Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario."

Transcripción

1 Sisemas Lineales e Invarianes en el Tiempo LTI La Inegral Convolución Caracerización complea de un sisema LTI coninuo en érminos de su respuesa al impulso uniario. Represenación de señales coninúas en érminos de los impulsos 2 x() ^ x(): Aproximación a ravés de una función escalera x( 2 ) x( 2 ) δ ( + 2 ) 2 x( ) δ ( + ) x( ) x() δ () x() x( ) δ ( ) x( ) 2

2 x` HL = x HkDL d D H - kdl D k=- 1ê D, d D HL = : D, para oro valor > δ HL ieneunampliuduniaria xˆhl = x Hk L δ H k L k= x ˆHL = lim x Hk L δ H k L ; k= con eso se mejora la función escalera u HL = 9, < 1, = u HL = δ HλL λ u HL = du HL d Como se puede apreciar, en = exise una disconinuidad por lo que no es posible la diferenciación. Pero se puede considerar una aproximación del escalón uniario u (). u() es una idealización an cora que no es significaiva para propósios prácicos.

3 δ HL = du HL d δ HL = lim δ HL La Convolución esá relacionada con la respuesa al impulso a ravés: x HL = x HλL δ H λl λ u HL = u HλL δ H λl λ u HL = δ H λl λ yaqueu HλL = para λ < y u HλL = 1 para La respuesa al impulso uniario y la represenación de la inegral de Convolución de un sisema LTI se por: x ˆHL = x Hk Lδ H k L represenacióndelaseñalcomopulsosescaladosyreardados k= La respuesa y ˆHL de un sisema lineal a esa señal será la superposición de las respuesas a las versiones escaladas y desplazadas de δ (). Definimos a ˆ hk HL como la respuesa a un sisema LTI a la enrada δ ( - k ). ỳ HL = x HkDL h` kd D k=- y HL = lim x HkDL h kd HL D D Æ -

4 x(λ)hλ() Área sombreada = x(k )hk () λ k (k+1) y HL = - x HlL hl HL l Æ Forma general de la respuesa de un sisema lineal coninuo en el iempo Si enemos que h l HL = h H - ll Æ por ser sisema invariane en el iempo y HL = - x HlL h H - ll l Æ Inegral convolución o inegral de superposición Represenación de un sisema LTI coninuo, en érminos de su respuesa a un impulso uniario. y() = x() * h()

5 Propiedades de la Convolución Propiedad Conmuaiva Consise en: x() * h() = h() = x() Un ejemplo de ello es una señal riangular. - x HlL h H - ll l = - x H - ll h HlL l Propiedad Disribuiva Consise en: x() *[h 1 () + h 2 ()] = x() * h 1 () + x() * h 2 () Esa propiedad es úil en érminos de inerconexión de sisemas. y 1 HL = x HL * h 1 HL y 2 HL = x HL * h 2 HL y HL = x HL * h 1 HL + x HL * h 2 HL y HL = x HL 1 HL + h 2 HLD Podemos ener la combinación de la propiedad conmuaiva y 1 HL + x 2 HLD h HL = x 1 * h HL + x 2 HL * h HL Propiedad asociaiva x HL 1 HL * h 2 HLD HL * h 1 HLD * h 2 HL

6 Propiedades de la Convolución con funciones de singularidad Sisema idenidad. x HL * d HL = - x HlL d H - ll l x HL * d HL = - x HL d H - ll l x HL * d HL = x HL - d H - ll l x HL * d HL = x HL Æ Un sisema LTI con respuesa al impulso h HL = d HL es un sisema idenidad. Sisema inegrador perfeco. x HL u HL = x HλL u H λl λ x HL u HL = x HλL λ Unsisema LTIconrespuesaalimpulso h HL = u HL esuninegrador perfeco. Ejemplo de aplicación. x HL * d HL x HL = u HL u HL * d HL = - u HlL d H - ll l u HL * d HL = d H - ll l Sisema Diferenciador perfeco. x HL * d d HL d = - x HlL d ' H - ll l x HL * d d HL d = d x HL d Æ Un sisema LTI con respuesa al impulso h HL = d ' HL es un diferenciador perfeco.

