Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 2009/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 2009/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1"

Transcripción

1 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1 Una relación lineal es una epresión de la forma f() = a+b. Si llamamos a la temperatura en o C, e y = f() a la temperatura en o F, necesitamos determinar los valores a y b. Como a 0 o C le corresponden 3 o F, eso significa que f(0) = 3, es decir, b = 3. Como a 100 o C le corresponden 1 o F, eso significa que f(100) = 1, es decir, 100a + b = 1. Resolvemos entonces el sistema: { b = 3 100a + b = 1 La relación lineal es entonces f() = } b = 3 a = 9 5. Si un cuerpo está a 97.6 o F, si temperatura en grados Celsius vendrá determinada por: es decir, 36. o C = 97,6 = 36,, 5. Si denotamos por la biomasa no enterrada (en g.) y por y el número de semillas, la relación obtenida es y = f() = a, donde a es un valor a determinar. Para ello, usamos que si = 17 g. entonces y = 17 semillas, o lo que es lo mismo: 17 = a 17 a = De ese modo, la ecuación que relaciona ambas cantidades es y = La manzana llegará al suelo en el momento que su altura sea 0, es decir, h(t) = 0. Resolviendo 6 16t = 0 obtenemos que t = segundos. La manzana estará a una altura menor que 8 metros si h(t) 8, es decir, 6 16t 8, y eso se verifica si t 1. En resumen, desde el primer segundo la manzana está a menos de 8 metros del suelo.. La gráfica de la función es de la forma (para [0, 10])):

2 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 Y la siguiente gráfica representa la curva anterior junto con la recta y = que el la recta que aparece punteada: Cuando el volumen es = 3 la biomasa es y = 0,1 3 0,79 = 0, Y el volumen para que la biomasa sea y = 8 es = 80 1/0,79 = 9, (a) El número de bacterias en t = 0,1 es B(0,1) = e 0,01 = 10100, El número de bacterias en t = 3 es B(3) = e 0,3 = 1398, (b) El instante t en el que el número de bacterias alcanza el valor se corresponde con resolver la ecuación B(t) = , es decir: e 0,1t = = e 0,1t ln(10) = 0,1t t = 10 ln(10) = 3, horas. (c) Para ello, calculamos el límite de B(t) cuando t +. En ese caso, lím B(t) = +, t + luego el número de bacterias aumenta indefinidamente. 6. El límite de la población viene dado por lím t + N(t) = a. Entonces,l a = 1, 106. Si en el instante t = 5 el tamaño de la población es la mitad del tamaño límite, entonces: N(5) = Por tanto, la función es N(t) = 1, 106 t. 5 + t 7. 5a = a/5 10 = 5 + k k = 5. a + k (a) La función f(t) = 0,05t(t 1)(t ) es una ecuación polinómica de tercer grado. Sus raíces son 0, 1 y. Si estudiamos el signo, teniendo en cuenta que t [0, ] (pues se trata de horas diarias), obtenemos que:

