión Análisis univariado de series de iempo 4. Series de iempo esacionarias 4.. Qué enendemos por proceso

Más detalles

Proceso estocástico (PE) Tema 5: PROCESOS ESTOCÁSTICOS. Concepto de VA. Concepto de Proceso Estocástico. a = a2

Proceso estocástico (PE) Tema 5: PROCESOS ESTOCÁSTICOS. Concepto de VA. Concepto de Proceso Estocástico. a = a2 Tma 5: POCESOS ESTOCÁSTICOS Carlos Albrola Lóz Lab. Procsado d Imagn, ETSI Tlcomunicación Dsacho D4 caralb@l.uva.s, casasc@l.uva.s, h://www.li.l.uva.s/sar Procso socásico (PE Término sinónimo d sñal alaoria

Más detalles

ECONOMETRÍA EMPRESARIAL II ADE

ECONOMETRÍA EMPRESARIAL II ADE 4 Bernardí Cabrer Economería Empresarial II Tema 8 ECONOMETRÍA EMPRESARIAL II ADE TEMA 8 MODELOS LINEALES SIN ESTACIONALIDAD I ( Modelos regulares 4 Bernardí Cabrer Economería Empresarial II Tema 8 8.

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL.

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL. SEÑALES Y SISTEMAS - AÑO 07 Prácica Clasificación de Sisemas. Sisemas Lineales (SL). Convolución. Procesos esocásicos a ravés de SL.. Invarianza al Desplazamieno Considere el sisema y[n] = x[n ]. a) Deermine

Más detalles

Concepto de VA bidimensional. Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL. Concepto de VA bidimensional. Concepto de VA bidimensional

Concepto de VA bidimensional. Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL. Concepto de VA bidimensional. Concepto de VA bidimensional Concepto de VA bidimensional Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Carlos Alberola López Lab. rocesado de Imagen, ETSI Telecomunicación Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

Estructuras de acero: Problemas 1 Pandeo local

Estructuras de acero: Problemas 1 Pandeo local Esrucuras de acero: Problemas Pandeo local Se han unido or soldadura res chaas de acero que consiuyen una sección comuesa en Ι simérica sólo or el eje de la chaa del alma. La sección que reresena la figura

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t)

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t) Sisemas Lineales ema 5. Muesreo 1 Inroducción rabajamos con sisemas discreos porque es más úil rabajr con precesadores digiales. Para ello va a ser necesario definir un proceso que reanforme las señales

Más detalles

Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL

Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho 2D014 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

DERIVACION DE LA ECUACION DE BERNOULLI

DERIVACION DE LA ECUACION DE BERNOULLI DERIACION DE LA ECUACION DE BERNOULLI Prearado or: Ing. Eseban L. Ibarrola Cáedra de Mecánica de los Fluidos- FCEFyN- UNC Exisen varios formas alernaivas ara derivar la ecuación de Bernoulli, ero odas

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS AUNES DE ELERÓNA DE OENA. DESARROLLO EN SERE RGONOMÉRA DE FOURER.... Ejemlos de series de Fourier... Onda cuadrada..... ÁLULO DE ARMÓNOS....5.. Disorsión armónica...7... Disorsión de un armónico...7...

Más detalles

Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL

Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D o de Economía Aplicada Cuaniaiva I Basilio Sanz Carnero PROCESO PURAMENTE ALEATORIO (RB) Es el proceso esacionario puramene aleaorio es concepualmene el más sencillo de odos y ambién en el que se basan

Más detalles

3 Definición y ejemplos de Procesos Estocásticos

3 Definición y ejemplos de Procesos Estocásticos 3 Definición y ejemplos de Procesos Esocásicos 3. Definición de un Proceso Esocásico. Supongamos que se esudia el número de personas que asisen al servicio médico en ciero hospial. En un inervalo de iempo

