(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y):

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y):"

Transcripción

1 . Reliz ls siguietes opeioes o pes uéios ) ( ) ( ) ) [ ( ) ( )] ½ ( ) 6 ( ) ) ( ) ( ) (6 ) ( ) ) (x y) (x y) ( ) ( ) Soluió. 6. ( ) ( ) ( 6 ( ) ) ( 9 7). [ ( ) ( )] ½ ( ) 6 ( ) ( ) ( ) (6 ) ( 6) ( ). ( ) ( ) (6 ) ( ) (6 ) ( ) ( 6) ( ) (6() 6) (9 ). (x y) (x y) ( ) ( ) (x 6y) (6x y) ( ) (9 6) (x 6x 9 6y y () (9)) (x 9 y 7). Hll x e y p que se upl ls siguietes igules ) (x y) ( ) ) ( y) 6 (x x y) Soluió.. Po igul e pes uéios (x y) x x (x 6y) 6y y 6. ( y) 6 (x x y) ( y) (6x 6x 6y) 6y y 7 y 6x 6y x y x 6 7. Se ABCD u uo N el puto eio el lo AD y O el eto el uo. Rzo si ls siguietes pejs e vetoes tiee el iso óulo ieió y setio. ) AN BC Soluió.. BC ) AN NO ) AO CA ) AN ND AN Igul ieió igul setio ifeete óulo ( BC AN ). AN NO Distit ieió igul oulo.. CA AO Igul ieió setio opuesto ifeete óulo ( CA AO ) AN ND Igul ieió igul setio igul óulo

2 . Se ABCD u plelogo y O su eto. Rzo si ls siguietes pejs e vetoes so equipoletes. ) AB CD ) BA CD ) AB AD ) AO OC Soluió. P que os vetoes se equipoletes ee tee igul óulo ieió y setio.. AB CD No so equipoletes. Distito setio.. BA CD Si so equipoletes.. AB AD No so equipoletes. Distit ieió.. AO OC Si so equipoletes.. Se ABC u tiágulo. Si u {AB} y v {AC) epeset ) u v ) v u ) v ) u Soluió. L soluió se otiee e fo gáfi. e) u v 6. stui si los vetoes AB y CD so equipoletes sieo A B C D. Soluió. Si os vetoes so equipoletes tiee igul óulo ieió y setio e efiitiv so IGUALS. L elió e equipolei es u elió e igul. u v u v u v AB CD ( ) ( ) ( ) ( ) ( ( ) ) ( ) AB CD Vetoes equipoletes.

3 7. Deost que el uiláteo e véties A B(9 ) C( ) y D(7 6) es u plelogo. Soluió. Si uto putos fo u plelogo ete ellos ee e existi pjes e vetoes equipoletes (igul óulo ieió y setio es ei vetoes plelos e igul óulo y setio). P he este ejeiio y puesto que o os el oe e los putos es oveiete epeset los putos e uos ejes ooeos p poe estlee los posiles vetoes equipoletes. Se puee esoge vis pejs e vetoes p opo si los uto putos fo u plelogo seleioos AD y BC. AD BC AD BC Fo u plelogo ( 7 6) ( ) ( 7 6 ) ( ) ( ) ( 9 ) ( 9 ) ( ) AD BC quipoletes. Clul A p que los vetoes AB y CD se equipoletes sieo B C y D. Soluió. Sí AB CD AB CD. Supogos que el puto tiee po ooes ( ) AB ( ) ( ) ( ) CD ( ( ) ) ( ) Igulo po opoetes se espej ls ooes e A. ª A ª 9. Se A B C. Detei D p que ABCD se u plelogo. Hll l logitu e BC Soluió. Si uto putos fo u plelogo es poque ete ellos se puee estlee pejs e vetoes equipoletes. Pesolve el pole eeos tee el oe e los putos eto el plelogo (ABCD). Osevo l figu se puee estlee que los vetoes AB y DC so equipoletes es ei igules ( AB DC ). Si supoeos que el puto D tiee po ooes ( ) AB ( ) ( ) DC ( ) ( ) Igulo po opoetes se espej ls ooes e A. ª A ª ( ) ( ). stui l epeei liel e los siguietes ojutos e vetoes ) { ( 6)} ) {} ) {} ) { ( 7)} Soluió. U ojuto e vetoes es lielete epeiete si existe úeos o toos ulos que peite plte u oiió liel ete ellos uyo esulto se el veto ulos. el so e