7 Sisema con impulso reardado. x() * δ( a) = x( a) Ejemplos. 1. Sea la señal x() = aδ() + bδ( o ). Esa señal es la enrada de un sisema LTI con respuesa al impulso h() = ke c u(). Podemos ver que la enrada es la suma ponderada de dos funciones desplazadas. Como el sisema es lineal e invariane en el iempo, no exise ningún inconveniene. La respuesa del sisema a un impulso unidad en su enrada es igual a h() y HL = ab HL + bh H - L y HL = ake -c u HL + bke -c H - L u H - L 2. Considere un sisema con respuesa al impulso h HL = e -a u HL a > x HL = e -b u HL b π y HL = - e -bl u HlL e -a H - ll u H - ll l y HL = e -bl e -ah - ll l y HL = e -b l e -a e l a l y HL = e -a e l Ha-bL l Ha -bl el -a y HL = e Ha - bl y HL = y HL = e -ai Ha -bl -1 + e j k a -b e b - e -a a- b ƒ y z {

8 Ejercicios de la Convolución 1. Para la señales de iempo coninuo x() y v() que muesra la figura siguiene, calcule la Convolución x() * v(), para y grafique la señal resulane. El primer paso, es definir maemáicamene como esán descrias la señales que se muesran aneriormene.

9 Ahora ya enemos las señales con sus respecivas funciones maemáicas que las describen, ahora procedemos a deerminar la Convolución: x HL * v HL = - x HlL v H - ll l Se raa de ir leyendo la Ecuación; es decir, como nos podemos fijar x(λ) es la señal que permanecerá fija, en cambio la señal v(-λ) se inverirá y luego por medio de se irá desplazando desde la izquierda a la derecha. Para hacer el gráfico con respeco a λ en remplazo de la variable, se procede a realizar exacamene el mismo gráfico, solamene hay un cambio de variable, pero siguen siendo las mismas funciones. Como hemos viso, en el gráfico anerior solo hemos inverido la señal v(λ), ahora vamos a empezar a mover la señal inverida. Conforme vayamos moviendo la señal la vamos a ir muliplicando y observando su señal resulane. Luego con esos parámeros enconraremos la Convolución resulane para cada inervalo deerminado.

10 La Convolución para 1. y HL = x HL * v HL y HL = H1LH2L λ y HL = 2 λ» y HL = 2 Seguimos moviendo la señal v(λ). La Convolución para 1 3. y HL = x HL * v HL y HL = 1 y HL = 2 λ» 1 H1LH2L λ y HL = 2 H H 1LL y HL = 2

11 Seguimos moviendo la señal v(λ). La Convolución para el inervalo 3 4. Seguimos moviendo la señal v(λ). y HL = x HL * v HL y HL = 1 3 y HL = 2 λ» 1 3 H1LH2L λ y HL = 2 H3 H 1LL y HL = La Convolución para el inervalo 4, es igual a cero, como se puede ver en el grafico anerior.

12 De esa manera si hacemos un resumen de la Convolución de esas señales sería la siguiene: y HL = 9 La gráfica de la Convolución es la señal y() ) x() * v(). i j k y z { = Para corroborar ese resulado ingresamos a Malab y ipiamos los siguienes comandos. convplo('usep()-usep(-3)','2*usep()-2*usep(-1)',[ 3],[ 1],1/2) Malab nos da el siguiene resulado, la línea en verde es la señal que se queda esáica, la señal en rojo es la señal que se ha inverido y se mueve de izquierda a derecha y la señal en amarillo es la Convolución resulane.

13 2. Para la señales de iempo coninuo x() y v() que muesra la figura siguiene, calcule la Convolución x() * v(), para y grafique la señal resulane. Primero debemos obener la función maemáica que gobierna esas señales. La señal de la izquierda simplemene se raa de una señal consane de ampliud 2, que va en el inervalo [ 2], aunque ambién podemos ver que la señal que la señal x() esá dada por la siguiene fórmula x() = 2u() 2u(-2). Y a la señal de la derecha la podemos obener a ravés de la ecuación de reca pendiene al como se muesra a coninuación: y2 y1 y y1 = Hx x1l x2 x1 v HL 2 = 2 H L 2 v HL 2 = 1 HL v HL = 2 Las gráficas en función de λ son exacamene las mismas, en realidad solo hemos hecho un cambio de variable.

14 Ahora procedemos a realizar la Convolución de las señales. Y conforme leemos la ecuación vamos haciendo el despliegue de las señales. y HL = x HL v HL y HL = x HλL v H λl λ Primero inverimos la señal v(λ), al como sigue: Si muliplicamos las señales aneriores, podemos ver que la resulane es cero, por lo ano para el parámero, la Convolución es igual a. Si movemos la señal a de izquierda a derecha enemos el siguiene resulado.