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

CINEMÁTICA PLANA DE UN CUERPO RÍGIDO

CINEMÁTICA PLANA DE UN CUERPO RÍGIDO CINEMÁTIC PLN DE UN CUERPO RÍGIDO 1.- Movimieno lano de un cuero rígido En ese módulo se analizará la cinemáica lana de un cuero rígido. Ese esudio es imorane en el diseño de engranes, levas y mecanismos

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE SERIES DE TIEMPO

INTRODUCCIÓN AL ANÁLISIS DE SERIES DE TIEMPO INTRODUCCIÓN AL ANÁLISIS DE SERIES DE TIEMPO Forino Vela Peón fvela@correo.xoc.uam.mx Noviembre, 009 Enfoque moderno del análisis de series de iempo Los fenómenos dinámicos que observamos mediane series

Más detalles

Tema 3 Sistemas lineales.

Tema 3 Sistemas lineales. Tema 3 Sisemas lineales. Podemos definir un sisema como un grupo o combinación de elemenos inerrelacionados o íner-acuanes que forman una enidad coleciva. En el conexo de los sisemas de comunicación los

Más detalles

3.8. PROBLEMAS 205. s 1 (t) s 3 (t) Figura 3.43: Señales para el Problema 3.1. b) Obtenga las coordenadas de cada señal en la base correspondiente.

3.8. PROBLEMAS 205. s 1 (t) s 3 (t) Figura 3.43: Señales para el Problema 3.1. b) Obtenga las coordenadas de cada señal en la base correspondiente. 38 PROBLEMAS 5 38 Problemas Problema 3 Para las cuaro señales de la Figura 343: s () s () 3 3 3 s 3 () - s () 3 Figura 343: Señales para el Problema 3 a) Encuenre un conjuno de señales oronormales, que

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

Tema 1 (continuación). Corriente Alterna. Ingeniería Eléctrica y Electrónica

Tema 1 (continuación). Corriente Alterna. Ingeniería Eléctrica y Electrónica 1 Tema 1 (coninuación). Corriene Alerna Índice Fuenes de ensión alerna. Formas de onda Elemenos asivos en régimen sinusoidal ermanene. Conceo de imedancia oencia y energía en AC Facor de oencia Rendimieno

Más detalles

Procesos estocásticos

Procesos estocásticos Teoría de la comunicación Comunicaciones - U.A.H. Indice Probabilidad. Variables Aleatorias. Procesos Estocásticos. Comunicaciones - U.A.H. Probabilidad Probabilidad. Dado un experimento ε del tipo que

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D o de Economía Aplicada Cuaniaiva I Basilio Sanz Carnero PROCESOS ESTOCÁSTICOS Un proceso esocásico «Z» considera «n» variables aleaorias, Z n, en momenos de iempo sucesivos, cada una de esas «n» variables

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

Tema 4. Filtros Analógicos

Tema 4. Filtros Analógicos Tema 4. Filros Analógicos Caracerización Temporal Francisco J. González, UC3M 29 Sisemas y Circuios 4. Definición x() Filro y ( ) = T x( ) x[ n ] ak, bk yn [ ] = T{ xn [ ]} Filro analógico: Sisema en Tiempo

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

El coeficiente de regresión mínimo-cuadrático de la estimación:

El coeficiente de regresión mínimo-cuadrático de la estimación: Regresión band secrum. Francisco Parra Rodríguez Docor Economía El coeficiene de regresión mínimo-cuadráico de la esimación: y bx + e es el siguiene: b ˆ MVCO x y x La relación de Plancharel muesra que

Más detalles

Vector gradiente Derivadas direccionales. Tema 8

Vector gradiente Derivadas direccionales. Tema 8 Tema 8 Vecor gradiene Como segundo caso paricular de la noción de diferenciabilidad, esudiamos ahora lo que ocurre cuando el espacio normado de parida es R N con N > 1, y el de llegada es R. Tenemos pues

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

Nombre y Apellidos:... EXAMEN de TECNICAS ECONOMETRICAS (Enero 2013)

Nombre y Apellidos:... EXAMEN de TECNICAS ECONOMETRICAS (Enero 2013) Nombre y Apellidos:... NIU:... Grupo Reducido:... EXAMEN de TECNICAS ECONOMETRICAS (Enero 2013) Lea cuidadosamene cada preguna. Marque muy claramene la respuesa de cada preguna en la hoja de respuesas.