4 vetoes e R el áxio úeo e vetoes lielete iepeietes es os y os vetoes seá lielete epeietes si so popoioles. Si u y v so lielete epeietes se upliá β αu βv α u βv u v u v α u v u v ( u u ) ( v v ) u v v u. { ( 6)} Lielete epeietes. 6. {} Lielete iepeietes.. {} Lielete iepeietes. Bse ói { i j }.. { ( 7)} Po se ás e os lielete epeietes.. So v y w ( ) lielete epeietes? Soluió. P que os vetoes se lielete epeietes ee existi u oiió liel o tivil ete ellos que se eo. v w α α Opeo o l expesió se euest que p que os vetoes se epeietes ee se popoioles. v w α α α v w α α y α so osttes y su oiete tié lo es po tto v w v v w w v v v v v w u u v w w v w w Vetoes so lielete iepeietes. Fo u se.. Detei p que vlo e λ el veto (λ ) es lielete epeiete el veto () Soluió. P que os vetoes se lielete epeietes ee se popoioles. (λ ) k () Igulo po opoetes ª λ k ª k De ls segus opoetes se otiee el vlo e k que sustituio e ls pies opoetes peite lul λ. k λ λ

5 . Po que B { u u } es u se el plo vetoil sieo u y u. Soluió. P que u suojuto e vetoes se se e u ojuto e vetoes ee upli os oiioes i. Dee se u siste geeo es ei los vetoes que fo l se ee se pes e gee ulquie veto el ojuto eite oiió liel ii. Los vetoes que fo l se ee se lielete iepeietes. i. P eost que u suojuto e vetoes { u u } es u siste geeo e u espio vetoil (V ) hy que expes los oefiietes e l oiió liel (α α ) e fuió e ls opoetes e u veto geéio ( v ( x y) ) el espio vetoil (V ). v αu α u x α α ( x y) α( ) α y α Hy que espej α y α e fuió e x e y α α x x y α y x α α y { u u } es u siste geeo e V ulquie veto (x y) e V se puee expes oo oiió liel e u y u sieo los oefiietes e l oiió liel α α x y y ii. Po ttse e vetoes e V si o so popoioles seá lielete iepeietes. u( ) k u Lielete iepeietes. u y u fo u se e V.. Po que B { v v } es u se el plo vetoil sieo v y v. so fitivo expes e fuió e l se. Soluió. P que u suojuto e os vetoes se u se e V ee upli os oiioes ª Dee fo u siste geeo e V. (x y) V ee existi os úeos eles α y α que peite expeslo oo oiió liel e los vetoes que fo el siste geeo. (x y) α α otiee α Igulo po opoetes hy que espej α y α e fuió e x e y. x α α y α α Resolvieo po sustituió Despejo e l pie euió α y sustituyeo e l ª se α x α x y y ( x α ) α α Cooio α se lul α. x y x y α x Culquie veto (x y) e V puee se geeo eite oiió liel po los vetoes v y v sieo los oefiietes e l oiió

6 x y α α x y º Los vetoes ee se lielete iepeietes. V si os vetoes o so popoioles so lielete iepeietes. v( ) k v v y v fo u se e V. P expes e fuió e l se stá o sustitui ls opoetes e e ls expesioes e α y α. α α v v. So lielete epeiete los vetoes u () u () y u ()? so fitivo esii u oo oiió liel e u y u. Soluió. el ojuto e vetoes el plo (V ) el áxio úeo e vetoes lielete iepeietes es os po lo tto tes vetoes seá lielete epeietes. u ojuto e vetoes lielete epeietes uo e ellos puee expesse oo oiió liel e los eás o l úi oiió e que su oefiiete e l oiió liel o se eo. u x u y u Sustituyeo po sus opoetes e igulo se otiee u siste e os euioes o os iógits. x y Soluió. ª x y ª x y Re solvieo u u u x y 6. xpes ( ) oo oiió liel e v y w ( ) α v β w ª Copoete α β ( ) α ( ) β( ) ª Copoete α β Resolvieo el siste se otiee los oefiietes e l oiió liel. α β 7 7 l veto se puee expes oo. v w ó v w Copo que los vetoes y fo u se e V. Hll ls ooes el veto e ih se. Soluió. el plo (R ) el áxio úeo e vetoes lielete iepeietes es os po lo tto tes vetoes seá lielete epeietes. Igulo po opoetes ( ) α( ) β( ) ( α β α β). 6

7 ( ) ( α β α β) α β α β Resolvieo el siste se lul los vloes e α y β. α β β α α α 7α α β α β ( ) ( ). Se A() B(). Detei u puto ' p que A ' BA. Soluió. Si (x y ) A' ' ( x' y' ) BA ( ) ( ) Sustituyeo e l igul A' BA ( x' y' ) ( ) igulo po opoetes x' x' A ' BA ( x' y' ) ( ) ' y' ( ) y' 9. eite el álulo vetoil hll el puto eio el segeto AB sieo A() y B(). Soluió. Si es el puto eio e AB se ee upli l siguiete elió siple AB A P estlee l elió siple hy que fijse tié e los setios e ls vetoes. Si y so ls ooes el puto AB ( ( ) ) ( 7) A ( ( ) ) ( ) Igulo po opoetes e espej ls ooes e. ª ( ) ª 7 ( ) ( 7) ( ). Hll ls ooes e u puto N tl que AN NB sieo A() y B() Soluió. Se y ls ooes el puto N. AN ( ) NB ( ) Sustituyeo e l igul ( ) ( ) ( ) ( ) Igulo po opoetes 7

8 ª ª ( ) ( ) N. Se el veto e opoetes () sieo que tiee po exteo el puto Q() lul ls ooes el oige el veto. Cul es el óulo el veto. Si (/) hll x p que el veto x Soluió. Se PQ u epesette el veto os pie lul ls ooes e P. PQ q p ( ) ( ) ( p ) p Igulo po opoetes ª p p P ª p p óulo e ( ) P que se upl l igul x se ee upli po opoetes ª x ( ) x ( ) x ª x. eite el álulo vetoil opo sí está lieos los putos A() B() y C(6). Soluió. P que tes putos esté lieos los vetoes que se fo ete ellos ee se popoioles. AB k AC AB ( ) AC 6 ( ) k ( ) ( ) ( ) ( ) ª k k ª k k No existe igú vlo e k que veifique ls os igules. Los putos o está lieos

9 9. Clul ls ooes e los véties e u tiágulo sieo que los putos eios e sus los so N y P. Soluió. Aplio l efiiió e puto eio se otiee os sistes e tes euioes o tes iógits u siste po opoete. puto eio e AB N puto eio e N BC P puto eio e P AC Co ls pie opoetes se otiee u siste y o ls segus oto. P l esoluió el siste eoieo el étoo e Guss. { } tiz soi { } 6 6 { { } tiz soi { } Soluió A B ; C (6 )

10 . De u plelogo se ooe los véties oseutivos A(9) B(76). Clul ls ooes e los putos C y D sí el eto el plelogo es (). Soluió. Coois ls ooes e A B y y plio l efiiió e puto eio los segetos AC y BD se lul ls ooes e C y D. puto eio e AC C 9 puto eio e BD 7 D 6 7. Hll p que los putos A() B() y C(7) esté lieos p el vlo e lulo estui l posiió eltiv e los putos. Soluió. Si tes putos está lieos los vetoes foos ete ellos ee se popoioles. AC AB 7 AC AB De l segu opoete se espej o este vlo e l pie opoete se espej. 6 Posiió eltiv. Co los vetoes o oige oú AC AB l posiió eltiv se estui e fuió el vlo e. Si < los vetoes tiee istito setio el oige e os (A) est ete los otos os putos (B y C) Si > AB es e yo logitu que AC C está ete A y B. Si < < AC es e yo logitu que AB B está ete A y C. este so < A está ete B y C

11 6. Clul ls ooes e los putos que ivie l segeto PQ e tes ptes igules sieo A() y B(). Soluió. P lul y N se estlee elioes siples e ls que há que tee e uet ls logitues y los setios e los vetoes. Clulo e A AB Igulo po opoetes ª ª Clulo e N NB AB Igulo po opoetes 9 N 9 ª ª

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1).

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1). Vetores Cooreos Ilustrió 38 Determie ls euioes vetoril prmétris y simétris e l ret que ps por el puto A- 3 y es prlel l vetor DT sieo D4 0 - y T -3. Soluió Desigemos est ret por L A DT Se Px y z tl que

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero. RADICALES Ete los úeos eles se euet los diles, ue se uede exes oo íz de u ídie de u úeo eteo. Ríz eési de u úeo eteo. Si Ζ y Ν, o, dieos ue l íz eési de es u úeo el y lo oteos sí:, si. Se ll: dido. íz

Más detalles

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x)

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x) POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS Ddos los polioios e soe R : p 5 8 q 7 Ecot : p q, c p - q p q Solució : p q 5 7 8 9 5 8 5 7 9 5 6 56 5 65 5 8 7 8 5 p q c p q p q 5 7 8 Detei ls

Más detalles

LÍMITES Si b, c, n, A y B son números reales, siendo f y g funciones tales que, lim f ( x) B, entonces: x x. lim 1 FÓRMULAS BÁSICAS DE DERIVACIÓN

LÍMITES Si b, c, n, A y B son números reales, siendo f y g funciones tales que, lim f ( x) B, entonces: x x. lim 1 FÓRMULAS BÁSICAS DE DERIVACIÓN FORMULRIO ÁLULO I LÍMITES Si,,, y B o úeo ele, ieo f y g fioe tle qe, li f ( y li g( B, etoe: li li li f ( li f ( g( B 5 li f ( g( B 6 7 li 8 ( e 0 0 li l 0 f ( li B 0 g( B Ig. lfeo g Ooz li 9 li e i li

Más detalles

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO MATEMÁTICAS LOS NÚMEROS REALES º DE ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis

Más detalles

Temario Curso Propedéutico de Matemáticas

Temario Curso Propedéutico de Matemáticas Terio Curso Propeéutio e Mteátis Sesió, Sesió Sesió.- El Cojuto e Núeros Reles. Operioes o úeros rioles. Propiees. Operioes leris. Su, Rest, Lees e los Epoetes pr el Prouto l Divisió Aleri. Sesió. -Riles

Más detalles

σ c de los conductores metálicos es alta,

σ c de los conductores metálicos es alta, EC3 ORIA DE ONDAS 4.5 GUÍAS DE ONDAS METÁLICAS CON CONDUCTORES REALES 4.5. Eeto e l outivi iit el outor e los s e propgió Tl oo se estleió e l seió 3.6. pr el so e ls líes e trsisió reles el eeto e l outivi

Más detalles

IES Mediterráneo de Málaga Reserva1.- 2012 Juan Carlos Alonso Gianonatti. Propuesta A

IES Mediterráneo de Málaga Reserva1.- 2012 Juan Carlos Alonso Gianonatti. Propuesta A ES Medieáeo Málg Reev.- Ju lo loo Gioi Popue.- ) Eui el eoe vlo edio Lgge d u iepeió geoéi ( puo) ) lul u puo l ievlo [ ] e que l e gee l gái l uió e plel l ued (o egeo) que ue lo puo () e ( puo) ) Teoe

Más detalles

1 i. Hojas de Problemas Álgebra IX

1 i. Hojas de Problemas Álgebra IX Hojs e Polems Álge IX 7 Se A l ml e uoes :R * R es o log, " N R *{ R:>} Estu su eee lel e el R-eso etol AlR *,R Hll l mesó y u se el sueso que ege Soluó: Es log log log S m, y m so lelmete eeetes: α β

Más detalles

matemáticas 4º ESO radicales

matemáticas 4º ESO radicales teátis º ESO riles. Fíjte e el prier ejeriio reliz los eás e l is for: ) ) ) ) riió Se ll riió l operió ivers l poteiió; propie fuetl e los riles Si se ultipli el íie el epoete el rio por u iso úero, el

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

tiene derivada continua hasta de orden 1

tiene derivada continua hasta de orden 1 Cálulo Numério Progrmió Apli INTERPOLACIÓN SEGMENTARIA O SPLINES L otruió e poliomio e iterpolió e gro lto uque utifile teórimete plte muo prolem Por u lo, l form e l fuió poliómi e gro lto meuo o repoe

Más detalles

TEMA 5: VECTORES 1. VECTOR FIJO

TEMA 5: VECTORES 1. VECTOR FIJO TEMA 5: 1. VECTOR FIJO Hy gnitudes que no quedn ien definids edinte un núeo el, necesitos deás conoce su diección y su sentido. Ests gnitudes se lln gnitudes vectoiles y ls epesentos edinte. P detein un

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

La Integral Curvilínea

La Integral Curvilínea L Iegl Cuvilíe UNA INTODUCCIÓN BÁICA Ce ÁNCHEZ DÍEZ 0 U iouió L iegl e ie uiiesiol equiee u uió eii oiu soe el ievlo [] e iegió: Cosieo poeos eee el oepo e iegió susiueo el ievlo uiiiesiol po u uv [ ]

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS TEMA EXPRESIONES ALGEBRAICAS CONCEPTOS U EXPRESIÓN ALGEBRAICA es el ojuto e úmeros letrs que se omi o los sigos e ls operioes mtemátis sum, rest, multipliió, ivisió poteiió. Ejemplo El VALOR NUMÉRICO e

Más detalles

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales.

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales. Deprtmeto de Mtemáti plid. ETSIIf. UPM. Vitori Zrzos Rodríguez RELCIONES DE RECURRENCI Defiiioes Relió de reurrei o reursiv pr l suesió { } es u epresió que relio el térmio geerl de l suesió o uo o más

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍ º HILLERTO Deei e c co l coo pei ( ( hll ( - - ( (-- hll ( - - - - ( ( c (- ( hll ( - - Se lo ecoe lie ( ( w ( hz l epeeció gáfic qe eie popi clcl epee el eco w w ( ( ( ( ( - Se lo po ( (- (-

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis de exoete riol Rdiles

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA Mtemát Fís Astoomí shom 6 ESOLVIENDO POBLEMAS DE MATEMÁTICA ESOLUCIÓN DE LOS POBLEMAS POPUESTOS POBLEMA 8 (6 Hll l eó el lg geométo e los tos ese oe se ee tz os tgetes qe fome ete sí áglo eto l v: SOLUCIÓN:

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

UNIDAD 1.- Números reales (temas 1 del libro)

UNIDAD 1.- Números reales (temas 1 del libro) UNIDAD.- Núeros reles (tes el libro). NUMEROS NATURALES Y ENTEROS Co los úeros turles otos los eleetos e u ojuto (úero ril). O bie expresos l posiió u ore que oup u eleeto e u ojuto (oril). Se represet

Más detalles

WhittiLeaks Los apuntes que ellos no quieren que sepas de

WhittiLeaks Los apuntes que ellos no quieren que sepas de Métodos umérios WittiLes Los putes que ellos o quiere que seps de ITBA mo 7 WittiLes Resume Métodos umérios Pso Pr u fuió defiid e u itervlo: f (, ) ( ) el pso se defie por: ; dode es l tidd de divisioes

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ (Positiv [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

SISTEMAS DE ECUACIONES LINEALES. MATRICES Y DETERMINANTES.

SISTEMAS DE ECUACIONES LINEALES. MATRICES Y DETERMINANTES. Sistems e euioes lieles Mtries y etermites SISTEMS DE ECUCIONES LINELES MTRICES Y DETERMINNTES - Itrouió los sistems lieles -Euió liel -Sistems e euioes lieles -Sistems equivletes -Métoo e Guss pr l resoluió

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIA NACIONA E INGENIERIA P.A. - FACUTA E INGENIERIA MECANICA // ACIBAHCC EXAMEN PARCIA E METOOS NUMERICOS MB6 SOO SE PERMITE E USO E UNA HOJA E FORMUARIO Y CACUAORA ESCRIBA CARAMENTE SUS PROCEIMIENTOS

Más detalles

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE.

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE. XO II. cuacioes ifeeciales el oiieto e u sistea e patículas co cooeaas geealizaas. cuacioes e Lagage. XO II. CUCIOS DICILS DL MOVIMITO D U SISTM D PTÍCULS CO COODDS GLIDS. CUCIOS D LGG. ste poyecto fi

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD : INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los vlos,,

Más detalles

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL I SEMESTRE Nombre y Apellido: C.I:

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL I SEMESTRE Nombre y Apellido: C.I: U.C.V. F.I.U.C.V. lgebr LINEL Y GEOMETRI NLITIC (5) PRCIL I SEMESTRE -6 9--6 CICLO BÁSICO DEPRTMENTO DE MTEMÁTIC PLICD Nomre y pellido: C.I: ) ( putos) Coloque e el prétesis l letr V o F segú se verdder

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

III. PRODUCTOS Y COCIENTES NOTABLES:

III. PRODUCTOS Y COCIENTES NOTABLES: III. PRODUCTOS Y COCIENTES NOTABLES:. PRODUCTOS NOTABLES: so iertos produtos que uple regls fijs uo resultdo puede ser esrito por siple ispeió, es deir, si verifir l ultipliió... CUADRADO DE LA SUMA DE

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El siste e los úeros reles es u ojuto o vío eoto por o os operioes iters

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- MATRICES. 1. Dada la matriz, qué relación deben guardar a y b para que se verifique la.

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- MATRICES. 1. Dada la matriz, qué relación deben guardar a y b para que se verifique la. º DE CHLLERTO MTRCES Y DETERMNNTES Soluioe -- MTRCES. D l mi, qué elió ee gu p que e veifique l igul? po lo que. Si eolvemo iepeieemee l pime l úlim euió, eul: o o l uo omiioe o puee e, pue emá, po lo

Más detalles

NÚMEROS NATURALES. DIVISIBILIDAD

NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES Los úeros turles so los que sirve pr otr: 1,,, So ifiitos y for u ojuto que se deoi N. Está ordedos, lo que os perite represetrlos sore u ret uyo orige

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

ESTABILIDAD. estable, si sometido a una perturbación, éste, luego de un tiempo, vuelve a su

ESTABILIDAD. estable, si sometido a una perturbación, éste, luego de un tiempo, vuelve a su ESTABIIDAD El álii de lo ite de otrol e e gr prte e el ooiieto de u etilidd olut y reltiv ESTABIIDAD ABSOUTA: u ite liel ivrite e el tiepo e etle, i oetido u perturió, éte, luego de u tiepo, vuelve u odiió

Más detalles

PROBLEMAS RESUELTOS DE DINÁMICA DEL PUNTO

PROBLEMAS RESUELTOS DE DINÁMICA DEL PUNTO PROBLEMAS RESUELOS E INÁMICA EL PUNO Equpo oee: Aoo J. Brbero Grí Mro Herez Puhe Alfoso Cler Beloe PROBLEMA Sobre u puo erl e s k lee e reposo y que se esplz lo lro el eje X ú u fuerz vrble que, expres

Más detalles

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales.

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales. uesoes Título: uesoes. Tget: Pofesoes e Mteáts. Asgtu: Mteáts. Auto: El Olvá Clz Le e Mteáts Pofeso e Mteáts e Euó eu. UCEIONE. TÉRMINO GENERAL Y FORMA RECURRENTE Vos estu u tpo e fuoes uyo oo e efó es

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Operioes o Frioes Reuió e frioes Frioes o igul eomior: De os frioes que tiee el mismo eomior es meor l que tiee meor umeror. Frioes o igul umeror: De os frioes que tiee el mismo umeror es meor l que tiee

Más detalles

Matrices. Matrices especiales

Matrices. Matrices especiales UNIVERSIDD UÓNO DE NUEVO EÓN FUD DE INGENIERÍ EÁNI Y EÉRI tries triz: ojuto de eleetos ordedos e fils y olus os eleetos puede ser úeros reles o oplejos E este urso solo se osider tries o eleetos reles

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

tiene dimensión 3 2. El elemento a 21 = 3.

tiene dimensión 3 2. El elemento a 21 = 3. Tem. MTRICES Defiiió e mtriz U mtriz e imesió m es u ojuto e úmeros ispuestos e fils y m olums. sí:... m... m : : : :... m L mtriz terior tmié se puee eotr por ( ) m El elemeto ij es el que oup l fil i

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes:

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes: º Bchilleto Mteátics II Dvid Miguel del Río IES Euop (Móstoles) Vos coside ls tices coo u disposició ectgul de úeos que cotiee ifoció. Si se quiee es u fo de ode ifoció. Po ejeplo: * Teeos quí el p de

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fult e Igeierí UCV Álger Liel Geometrí líti 5 Cilo Básio GUÍ DE EJECICIOS III rsformioes lieles: Demuestre e so si l trsformió el esio vetoril V e el esio vetoril W es liel e w : B oe B es g u mtri fij

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles

Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N

Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N Mtemátic II Cietífico IDAL 07 Sucesioes 5 Pof. F. Díz- Pof A. Glli Sucesioes E esume podemos deci que: Defiició: U fució f : A R, se llm sucesió, dode = f() e cd cso, y A N :, co A y R. E símbolos: Ejemplos:

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

Guía N 22. Cuerda: trazo cuyos extremos son dos puntos de una circunferencia

Guía N 22. Cuerda: trazo cuyos extremos son dos puntos de una circunferencia Guía N 22 Nombre: Fecha: Contenidos: Ángulos en la circunferencia. Objetivos: Reconocer elementos de una circunferencia. Conocer teoremas relacionados con los ángulos de la circunferencia. Resolver problemas

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS I..S. Ciudd de Ajo Depteto de Mteátics. º BAC MCS. Ts de vició edi. Deivd de u ució e u puto.. Fució deivd. Deivds sucevs.. Regl de deivció.. studio de deivbilidd de u ució. Aplicció de ls deivds. Rect

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales. Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

RACCONTO SOBRE TÉCNICAS DE CONTEO

RACCONTO SOBRE TÉCNICAS DE CONTEO TC RACCONTO SOBRE TÉCNICAS DE CONTEO Asocicioes de opcioes idepedietes TC I Supógse u fáric de utomóviles que ofrezc ls siguietes opcioes idepedietes: Opció α: Motor ft, gs, o diesel (3 opcioes). Opció

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS Se defie como pogesió itmétic u sucesió de úmeos eles,,,...... e los que l difeeci ete témios cosecutivos es costte costte A l difeeci ete témios cosecutivos se le deomi d. Puede

Más detalles

Seminario de problemas. Curso Soluciones hoja 6

Seminario de problemas. Curso Soluciones hoja 6 Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá

Más detalles

PRÁCTICA 3. Análisis senoidal permanente de circuitos trifásicos balanceados y desbalanceados

PRÁCTICA 3. Análisis senoidal permanente de circuitos trifásicos balanceados y desbalanceados PÁCTCA 3 Aálisis seoidl pemete de iuitos tifásios ledos y desledos Ojetivo: Detemi expeimetlmete ls elioes ete los voltjes de líe y voltjes de fse. Detemi expeimetlmete ls elioes ete ls oietes de líe y

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.-

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.- Tto e teés ol, tto efectvo y tto peóco.- El tto e teés ol o tee e cuet l evesó e los teeses cobos o pgos peócete ute los peoos posteoes. Poeos epeset l tto ol ul cptlzble c / e ño coo. Se poí tepet el

Más detalles

ESTUDIO DE REGULARIZACION DE LOS USOS DEL PAISAJE URBANO DE LA PLAZA ISABEL II

ESTUDIO DE REGULARIZACION DE LOS USOS DEL PAISAJE URBANO DE LA PLAZA ISABEL II ETUO E EULZO E LO UO EL JE UBO E L LZ BEL EO TÉ E UBO ETUO E EULZÓ E LO UO EL JE UBO E L LZ BEL EO ET. p p ó, p v v y U, y O p ó E gó U U q vg O p p p pú. T á v p g ó ó F, ó y á p p pú p, ó pv pú.. pó

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

CRITERIO DE ESTABILIDAD DE ROUTH

CRITERIO DE ESTABILIDAD DE ROUTH CRITERIO DE ESTABIIDAD DE ROUTH INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. Criterio e etili e Routh-Hurwitz El prolem má importte e lo item e otrol liel

Más detalles

10 problemas Sangaku con triángulos

10 problemas Sangaku con triángulos 0 poblems Sgku co tiágulos Ricd Peió i Estuch Eeo 009 Itoducció Los Sgku so us tbls de mde co eucidos de poblems de geometí euclíde cedos e Jpó e el peíodo Edo 603-867 E este peíodo Jpó estb isldo de occidete

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Colegio Alás Msplos ºESO Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 Colegio Alás Msplos ºESO.- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 .- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer etrer. ) ) ) 0 9 0 9 : h) i) j) k) l) ) : ) o)

Más detalles

4. Soluciones de ecuaciones lineales en series de potencias. ( Chema Madoz, VEGAP, Madrid 2009)

4. Soluciones de ecuaciones lineales en series de potencias. ( Chema Madoz, VEGAP, Madrid 2009) Soluioes de euaioes lieales e seies de poteias Chema Madoz, VEGAP, Madid 9 Repaso de Seies de Poteias Reueda de álulo que ua seie de poteias e a es ua seie de la foma a a a Se die que es ua seie de poteias

Más detalles

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics CCSSII º Bchillerto TEMA ÁLGEBRA DE MATRICES NOMENCLATURA Y DEINICIONES - DEINICIÓN Ls mtrices so tls umérics rectgulres ª colum ª fil m m m m ( ij ) Est es u mtriz de

Más detalles

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES Uiversidd Poifii Bolivri Ciei Bási Tller Álger Liel CPITULO I: MTRICES. Dds ls mries:, B C Efeur ls siguiees operioes, si es posile. E so e o ser posile, eplique por qué. -B T -B T B T d T C e B - f C

Más detalles

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA Celdas lieales oo u ejeplo de euso de feueia e FDM f f f f f f Celda Celda Celda Celda Celda Celda egió egió ea total dividida e egioes, que e-usa la isa atidad C de aales de adio feueia. Esto iplia que

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

entonces A.B es: A) 4 B) 2 C) 1 D) 1/2 E) 1/4 a b. a b a b 4... Calcula: A) 1 B) 2 C) 2 D) 3 E) 2 2 x x A) 1 B) x C) A) 7 B) 8 C) 9 D) 10 E) 6

entonces A.B es: A) 4 B) 2 C) 1 D) 1/2 E) 1/4 a b. a b a b 4... Calcula: A) 1 B) 2 C) 2 D) 3 E) 2 2 x x A) 1 B) x C) A) 7 B) 8 C) 9 D) 10 E) 6 Rzomieto Lógio. Efetú: E = ÁLGEBRA DOENTE: Dr. Rihrd Herrer A. TEORIA DE EXPONENTES 8 A 0, B 0, D E 6. Simplifi: 6..80 9..0 A B D E. Hll el vlor de: M A B 6 D / E. Simplifi: ; si: > 0 A B D E. lul: S :

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Ju Atoio Goále Mot Profesor de Mtemátis del Colegio Ju XIII Zidí de Grd ESPACIOS VECTORIALES CONCEPTO DE ESPACIO VECTORIAL. Se V u ojuto ulquier R el ojuto de úmeros reles. E V defiimos dos lees de omposiió:

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

Profesora: TAMARA GRANDÓN CUARTO MEDIO GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA

Profesora: TAMARA GRANDÓN CUARTO MEDIO GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA NOMBRE: Fecha:.. 1. Si se sabe que α = 35 y β = 45, cuál es la medida del ángulo x de la figura? 2. El m( CA )

Más detalles

α = β Geometría Compendio Blademir González Parián

α = β Geometría Compendio Blademir González Parián = Geoetí opeio ei Goáe iá GÍ IÍ ÍU I GU: IIIÓ, IIIÓ Y I. eetos e Geoetí IIIÓ IIIÓ I igu geoéti s stió que se tiee e fo e u ojeto e o ieistete. uto íe óio o. uto. o. spio 4. íe 5. íe et 6. o 7. eiet 8.

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO DEPARTAMENTO DE BACHILLERATO PREPARATORIA UNAM FORMULARIO DE MATEMÁTICAS V, EXAMEN FINAL CONVERSIONES GRADOS RADIANES

UNIVERSIDAD DEL VALLE DE MÉXICO DEPARTAMENTO DE BACHILLERATO PREPARATORIA UNAM FORMULARIO DE MATEMÁTICAS V, EXAMEN FINAL CONVERSIONES GRADOS RADIANES UNIVERSIDAD DEL VALLE DE MÉXICO DEPARTAMENTO DE BACHILLERATO PREPARATORIA UNAM FORMULARIO DE MATEMÁTICAS V, EXAMEN FINAL CONVERSIONES GRADOS RADIANES FÓRMULA 80 = π π = 80 DESCRIPCIÓN P oveti de dies gdos

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS L Uiversidd er TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS 1.- POTENCIA EN SISTEMAS DE CORRIENTE ALTERNA E los iruitos de orriete lter, l produto etre tesió e itesidd

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = Estudios J.Coch ( fuddo e ) ESO, BACHILLERATO y UNIVERSIDAD Deprteto Bchillerto MATEMATICAS º BACHILLERATO Profesores Jvier Coch y Riro roilá TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

OPERACIONES MATEMÁTICAS

OPERACIONES MATEMÁTICAS Cpítulo OPERACIONES MATEMÁTICAS OPERACIÓN MATEMÁTICA E un poo qu onit n l tnfoión un o á nti n ot ll ulto, jo it gl o oniion n l ul fin l opión. To opión táti pnt un gl finiión y un íolo qu l intifi llo

Más detalles

XV Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XV Concurso Intercentros de Matemáticas de la Comunidad de Madrid XV ourso Iteretros de Mteátis de l ouidd de Mdrid de oviere de 5 PRUE POR EQUIPOS º y º de ESO (5 iutos) L figur uestr u petágoo regulr, E, u udrdo, EFG, y u triágulo equilátero, EFH uál es l diferei etre

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto TEMA SISTEMAS DE ECUACIONES LINEALES. ECUACIÓN LINEAL.. DEINICIÓN: U ecució liel es u ecució polióic de grdo uo co u o vris icógits:.. coeficietes

Más detalles

x y z 3 x y z x y z x y z 5 0 3

x y z 3 x y z x y z x y z 5 0 3 leto Enteo onde Mite González Jueo MTEMÁTIS II Deteminntes. Soluiones z. Siendo que, lul n desoll el vlo de los guientes deteminntes: z z z z z z z z z z z z en en z z z z z z + Segundo método evit ls

Más detalles