15 La Convolución en el inervalo 2: y HL = x HL * v HL y HL = x HlL v H -ll l y HL = 2 * H2 -H - lll l y HL = l l y HL = 4 l - 2 l + l 2 y HL = y HL = 4-2 Seguimos moviendo la señal v(), hacia la derecha, al como se muesra a coninuación:

16 La Convolución en el inervalo 2 4: y HL = x HL v HL y HL = x HλL v H λl λ y HL = H2 H λll λ y HL = λ λ y HL = 4 λ 2 λ + λ 2» 2 2 y HL = A4 H 2L 2 H 2L + H 2L 2 E y HL = 12 4 A E y HL = y HL = Seguimos moviendo la señal v(), y enemos: Como se puede apreciar en el gráfico anerior, cuando el parámero, esa fuera en el límie 4, la Convolución resulane es igual a cero. Como resumen enemos: y HL = i y j z k 4 {

17 Si graficamos esa señal enemos como resulane: Si obenemos esa señal a ravés de Malab, enemos lo siguiene: convplo('2*usep()-2*usep(-2)','2-',[ 2],[ 2],1/2) La resulane es:

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Señales y Sistemas: Tema II. Sistemas en el dominio del tiempo

Señales y Sistemas: Tema II. Sistemas en el dominio del tiempo Señales y Sisemas: Tema II Sisemas en el dominio del iempo Sisemas en el dominio del iempo 1. Definición de sisemas y de sus propiedades. 2. Sisemas lineales e invarianes en el iempo (LTI). 3. Represenación

Más detalles

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI) Sisemas Lineales Tema 2: Sisemas Lineales e Invarianes en el Tiempo (LTI). Inroducción e las propiedades básicas de los sisemas, visas en el ema anerior, la linealidad y la invarianza en el iempo juegan

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

Teoría de Sistemas y Señales. Problemas Propuestos - Serie 1 - Parte I

Teoría de Sistemas y Señales. Problemas Propuestos - Serie 1 - Parte I Descripción: Sisemas y Señales Teoría de Sisemas y Señales Problemas Propuesos - Serie - Pare I. Indique cuál de las siguienes señales en iempo coninuo son periódicas. Deermine el período fundamenal. Jusifique

Más detalles

Fundamentos Básicos Sistemas y Señales

Fundamentos Básicos Sistemas y Señales Fundamenos Básicos Sisemas y Señales Preparado por : jhuircan Depo. Ingeniería Elécrica Universidad de La Fronera Objeivos q Revisar los concepos básicos de la Teoría de Sisemas q Revisar los concepos

Más detalles

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE TEORÍ DE LOS CIRCUITOS II SEÑLES PERIÓDICS INDICE SEÑLES PERIÓDICS ELEMENTLES 2 Señal escalón 2 Señal rampa 3 Señal impulso 4 Relación enre las señales aperiódicas elemenales 5 Página REPRESENTCIÓN DE

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t)

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t) Sisemas Lineales ema 5. Muesreo 1 Inroducción rabajamos con sisemas discreos porque es más úil rabajr con precesadores digiales. Para ello va a ser necesario definir un proceso que reanforme las señales

Más detalles

Tema 3 Sistemas lineales.

Tema 3 Sistemas lineales. Tema 3 Sisemas lineales. Podemos definir un sisema como un grupo o combinación de elemenos inerrelacionados o íner-acuanes que forman una enidad coleciva. En el conexo de los sisemas de comunicación los

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.

Más detalles

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda.

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda. Apéndice 3 1 Señales Una señal es una función del iempo. La gráfica de una señal se denomina forma de onda. A3.1 Represenación de formas de ondas Esudiaremos algunas propiedades de la represenación de

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Señales de Potencia,Energía y Orden Superior

Señales de Potencia,Energía y Orden Superior Señales de Poencia,Energía y Orden Superior Clasificación de Señales: as señales se clasifican maemáicamene evaluando su energía o poencia en un inervalo que va siempre desde a + de modo de abarcar la

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

ANALISIS BASICO DE REDES QUE CONTIENEN ARMONICAS

ANALISIS BASICO DE REDES QUE CONTIENEN ARMONICAS CAPIULO 1 ARMONICAS ANALISIS BASICO DE REDES QUE CONIENEN ARMONICAS 1.1 INRODUCCION En sisemas elécricos de disribución de poencia, radicionalmene se esperaba que la forma de onda del volaje suminisrado

Más detalles

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL.