Más detalles

Números Índices. Vamos a ver dos tipos de índices:

Números Índices. Vamos a ver dos tipos de índices: Números Índices Un número índice mide ué ano una variable ha cambiado con el iemo. Los números índices se calculan ara odos los eríodos de una serie de iemo con reseco a un eríodo fijo llamado eríodo base.

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

Tema 3. Especificación, estimación y validación de modelos ARIMA

Tema 3. Especificación, estimación y validación de modelos ARIMA Tema 3. Especificación, esimación y validación de modelos ARIMA. La Meodología Box-Jenkins. Especificación inicial.. Conrases de raíces uniarias.. Análisis de correlogramas y correlogramas parciales 3.

Más detalles

TEMA 2 MAGNITUDES FINANCIERAS

TEMA 2 MAGNITUDES FINANCIERAS Faculad de CC.EE. Do. de Economía Financiera I Maemáica Financiera Diaosiiva TEMA MAGNITUDES FINANCIERAS. Magniudes fundamenales y derivadas. Facores y rédios. Significado financiero y roiedades 3. Tanos

Más detalles

CURSO FÍSICA II 2012 CLASE IV

CURSO FÍSICA II 2012 CLASE IV UNIERSIDAD NACIONAL DEL NORDESE FACULAD DE INGENIERÍA DEARAMENO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 202 CLASE I rof. Juan José Corace CONCEOS ISOS EN LA ULIMA CLASE OLUMEN OLUMEN ESECIFICO DENSIDAD RESIÓN

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables Lección 3 Técnicas analíicas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exacas y Cambios de Variables 3.1. Ecuaciones Exacas Las ecuaciones exacas esán relacionadas con las llamadas

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

Análisis de Series Temporales. Jose Jacobo Zubcoff. Departamento de Ciencias del Mar y Biología Aplicada

Análisis de Series Temporales. Jose Jacobo Zubcoff. Departamento de Ciencias del Mar y Biología Aplicada Análisis de Series Temporales Jose Jacobo Zubcoff Deparameno de Ciencias del Mar y Biología Aplicada Inroducción al análisis de series emporales Objeivo: analizar la evolución de una variable a ravés del

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

Comunicaciones Digitales Grado en Ingeniería de Sistemas de Comunicaciones Grado en Ingeniería Telemática

Comunicaciones Digitales Grado en Ingeniería de Sistemas de Comunicaciones Grado en Ingeniería Telemática Comunicaciones Digiales Grado en ngeniería de Sisemas de Comunicaciones Grado en ngeniería elemáica Caíulo 3 Modulaciones angulares (de fase y frecuencia) Marcelino Lázaro Dearameno de eoría de la Señal

Más detalles

Modelos estacionarios de series temporales

Modelos estacionarios de series temporales Modelos esacionarios de series emporales Inroducción En ese capíulo se presena una meodología para analizar una serie emporal X, únicamene en función de los valores pasados de dicha serie. La idea básica

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Una aproximación alternativa a la enseñanza de la Macroeconomía: La Macroeconomía Computacional

Una aproximación alternativa a la enseñanza de la Macroeconomía: La Macroeconomía Computacional e-ública Nº, seiembre, 7 Revisa elecrónica sobre la enseñanza de la Economía Pública Págs. - Una aroximación alernaiva a la enseñanza de la Macroeconomía: La Macroeconomía Comuacional Anelí Bongers Trinidad

Más detalles

Tema 2. Modelos matemáticos de los sistemas físicos

Tema 2. Modelos matemáticos de los sistemas físicos Tema. Modelos maemáicos de los sisemas físicos Objeivos Definir modelo maemáico en el ámbio de la ingeniería de sisemas Conocer la meodología de modelado de sisemas físicos Reconocer un modelo lineal de

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

1.14. Onda senoidal Espectro del sonido

1.14. Onda senoidal Espectro del sonido Acúsica Física 13 1.14. Onda senoidal Finalmene, enemos la onda más imorane, no sólo en Acúsica sino en oda la Física y gran are de la Maemáica: la onda senoidal (Figura 1.12), ambién denominada senoide

Más detalles

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es CÁLCULO DE NTEGRALES.-Calcula las siguienes inegrales: a) d ; b) sen d ; c) Ld ; e Todas ellas se resuelven por pares y la fórmula del méodo es u. dv u. v v. du a) e d. u du d dv e. d v e d e e e d e e

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 9 Parte 1 - Series de Fourier

MATEMÁTICAS ESPECIALES II PRÁCTICA 9 Parte 1 - Series de Fourier MATEMÁTICAS ESPECIALES II - 18 PRÁCTICA 9 Parte 1 - Series de Fourier Definición. Una función f(x se dice eriódica si existe un número L (llamado eríodo tal que f(x + L = f(x ara todo x (,. Proiedades.

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

de precios entre distintas regiones, ciudades o países, probando la validez de la PPC y LUP, Taylor (2000), señala que, para que este modelo esté bien

de precios entre distintas regiones, ciudades o países, probando la validez de la PPC y LUP, Taylor (2000), señala que, para que este modelo esté bien 3. El modelo de convergencia de precios 1, se origina para explicar las diferencias de precios enre disinas regiones, ciudades o países, probando la validez de la PPC y LUP, Taylor (000), señala que, para

Más detalles

ANALISIS BASICO DE REDES QUE CONTIENEN ARMONICAS

ANALISIS BASICO DE REDES QUE CONTIENEN ARMONICAS CAPIULO 1 ARMONICAS ANALISIS BASICO DE REDES QUE CONIENEN ARMONICAS 1.1 INRODUCCION En sisemas elécricos de disribución de poencia, radicionalmene se esperaba que la forma de onda del volaje suminisrado

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

Econometría II LADE/LADE-Derecho. Curso 2004/2005. Hoja de ejercicios 2. Soluciones sugeridas PARTE A

Econometría II LADE/LADE-Derecho. Curso 2004/2005. Hoja de ejercicios 2. Soluciones sugeridas PARTE A Economería II LADE/LADE-Derecho Economería II LADE/LADE-Derecho Curso 004/005 Hoja de ejercicios Soluciones sugeridas PARTE A Respuesas correcas en negria, cursiva y con A.. Dado los dos siguienes procesos:

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

La aplicación de la forma de Fourier a los modelos de series temporales ha dado lugar a los modelos de regresión armónica.

La aplicación de la forma de Fourier a los modelos de series temporales ha dado lugar a los modelos de regresión armónica. Regresión Armónica. Francisco Parra Rodríguez. Docor en Ciencias Económicas. UNED. Jefe de Servicio Esadísicas Económicas y Sociodemográficas del Insiuo Canabro de Esadísicas. La alicación de la forma

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario.

Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario. Sisemas Lineales e Invarianes en el Tiempo LTI La Inegral Convolución Caracerización complea de un sisema LTI coninuo en érminos de su respuesa al impulso uniario. Represenación de señales coninúas en

Más detalles

Análisis de series temporales y. Modelos autoregresivos. Series temporales.

Análisis de series temporales y. Modelos autoregresivos. Series temporales. Análisis de series emporales y Modelos auoregresivos. Series emporales. Una serie emporal es una secuencia ordenada de valores, correspondienes a la magniud de una variable en un deerminado insane en el

Más detalles

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR)

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) ESPECIFICACION La meodología VAR es, en ciera forma, una respuesa a la imposición de resricciones a priori que caraceriza a los modelos economéricos keynesianos:

Más detalles

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007 U.P.R. Dearameno de Ciencias Maemáicas RUM MATE 33 Eamen Final 3 de diciembre de 7 Nombre: Profesor: Sección: Insrucciones: Lea cada reguna minuciosamene y muesre odo su rabajo. Esá rohibido coiar, consular