3 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 3 es positiva en (0, 1), es negativa en (1, ). Por tanto, la temperatura se encuentra por debajo de 0 o entre t = 1, que se corresponde con las 18 (6 de la tarde), y t =, que se corresponde con las 6 (6 de la mañana) horas. (b) La función f es continua en su dominio. A las 1 a. m. su valor es f(t = 6) = 3, o F, y a la 1 p. m. su valor es f(t = 7) = 9,75 o F. Por tanto, aplicando el Teorema del valor intermedio o de Darbou deducimos que eiste algún valor intermedio t (6, 7) (entre las 1 a. m. y la 1 p. m.) en el que se alcanzan los 3 o F. 8. Según los datos, estudiamos la función R() = (9 )(7 ), que sólo tiene sentido para [0, 7] (ya que una concentración debe ser positiva y la velocidad de reacción positiva). (a) Para estudiar la monotonía de la función calculamos su derivada que es R () = ( 8). Observemos que dicha función se anula en = 8 y que R () < 0 para [0, 7]. Por tanto, la función es estrictamente decreciente en [0, 7]. (b) Observemos que se trata de una función continua definida en [0, 7]. Estamos entonces ante un problema de calculo de etremos absolutos de una función, para una función continua en un intervalo cerrado y acotado. Por tanto, para calcular los etremos absolutos de la función tenemos que estudiar los valores de dicha función en los posibles candidatos: etremos: = 0, = 7, y sus valores son R(0) = 16, R(7) = 0, puntos en (0, 7) donde R () = 0: en este caso no hay. puntos donde la función no es derivable: en este caso no hay. Máimo de R : 16, alcanzado en = 0. Mínimo de R : 0, y se alcanza en = 7. Otra forma de resolver el problema es estudiando su gráfica. Observamos que: R () = ( 8), R () = 0 = 8. Luego R es decreciente (estrictamente) en (0, 7), ya este es su dominio de definición en este caso. Como R(0) = 16 y R(7) = 0, deducimos que la función alcanza un máimo absoluto en = 0 y un mínimo absoluto en = Según los datos del enunciado estudiamos la función R() = (a) Tenemos que resolver la ecuación R() =, es decir: = =, luego la velocidad de crecimiento vale cuando la concentración del nutriente es =. (b) Para estudiar la monotonía de la función calculamos la derivada de R(): R () = 5 (1 + ) > 0, luego la función es estrictamente creciente allí donde esté definida. Aunque D(R) = R\{ 1}, como la variable mide la concentración de un nutriente, sólo tiene sentido en [0, + ). Por tanto, la función es estrictamente creciente en [0, + ), y nunca es decreciente.

4 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 (c) Para ello, estudiamos el límite de R() cuando + : lím R() = 5. + Esto significa que la velocidad de crecimiento crece hacia el valor 5, pero nunca se alcanza aunque tiende asintóticamente a dicho valor. 10. (a) Para estudiar la monotonía de la función calculamos la derivada de L(t): L (t) = l e t > 0, que es siempre creciente, es decir, es estrictamente creciente en [0, + ) que es el dominio considerado. No es decreciente en ningún conjunto. (b) Para calcular a qué tiende la longitud cuando t +, calculamos: lím l (1 t + e t ) = l. Por tanto, l es la cota superior de la longitud que pueden alcanzar los peces en toda su vida. Como L(t) es una función estrictamente creciente, dicha cota nunca puede alcanzarse, pero la longitud tiende asintóticamente a ella. 11. Según los datos del enunciado estudiamos la función W(t) = e 0,01t : (a) Para comprobar que la función es decreciente calculamos la derivada de W(t): W (t) = 0,0 e 0,01t < 0, luego es estrictamente decreciente en [0, + ), que es el dominio considerado. (b) Para saber qué le pasa a la cantidad de C 1 cuando pasa mucho tiempo calculamos: lím W(t) = 0, t + es decir, esa cantidad es cada vez más pequeña y tiende a desaparecer, pero no se hace cero en tiempo finito. (c) Para calcular en qué momento W = 1, tenemos que resolver: e 0,01t = 1 e 0,01t = 1 ( ) 1 0,01t = ln t = 100 ln() = 69, La función B(t) es una función decreciente en todo su dominio, ya que B (t) = 0,0053B 0 e 0,0053t < 0. Por tanto, para que durante 6 horas la concentración sea superior a 0, necesitamos resolver B(t) 0 sabiendo que el primer instante en el que la concentración puede ser menor o igual que 0 es t = 6. Resolvemos entonces B(6) = 0, es decir, B 0 e 0,0318 = 0 cuya solución es B 0 = 0e 0,0318 = 0,66, siendo B 0 la cantidad de medicamento inyectada (o cantidad inicial).

5 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA (a) El campo abierto sólo requiere 3 lados de cerca, ya que el lado del rectángulo que falta tiene como frontera el río. Al tratarse de un rectángulo, habrá lados de longitud y un lado de longitud y. Por tanto, el perímetro viene dado por + y y según el enunciado debe ser igual a 80, es decir, + y = 80. Por otra parte, el área de dicha figura (que es un rectángulo) viene dada por A = y. Si queremos deducir la epresión del área A en función de, hacemos lo siguiente: A = y + y = 80 } A() = (80 ) = 80. Observemos que se trata de una función continua definida en [0, 0], pues fuera de dicho intervalo la función A() toma valores negativos (y eso no tiene sentido). Estamos entonces ante un problema de calculo de etremos absolutos de una función, para una función continua en un intervalo cerrado y acotado. Por tanto, para calcular los etremos absolutos de la función tenemos que estudiar los valores de dicha función en los posibles candidatos: etremos: = 0, = 0, y sus valores son A(0) = 0, A(0) = 0, puntos en (0, 0) donde A () = 0: = 0, y su valor es A(0) = 800, puntos donde la función no es derivable: en este caso no hay. Máimo de A : 800, alcanzado en = 0. Mínimo de A : 0, y se alcanza en = 0, = 0. Otra forma de resolver el problema es estudiando su gráfica. Observamos que: A () = 80, A () = 0 = 0. Luego A es creciente (estrictamente) en (0, 0) y decreciente (estrictamente) en (0, 0). Por tanto, la función A() alcanza un máimo local en = 0, que es A(0) = 800. Como A(0) = 0 y A(0) = 0, deducimos que dicho máimo es global. En definitiva, debe haber lados de 0m. y un lado de 0 m. para que el área encerrada por la cerca sea la máima posible. (b) En este caso, los datos del problema nos llevan a la conclusión siguiente, donde P es el perímetro de la superficie que se desea vallar: } y = 18 P() = + 18 P = + y. Observemos que se trata de una función continua definida en (0, + ), pues fuera de dicho intervalo la función P() toma valores negativos (y eso no tiene sentido). Estamos entonces ante un problema de calculo de etremos absolutos de una función, para una función continua en un intervalo semiabierto y no acotado. Por tanto, para calcular los etremos absolutos de la función sólo podemos usar el segundo razonamiento del apartado anterior. Observemos que: P () = 18, P () = 0 = 3. La función P() es decreciente en (0, 3) y creciente en (3, + ), por tanto posee un mínimo local en = 3 que vale P(3) = 1. Como además lím P() = + y lím 0 + deducir que dicho mínimo es global. + P() = +, podemos En definitiva, debe haber lados de 3m. y un lado de 6 m. para que se requiera la mínima cantidad de valla.

6 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA El volumen de una caja de base cuadrada de lado y altura y viene dado por: V = y; y el área viene dado por la suma del área de la base, que es, y de los cuatro laterales, cada uno de ellos de área y. Por tanto, A = + y. Según los datos del problema, A = 100, por tanto, 100 y =. La función a maimizar es el volumen, que usando la epresión de y anterior viene dado por: V = ( 100 ) = Observemos entonces que la función a maimizar es f() = que tiene sentido para [0, 100]. Como se trata de una función continua definida en un intervalo cerrado y acotado, podemos aplicar el Teorema de Weiertrass y concluir que posea máimo y mínimo absolutos en dicho intervalo. Los candidatos son: los etremos del intervalo = 0, = 100, los puntos donde la derivada se anula, es decir, f () = 300 3, que es = 0. Como f(0) = 0, f(0) = 000 y f( 100) = 0, entonces elm máimo se alcanza en = 0 y el volumen máimo es 000 cm Considerando que la sensibilidad es una magnitud positiva, observemos que S es positiva si [0, C]. La función S posee como derivada S () = C, por tanto tiene un etremo relativo en = C/, siendo creciente en (0, C/) y decreciente en (C/, C). Por tanto, posee un máimo absoluto que es S(C/) = C /, que se alcanza en = C/. 16. Siendo f(t) = t t + 1 t + 1, la derivada es f (t) = t 1 (t + 1). Observemos que f (t) = 0 si t = 1 luego f(1) = 1, f(0) = 1 y lím f(t) = 1. Así, el máimo de f es 1 y se alcanza con t = 0, y el t + mínimo de f es 1/ y corresponde a t = Observemos en primer lugar que al tratarse de una población, N sólo tiene sentido si es positiva o cero, pero la función f(n) puede ser negativa (por ejemplo por causas de sobrepoblación unidas a escasez de alimentos). Por tanto asumimos que Eso ocurre si N [0, + ). La epresión de f (N) es f (N) = r ( 1 N K decreciente en (K/, + ). 18. ). Dicha epresión se anula en N = K/, siendo creciente en (0, K/) y a) La derivada de la función N(t) viene dada por N (t) = 600e t (1 + 3e t > 0 luego se trata de una ) función estrictamente creciente. b) Es fácil deducir que lím N(t) = 100. t + c) La derivada segunda de la función viene dada por la epresión N (t) = 100e t (1 + 3e t ) 3 (3e t 1), que se anula para t = ln(3) ( ) ln(3). Observemos que N = 50. d) A la vista de los apartados anteriores y sabiendo que N(0) = 5, su gráfica viene dada por:

7 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA y=100/(1+3e t ) Para a, k > 0 la función f tiene como dominio D(f) = R. Sin embargo, sólo estudiaremos lo que pasa en [0, + ), ya que representa a una densidad, que es una magnitud positiva. Para calcular en qué puntos es máima dicha función debemos tener una idea de su gráfica. Observemos que: f (N) = a (k N ) (k + N ). Por tanto, f es creciente (estrictamente) en (0, k) y decreciente (estrictamente) en ( k, + ), luego f posee un máimo local en N = k que es f( k) = a. Notemos también, k f(0) = 0 y lím f() = 0, + con lo que podemos deducir que dicho máimo es absoluto. Por tanto, la cantidad de gusanos para la que la velocidad de depredación es máima es N = k, y dicha velocidad de depredación es a k. 0. La función f tiene como dominio D(f) = R. Sin embargo, sólo estudiaremos lo que pasa en [0, + ), ya que N representa el nivel de nitrógeno, que es una magnitud positiva. Para calcular en qué puntos es máima dicha función debemos tener una idea de su gráfica. Observemos que: f (N) = 1 N (1 + N ). Por tanto, f es creciente (estrictamente) en (0, 1) y decreciente (estrictamente) en (1, + ), luego f posee un máimo local en = 1 que es f(1) = 1. Notemos también, f(0) = 0 y lím f(n) = 0, N + con lo que podemos deducir que dicho máimo es absoluto. Por tanto, el nivel de nitrógeno del suelo que maimiza la cosecha es N = a) La concentración inicial es C(0) = 1.

8 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 8 b) El valor a largo plazo de la concentración será lím C(t) = 0, es decir, tiende a cero. t + c) Observemos que C (t) = te t < 0, para t 0, luego es decreciente en [0, + ). Además, C (t) = e t (t 1) luego tiene un punto de infleión en t = 1 siendo C(1) = /e. Observemos que como lím C(t) = 0, posee una asíntota horizontal en y = 0 cuando t +. Por tanto, su t + gráfica viene dada por (para t [0, 10]): Cada uno de los apartados de este ejercicio requiere un estudio detallado. A modo de indicación, y dado que en el siguiente ejercicio se pide básicamente lo mismo, se incluyen simplemente sus representaciones gráficas: (a) La siguiente gráfica corresponde a la función y = en el intervalo [, ]:

9 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 9 (b) La siguiente gráfica corresponde a la función y = en el intervalo [ 10, 10]: (c) La siguiente gráfica corresponde a la función y = que la función no está definida en = 1): 3 en el intervalo [ 6, 6] (observemos (1 + ) 3 /(1+) (d) La siguiente gráfica corresponde a la función y = e en el intervalo [, 3]:

10 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA ep( ) (e) La siguiente gráfica corresponde a la función y = 1 en el intervalo [ 6, 6]: 1 + e (f) La siguiente gráfica corresponde a la función y = ln( +) en el intervalo [ 10, 10] (observemos que la función no está definida en [, 0]):

11 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA (g) La siguiente gráfica corresponde a la función y = la función no está definida en = 1): e 1 + en el intervalo [ 3, 3] (observemos que (h) La siguiente gráfica corresponde a la función y = e 1 1+ en el intervalo [ 10, 10] (observemos que la función no está definida en = 1):

12 Matemática Aplicada y Estadística - Gradoe en Farmacia - Curso 009/010 - HOJA 1 1 ep((1-)/(1+))

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 Matemática Aplicada y Estadística - Grado en Farmacia - Curso 011/01 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1 Una relación lineal es una epresión de la forma f() = a + b. Si llamamos a la

Más detalles

1. En una reacción química de dos reactivos moleculares, la velocidad de dicha reacción viene dada por. R(x) = k(a x)(b x)

1. En una reacción química de dos reactivos moleculares, la velocidad de dicha reacción viene dada por. R(x) = k(a x)(b x) 1. En una reacción química de dos reactivos moleculares, la velocidad de dicha reacción viene dada por R() = k(a )(b ) donde a, b son las concentraciones iniciales de los reactivos, k es una constante

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2 Matemática Aplicada - Licenciatura de Farmacia - Curso 5/6 - HOJA SOLUCIONES DE LOS EJERCICIOS DE LA HOJA Para ver que las ecuaciones dadas poseen una única raíz real, intentaremos aplicar el teorema de

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Teóricas de Análisis Matemático (28) Práctica 7 Optimización

Teóricas de Análisis Matemático (28) Práctica 7 Optimización Teóricas de Análisis Matemático (8) Práctica 7 Optimización Práctica 7 Parte Optimización Problemas de optimización Ejemplo Descomponer el número 6 en dos sumandos positivos de modo que el producto de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

TEMA 10 FUNCIÓN DERIVADA. REPRESETACIÓN y aplicaciones.

TEMA 10 FUNCIÓN DERIVADA. REPRESETACIÓN y aplicaciones. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones polinómicas, a) f( = 5 b) g( = 4 c) h( = 7 d) i( = 4 5 e) i( = 3 + 1 f) j( = 5 4 + 3 g) k( = 3 + 4 + h) l( = 5 3 43 5 i) m( = 4 + 3 3 + 4. Calcula

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS Dada la función f() = + 1 + 4. Calcular la tangente a la gráfica de la función en el punto =. La fórmula de la recta tangente

Más detalles

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio,

Más detalles

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0. . [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica

Más detalles

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios

Más detalles

A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar.

A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. C URSO: º BACHILLERATO DERIVABILIDAD. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. 9 7 a) f ( 4 1 b) f ( 8 4 c) 4 f ( 1 d) ( ) 7 4 f

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Matemáticas aplicadas a las CC.SS. II

Matemáticas aplicadas a las CC.SS. II Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana

Más detalles

t si t 2. x 2 + xy + y 3 = 1 8.

t si t 2. x 2 + xy + y 3 = 1 8. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Estudia la continuidad derivabilidad de las funciones f() g() si f() si < Estudiamos la continuidad en. f() ( ) - - f() ( ) + + La función f() es continua

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Primer trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2016 / 17 Primer trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curso 016 / 17 Primer trimestre Observación evaluable escrita nº 1 º Bach CT NOMBRE: Instrucciones: 1) Todos los folios deben tener el nombre y estar numerados en la parte superior.

Más detalles

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) =

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) = Selectividad CCNN 00. [ANDA] [SEP-B] Considera la función f:[0,] definida por: f() = +a+b si 0 c si

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación Alumn@: Nota Curso: º Bacillerato Recuperación Feca: de Enero de 6 º Evaluación.- Calcule las dimensiones de tres campos cuadrados que no tienen ningún lado común y que satisfacen que el perímetro de uno

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

UNIVERSIDAD DE COSTA RICA Sábado 14 de agosto del 2010

UNIVERSIDAD DE COSTA RICA Sábado 14 de agosto del 2010 UNIVERSIDAD DE COSTA RICA Sábado de agosto del 00 ESCUELA DE MATEMÁTICA Segundo Eamen Parcial PROYECTO MATEM Cálculo I SOLUCIONARIO. Las medidas de la base y de la altura de un rectángulo han dado 6 cm

Más detalles

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de UNIDAD 9 Aplicaciones de la derivada n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de E las funciones), así como sus máimos y mínimos, estos conceptos tienen muchas aplicaciones

Más detalles

Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h)

Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h) Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (a) y 6 ; (b) y ( )( ) + ; (c) (e) y + 6 ; + 4; (d) y ( ) 9 + 5 5; (f) 4 y y 9 ; ; (h) y ( + ) ; 4 (g)

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

1Tema 11 Representación de funciones

1Tema 11 Representación de funciones 1Tema 11 Representación de funciones 1. Del estudio a la gráfica. a) Representa una función y f () sabiendo que: Dominio: 0 Corta a OX en = 1. Asín. horizontal y = 0: Asín. vertical = 0: Si Si Si Si, y

Más detalles

en el intervalo - 1-cos(x) 2 si x > 0 sen(x)

en el intervalo - 1-cos(x) 2 si x > 0 sen(x) . [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..

Más detalles

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

10.APLICACIÓN DE LAS DERIVADAS

10.APLICACIÓN DE LAS DERIVADAS .APLICACIÓN DE LAS DERIVADAS. DERIVADAS SUCESIVAS Antes de introducirnos en algunas importantes aplicaciones de las derivadas, vamos a ver una ampliación de los puntos estudiados en el tema anterior que

Más detalles

EJERCICIOS DE APLICACIONES DE LA DERIVADA

EJERCICIOS DE APLICACIONES DE LA DERIVADA EJERCICIOS DE APLICACIONES DE LA DERIVADA 1º) Un terreno de forma rectangular tiene 400 m y va a ser vallado. El precio del metro lineal de valla es de 4 euros. Cuáles serán las dimensiones del solar que

Más detalles

Figura 10: Represntación gráfica de la función f(x) =2x +4cosx en el intervalo [0, 2π].

Figura 10: Represntación gráfica de la función f(x) =2x +4cosx en el intervalo [0, 2π]. Boletín 4 Funciones de una Variable Diferenciación Aplicaciones 8 Máimo absoluto =+4cos Mínimo absoluto 0 Figura 10: Represntación gráfica de la función f() = +4cos en el intervalo [0, ] (a) Buscamos los

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

TEMA 8 - REPRESENTACIÓN DE FUNCIONES

TEMA 8 - REPRESENTACIÓN DE FUNCIONES Ejercicios Selectividad Tema 8 Representación de funciones Matemáticas CCSSII º Bach 1 TEMA 8 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Julio 10-11. Optativa (1 + 1,5 + 0,5 ptos) 8 Se considera la función

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2 EJERCICIOS,.Calcular las ecuaciones de la tangente y de la normal a la parábola y en el punto en que la abscisa es Punto de tangencia,, ' Tangente... y y y y y Normal... y y y 8.- Calcular la ecuación

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1. Estudiemos cada caso: a) El único número que verifica la condición es x = 5, ya que: x = x + 5 { x

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1

x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1 Selectividad CCNN 004. [ANDA] [JUN-A] Considerar la función f: definida por f() = (+)(-)(-). (a) Hallar las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa =. (b) Determinar

Más detalles