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL. SEÑALES Y SISTEMAS - AÑO 07 Prácica Clasificación de Sisemas. Sisemas Lineales (SL). Convolución. Procesos esocásicos a ravés de SL.. Invarianza al Desplazamieno Considere el sisema y[n] = x[n ]. a) Deermine

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamieno Digial de Señal Tema : Análisis de Señal e Inroducción a los Sisemas Definición de señal sisema Señales coninuas discreas Transformaciones elemenales Funciones elemenales coninuas discreas

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Capítulo 4: Caracterización de la planta

Capítulo 4: Caracterización de la planta Capíulo 4: Caracerización de la plana En el presene capíulo se describe la obención del modelo maemáico de la plana del experimeno de Franck-Herz, así como algunos concepos preliminares relacionados con

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

Múltiples representaciones de una señal eléctrica trifásica

Múltiples representaciones de una señal eléctrica trifásica Múliples represenaciones de una señal elécrica rifásica Los analizadores de poencia y energía Qualisar+ permien visualizar insanáneamene las caracerísicas de una red elécrica rifásica. Represenación emporal

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

GENERADOR FORMA DE ONDA TRAPEZOIDAL

GENERADOR FORMA DE ONDA TRAPEZOIDAL GENEADO FOMA DE ONDA TAPEZOIDAL Bueno una forma de onda rapezoidal es básicamene lo siguiene: una rampa con pendiene posiiva, luego un nivel consane y a coninuación una rampa con pendiene negaiva. Si nos

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación.

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación. Gráficos con Maple Maple incluye poenes capacidades gráficas que permien realizar represenaciones bidimensionales, ridimensionales e incluso animaciones. El programa es muy flexible en lo que a la enrada

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

Regulación y Control de Máquinas Navales (RCMN)

Regulación y Control de Máquinas Navales (RCMN) Regulación y Conrol de Máquinas Navales (RCMN) Problemas Resuelos Módulo 3. Análisis y Conrol de Sisemas en Cadena Cerrada G. Ojea, R. González de los Reyes, I. Díaz 04/0/08 PROBLEMA : En el sisema de

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

M O D E L O S D E I N V E N T A R I O

M O D E L O S D E I N V E N T A R I O nvesigación Operaiva Faculad de iencias Exacas - UNPBA M O E L O E N V E N T A O El objeivo de la eoría de modelos de invenario es deerminar las reglas que pueden uilizar los encargados de gesión para

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL. Estudiemos el comportamiento estacionario ante una excitación sinusoidal.

COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL. Estudiemos el comportamiento estacionario ante una excitación sinusoidal. TEMA COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL Circuio RC pasa alo Esudiemos el comporamieno esacionario ane una exciación sinusoidal. -/ Figura. Circuio RC pasa alo C nf R k khz La

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

Series de Fourier. Roberto S. Costas Santos. October 10, Durante este capítulo analizaremos el comportamiento de la serie 1

Series de Fourier. Roberto S. Costas Santos. October 10, Durante este capítulo analizaremos el comportamiento de la serie 1 Series de Fourier Robero S. Cosas Sanos Ocober, 3 Inroducción Serie de Fourier en forma exponencial compleja Durane ese capíulo analizaremos el comporamieno de la serie k= Si enemos en cuena la idenidad

Más detalles

La función generatriz para B k. Polinomios de Bernoulli

La función generatriz para B k. Polinomios de Bernoulli La función generariz para B. Polinomios de Bernoulli Alexey Beshenov cadadr@gmail.com 8 de Febrero de 017 La función generariz para B Teorema. Los números de Bernoulli pueden ser definidos por e e 1 =

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

Tema 3: Análisis de sistemas realimentados

Tema 3: Análisis de sistemas realimentados Tema : Análisis de sisemas realimenados Conrol Auomáico º Curso. Ing. Indusrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Curso 8-9 Índice Función de ransferencia del sisema en bucle

Más detalles

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) <

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) < TEMA I: ESPUESTA TEMPOA DE OS x() SISTEMA y() IUITOS INEAES. Ecuaciones de las redes generales, lineales e invarianes con parámeros concenrados Ejemplo x() < y() < ircuio esable as ecuaciones a que dan

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN kf Propósio Al finalizar esa sección, quien impare el curso habrá logrado que los esudianes: Reconozcan que para obener la función F que modela el problema,