Más detalles

DINÁMICA II. F = m a. F = m. F Δt = m (v f v i ) Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v

DINÁMICA II. F = m a. F = m. F Δt = m (v f v i ) Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v C U R S O: ÍSICA COMÚN MATERIAL: C-07 DINÁMICA II Cuando se golea una eloa de golf en el camo de juego, una gran fuerza acúa sobre la eloa durane un coro inervalo de iemo Δ, haciendo que ésa se acelere

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Repaso de Teoría de la Probabilidad

Repaso de Teoría de la Probabilidad Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos

Más detalles

Álgebras de Boole. Tema Álgebras de Boole

Álgebras de Boole. Tema Álgebras de Boole Tema 5 Álgebras de Boole 5.1 Álgebras de Boole 5.1.1 Álgebras de Boole Definición 5.1.1. Un álgebra de Boole es una erna (A,, ) donde A es un conjuno y, : A A A son dos operaciones binarias inernas con

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR JOZ PRUE E CCESO (LOGSE) UNIVERSI E CNTRI SEPTIEMRE - 9 (RESUELTOS or nonio Menguiano) MTEMÁTICS II Tieo áio: horas inuos - ebe escogerse una sola de las ociones - ebe eonerse con claridad el

Más detalles

TITULACIÓN: INGENIERO DE TELECOMUNICACIÓN CAMPOS ELECTROMAGNÉTICOS (2 o CURSO)

TITULACIÓN: INGENIERO DE TELECOMUNICACIÓN CAMPOS ELECTROMAGNÉTICOS (2 o CURSO) UNIVERSIDAD POLITÉCNICA TITULACIÓN: INGENIERO DE TELECOMUNICACIÓN CAMPOS ELECTROMAGNÉTICOS (2 o CURSO Eamen final: 19 de Junio de 2008 Profesores: Alejandro Álvarez Melcón, Fernando Quesada Pereira Punuación:

Más detalles

TEMA 2: TEOREMAS DE CONSERVACIÓN

TEMA 2: TEOREMAS DE CONSERVACIÓN EMA : EOREMAS DE CONSERVACIÓN 1.- IDEAS INICIALES OBJEIVO: ESUDIO DE LA EVOLUCIÓN DE LOS SIEMAS (CAUSAS Y EFECOS) HERRAMIENA: USO DEL CÁLCULO DIFERENCIAL PARA ESUDIO CUANIAIVO SISEMAS EN ESUDIO: LOS SISEMAS

Más detalles

Macroeconometría Notas sobre teoría asintótica

Macroeconometría Notas sobre teoría asintótica Macroeconometría Notas sobre teoría asintótica Jose Lluís Carrion i Silvestre Marzo de 2002 1 De niciones de convergencia A continuación se resumen los concetos que habitualmente se utilizan en la literatura

Más detalles

Sesión 2 Análisis univariado de series de tiempo. 5. Series de tiempo no estacionarias en media

Sesión 2 Análisis univariado de series de tiempo. 5. Series de tiempo no estacionarias en media Banco Cenral de Reserva del Perú 55º Curso de Exensión Universiaria Economería Prof. Juan F. Casro Sesión 2 Análisis univariado de series de iempo 5. Series de iempo no esacionarias en media La maoría

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real) TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

Índice de diapositivas en Tr2009_6_Prog_Din.doc

Índice de diapositivas en Tr2009_6_Prog_Din.doc Deparameno de Economía, Faculad de Ciencias Sociales, Universidad de la República, Uruguay Maesría en Economía Inernacional 29. Macroeconomía. Alvaro Foreza Índice de diaposiivas en Tr29_6_Prog_Din.doc

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

1. Elasticidad lineal

1. Elasticidad lineal Inroducción al MEF 1. Elasicidad lineal 1.1. Descripción del problema El problema de esfueros en elasicidad lineal se planea para un sólido que ocupa una región del espacio Ω con una fronera Γ (cf. figura

Más detalles