Más detalles

5. Modelos dinámicos

5. Modelos dinámicos 5. Modelos dinámicos Los modelos lineales dinámicos son un caso paricular de una clase más grande de modelos dinámicos. En general los modelos dinámicos se caracerizan por ener una dinámica en los parámeros

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)

Más detalles

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t)

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t) Inroducción a la ísica Paralelos y 3. Profesor RodrigoVergara R RPIDEZ DE CMBIO Rapidez media de cambio Definir el concepo rapidez media de cambio nalizar arianes donde no es el iempo la ariable independiene

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden Ejercicios de Ecuaciones Diferenciales con Malab: Ecuaciones diferenciales de primer orden 8 de marzo de 9. Consideremos la ecuación diferencial ẋ = f(x, λ). Calcular los punos de bifurcación y dibujar

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 1: CINEMÁTICA RECTILÍNEA-SOLUCIÓN DE LAS ECUACIONES DIFERENCIALES- Diego Luis Arisizábal R.,

Más detalles

1.1 SEÑALES, SECUENCIAS Y SISTEMAS

1.1 SEÑALES, SECUENCIAS Y SISTEMAS 1.1 SEÑALES, SECUENCIAS Y SISTEMAS SEÑALES CONTINUAS Y SEÑALES DISCRETAS Señal coninua: variable independiene () valores coninuos Señal discrea: variable independiene (n) solo valores eneros Simbología:

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

La Curva de Phillips CAPÍTULO 17. Profesor: Carlos R. Pitta. Macroeconomía Avanzada. Universidad Austral de Chile Escuela de Ingeniería Comercial

La Curva de Phillips CAPÍTULO 17. Profesor: Carlos R. Pitta. Macroeconomía Avanzada. Universidad Austral de Chile Escuela de Ingeniería Comercial Universidad Ausral de Chile Escuela de Ingeniería Comercial Macroeconomía Avanzada CAPÍTULO 17 La Curva de Phillips Profesor: Carlos R. Pia Macroeconomía Avanzada, Prof. Carlos R. Pia, Universidad Ausral

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo Solución de un caso paricular del problema de valor de fronera en érminos de la función de Green sobre un inervalo Objeivos. Mosrar que un caso muy especial del problema de valor de fronera: x () = f(),

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD Pronósicos II Un maemáico, como un pinor o un poea, es un fabricane de modelos. Si sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico,

Más detalles

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 3

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 3 Esadísica Indusrial Universidad Carlos III de Madrid Series emporales Prácica 3 Objeivos: Coninuar con la idenificación de procesos auoregresivos (AR) y de media móvil (MA), mediane la función de auocorrelación

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Caso 2 Referencia distinta de cero r(t) ¹ 0

Caso 2 Referencia distinta de cero r(t) ¹ 0 Caso 2 Referencia disina de cero r() ¹ 0 2.b: Diseño de servosisemas de Tipo para planas ipo uno (la plana iene un inegrador). Fernando di Sciascio (206) Diseño de Servosisema de Tipo Cuando la Plana es

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables Lección 3 Técnicas analíicas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exacas y Cambios de Variables 3.1. Ecuaciones Exacas Las ecuaciones exacas esán relacionadas con las llamadas

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

Tema 4. Filtros Analógicos

Tema 4. Filtros Analógicos Tema 4. Filros Analógicos Caracerización Temporal Francisco J. González, UC3M 29 Sisemas y Circuios 4. Definición x() Filro y ( ) = T x( ) x[ n ] ak, bk yn [ ] = T{ xn [ ]} Filro analógico: Sisema en Tiempo

Más detalles

MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO. Fernando di Sciascio (2017)

MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO. Fernando di Sciascio (2017) MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO Fernando di Sciascio (2017) Sisemas Dinámicos Lineales Invarianes en el Tiempo (LTI) Un sisema dinámico coninuo LTI se expresa maemáicamene

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

SISTEMAS DISCRETOS. 1. Qué son?

SISTEMAS DISCRETOS. 1. Qué son? SISTEMAS DISCRETOS. Qué sn? Sn sisemas que rabajan cn das muesreads Ess sisemas sn cnrlads pr cmpuadr Ls cnrladres se desarrllan en cmpuadres. Ejempl de das muesreads Prces Reenr Muesreadr D/A Cmpuadr

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen CALIFICACIÓN: Consejería de Educación, Ciencia y Culura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 011 Resolución de 9 de marzo de 011 (DOCM de 5 de abril)

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles