1. Discutir según los valores del parámetro k el sistema

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Discutir según los valores del parámetro k el sistema"

Transcripción

1 . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de coeficietes. ( ). - I) Si. S. C. D. II) Si.. < Pr coprobr si tiee rgo se busc u eor de orde Z distito de cero.. Pr sber si tiee rgo, se estudi los eores orldos. De los dos eores orldos posibles, uo es el, que es cero, el otro es. < I. C. S. < El siste equivlete está fordo por S que so ls ecucioes lielete idepedietes por coteer los coeficietes del eor de orde que d rgo l siste.. Discutir segú los vlores del práetro el siste ) (

2 Teiedo e cuet que si ( ), el siste es coptible deterido, por lo tto, se discute el tipo de solució pr los vlores del práetro que ul el deterite de l tri de coeficietes. Fctorido l epresió edite Ruffii (,, -). ( ) ( ) i) Si, Siste coptible deterido. ii) Si. Solo eiste eores de orde uo distito de cero. 7 - Siste icoptible. iii) Si <. Pr sber si tiee rgo, se busc u eor del iso orde distito de cero.. De los eores orldos, solo qued por estudir el eor fordo por l º, º º colu, que el otro eor orldo posible es el, que es cero. < Siste coptible idepediete El siste equivlete está fordo por S que so ls ecucioes lielete idepedietes por coteer los coeficietes del eor de orde que d rgo l siste.

3 . Discutir segú los vlores del práetro el siste ( ) Siste hoogéeo, se crcteri por que l tri l so igules (se difereci e u colu de ceros) por tto tbié so igules sus rgos, por lo que siepre so coptibles. Si, el siste es coptible deterido. Teiedo e cut lo terior, el siste se discute e fució de los vlores del práetro que ulr el. Fctorido l epresió edite Ruffii (,, ) ( ) ( ) i) Si,.. (icógits). Siste coptible deterido, solució trivil ( ). ii) Si Rg <. Siste coptible - - ideterido. El siste equivlete está fordo por S que so ls ecucioes lielete idepedietes por coteer los coeficietes del eor de orde que d rgo l siste. iii) Si <. Siste coptible ideterido. El siste equivlete está fordo por S. Discutir segú los vlores del práetro el siste Si, el, el siste es coptible deterido, por lo tto, se discute el tipo de solucioes del siste pr los vlores del práetro que ulr el deterite de. ( ) i) Si, el, por lo tto,. Siste coptible deterido.

4 ii) Si. - <.. De los dos eores orldos, uo es el deterite de l tri de coeficietes, que es cero, queddo solo por estudir <. Siste coptible ideterido. El siste equivlete está fordo por S, que so l ecucioes lielete idepedietes(cotiee los coeficietes del eor de orde dos distito de cero). iii) Sí. - - <.. Rg. Siste icoptible.. Discutir segú los vlores del práetro el siste Si, el siste es icoptible, o tiee solució que l tri plid tedrí rgo, ietrs que l de coeficietes el áio rgo que puede llegr teer, por sus diesioes, es. Teiedo e cuet esto, se discute los tipos de solució del siste pr los vlores del práetro que ul el deterite de l tri plid. C C C C C C ( ) 8 8 i) Si Siste icoptible.

5 - ii) Si. 9 Siste - coptible deterido (solució úic), El siste equivlete está fordo por S. Discutir segú los vlores del práetro el siste 9 9 Puesto que l tri o depede del práetro, se estudi su rgo. < Pr estudir el rgo de l plid se prte del eor. De sus eores orldos, uo es el deterite de l tri de coeficietes, que es cero, el otro depede del práetro i) Si. Eiste u eor de orde e l plició distito de cero, por lo que su rgo es. Siste icoptible. ii) Si. No eiste igú eor de orde e l tri plició distito de cero. Teiedo e cuet que <, se deduce <. Siste coptible ideterido. El Siste equivlete est fordo por 9 7. Discutir segú los vlores del práetro el siste Siste hoogéeo. Siepre se coport coo siste coptible. Cbe dos posibiliddes -. Siste coptible deterido. trivil. -. Siste coptible ideterido. Teiedo e cut lo terior, l discusió se hce e fució de los vlores del práetro que ul el deterite de l tri de coeficietes ().

6 - i) Si,. Siste coptible deterido, solució trivil ii) Si <. Siste coptible ideterido. Es siste equivlete est fordo por S 8. Discutir segú los vlores del práetro el siste Teiedo e cuet que si el siste es coptible deterido, l discusió se hce e fució de los vlores del práetro ( ) que ul el deterite de. ( ) ( ) Ruffii por fctorido i) Si, Siste coptible deterido. ii) Si (), () () E igu de ls dos trices eiste eores de orde superior uo que se distitos de cero. S.C.I. < Grdo de ideterició - - < iii) Si <.. De los eores orldos l eor, solo qued por estudir 9. Siste icoptible.

7 t 7 9. Discutir segú los vlores del práetro el siste t t 7 Debido ls diesioes del siste ( ecucioes icógits), idepedieteete del vlor que toé el práetro, el siste o puede ser coptible deterido. L posible discusió de l solucioes del siste se hce e fució de los vlores del práetro que ule siultáeete todos los eores de orde. Por ls diesioes de l tri ( ) se recoied prtir de u eor de orde que o deped del práetro que se distito de cero, de est for solo estudir ls solucioes coues sus dos eores orldos. - Prtiedo del eor orldo. ( F, F, C, C ), - Sus eores orldos so i) Si. <. Siste coptible ideterido. ii) Si. <. 7. De los eores orldos 7, solo qued u eor de orde por estudir Siste icoptible.. Discutir segú los vlores del práetro el siste Siste hoogéeo.. Siste coptible pr culquier vlor de. Si S.C.D. trivil S.C.I. ( )

8 i) Si ( ) S.C.D.. ii) Si 7 - <. Siste coptible ideterido Grdo de ideterició S. Discutir segú los vlores del práetro el siste ( ) ( ) Debido ls diesioes de bs trices, el siste se discute pr los vlores del práetro que ul el deterite de l tri plid (), puesto que los que o lo ul hrá que l tri plid teg rgo, rgo l que l tri de coeficietes () o puede llegr por sus diesioes, por tto drá u siste icoptible. ( ) ( ) i) Si, >. Siste icoptible. ii) Si - - Siste hoogéeo Siste coptible deterido. trivil. iii) Si -. No eiste eores de orde distitos de cero

9 . < Siste coptible ideterido. Grdo de ideterició. S No eiste eores de orde distitos de cero. Discutir segú los vlores del práetro el siste Debido que l tri o depede del práetro, se estudi su deterite, que sí el, el siste serí coptible deterido siepre. Si por el cotrrio el, se puede geerr u discusió co el práetro que prece e l colu de térios idepedietes. < De los eores orldos, uo es el deterite de l tri de coeficietes, el úico que qued por estudir es 8. i. Si, e l tri plid eiste u eor de orde distito de cero, por lo que. Siste icoptible. ii. Si, o eiste e l tri plid igú eor de orde distito de cero, por lo que <. Siste coptible ideterido. El siste equivlete está fordo por S K. Discutir segú los vlores del práetro K el siste K K K K K K K K Se resuelve igul que los teriores, obteiédose los siguietes resultdos. K 9K ( K 8)( K )( K ) K 8 K K

10 i. K 8,,.. Siste coptible deterido. Método de Crer. ii. K 8.. Siste icoptible iii. K. <. Siste coptible ideterido. iv. K. <. Siste coptible ideterido.. Discutir segú los vlores del práetro el siste ( ) ( ) i. Si.. Siste coptible deterido. Método de Crer. ii. Si. < Siste coptible ideterido. S {.. U siste de dos ecucioes co tres icógits, puede ser coptible deterido?. Puede ser icoptible? Ror ls respuests. ) No. <. Si el siste es coptible, será ideterido. b) Si. Cudo el, el siste será icoptible, que.. Resolver el siguiete sistes de ecucioes lieles pr los vlores de t que lo hce 7 coptible ideterido Siste Hoogéeo por lo tto siste coptible. Puede presetr dos csos.. Siste coptible deterido. trivil( )... Siste coptible ideterido. Ifiits solucioes Se clcul el deterite de e fució del práetro, pr de est for ecotrr los vlores de este que ul el deterite. 7 t t t³ t (t )² (t ) t ó t t i) Si t, Siste coptible deterido. trivil( ). ii) Si t equivlete { S.C.I. co dos grdos de µ ideterició. Todo coo práetros, µ l solució es µ

11 9-9 iii) Si t siste represetdo por l tri Siste coptible ideterido co u grdo de ideterició. L solució l ecotros co el siste equivlete 9 equivlete. Todo coo práetro resolviedo R. Dd l tri deterir tods ls trices o uls que verific l iguldd X X, pr lgú vlor de. Se pide resolver el siste hoogéeo que se for, resolverlo e los csos ideteridos, por lo que hbrá que estudirlo previete. ultiplicdo iguldo terio tério ordedo ls ecucioes se obtiee el siguiete siste ( ) ( ) ( ) Siste hoogéeo, defiido por l tri, que solo se difereci de l tri plid e u colu de ceros, por lo que e todo siste hoogéeo, por lo tto siepre so coptibles. Coo cosecueci de esto, los sistes hoogéeos solo tiee dos posibiliddes Sí, siste coptible deterido. trivil. Sí, siste coptible ideterido. Ifiits solucioes. L discusió del siste se hce prtir de los vlores que ul el deterite de l tri de coeficietes 7 ( ) ( ) i. Si ó.. S.C.D. ( trivil)

12 ii. Si <. S.C.I. Siste equivlete de dos ecucioes tres icógits, pr resolverlo hbrá que tor u icógit coo costte resolverlo e fució e ell. Todo l coo costte. Resolviedo covirtiedo l vrible e u práetro (), se obtiee u epresió de l tri pedid. R X X iii. Si <. S.C.I. Siste equivlete de dos ecucioes tres icógits, pr resolverlo hbrá que tor u icógit coo costte resolverlo e fució e ell. Todo l coo costte. Covirtiedo l vrible e u práetro (t), se obtiee otr epresió de l tri pedid. R t t t t t X. Discutir el siguiete siste pr los diferetes vlores de resolverlo pr ) ( ) ( ) (. ) ) ( ( Cutro csos diferetes I),,.. S.C.D II)

13 . S.I. III). S.C.I. U grdo de ideterició. IV) equivlete. S.C.I. Todo l coo práetro ( ) 7 (, 7, ) R. Clificció ái putos ) ( putos) Discutir el siste de ecucioes b) ( puto) Resolverlo pr ) l siste lo defie dos trices ( ) ( ) ±

14 Discusió del siste. i. Sí ± el por tto el. S.C.D. ii. Si. que. que por lo tto <. S.C.I. U grdo de ideterició. S iii. Si. que. que 8 por lo tto. S.I. b) S E E SIMPLF. Todo coo práetro ( ) ( ),,. Se cosider el siste de ecucioes e ls icógits,,, t t t ) Ecotrr los vlores de pr los que el rgo de l tri de coeficietes del siste es. b) Resolver el siste terior pr. ) Siste hoogéeo Rg Rg Si Rg (uero de icógits) Siste Coptible Deterido. trivil. Si Rg < Siste Coptible Ideterido. Se busc u eor de orde que o deped de, si eiste Se orl este eor obteiedo 8. Si. S.C.I Rg Rg <

15 . Si, el rgo del siste, es decir, el uero de ecucioes lielete idepedietes es. b) Si t t S pr t µ µ µ µ µ µ µ µ Restdo µ µ µ / µ µ µ µ µ µ µ Sol. µ µ µ µ,,, ( ) µ o,,, µ R 7. Estudir segú los vlores de el siste resolverlo cudo o teg solució úic. () i) Si. S.C.D. ) ( ² ) ( ) ( ² ii) Si por lo tto por lo tto el Siste icoptible.

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma:

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma: CRISTIN ROND HERNÁNDEZ Sistes de ecucioes SISTEMS DE ECUCIONES. Sistes de ecucioes lieles. Epresió tricil de u siste. Clsiicció de sistes de ecucioes. Teore de Rouché-Fröeius. Discusió de sistes 6. Método

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

x que deben ser calculados

x que deben ser calculados UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto TEMA SISTEMAS DE ECUACIONES LINEALES. ECUACIÓN LINEAL.. DEINICIÓN: U ecució liel es u ecució polióic de grdo uo co u o vris icógits:.. coeficietes

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = Estudios J.Coch ( fuddo e ) ESO, BACHILLERATO y UNIVERSIDAD Deprteto Bchillerto MATEMATICAS º BACHILLERATO Profesores Jvier Coch y Riro roilá TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

el blog de mate de aida CSII: sistemas de ecuaciones lineales

el blog de mate de aida CSII: sistemas de ecuaciones lineales el log de te de id CSII: sistes de ecucioes lieles pág DEFINICIONES L plr ecució desig e teátics l iguldd que estlece u relció etre vriles descoocids llds por ello icógits) U ecució liel co icógits es

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág el blog de mte de id. Mtemátics Aplicds ls Ciecis Sociles I. Sistems de ecucioes. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,..., es u cojuto de "m" igulddes

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

Tema 1: LÍMITES DE FUNCIONES. CONTINUIDAD.

Tema 1: LÍMITES DE FUNCIONES. CONTINUIDAD. Te : ÍITES DE FUNCIONES. CONTINUIDAD. AT II. ÍITE DE UNA FUNCIÓN EN UN PUNTO. El úero es el líite de l fució f cudo, si l tor vlores de uy próios l vlor o, ls iágees f correspodietes se proi l úero. Defiició:

Más detalles

UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS

UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS Este teril sido elbordo por el profesor Alfoso C. Becerril Espios durte el triestre O 009. UAM-A. UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS ARITMETICA Y ALGEBRA E los úeros reles teeos ls siguietes

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

TEMA 0. MATRICES Y SISTEMAS DE ECUACIONES

TEMA 0. MATRICES Y SISTEMAS DE ECUACIONES TEM. MTRICES Y SISTEMS DE ECUCIONES Mtriz es el ore geérico que e teátics se plic lists y tls uérics. Ls trices se eple, etre otrs uchs coss, pr lcer iforció, pr descriir relcioes, pr el estudio de sistes

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

7. Solución. Como: Se pide: mn = (2)(15) = 30 Rpta. 8. Solución IV.

7. Solución. Como: Se pide: mn = (2)(15) = 30 Rpta. 8. Solución IV. CERU ALGEBRA. Solució SOLUCIONARIO Como G. A. 0 + ( + ) + 0 + 0 6 Rpt.. Solució Como + b + c 7 ( b c) 7 ( bc + c) 8 b 8 b. bc + c. Solució G. A( ) 8 ( + ) + ( b ) 8 + b 7 G. A( Q ) 6 ( + ) + ( b) 6 b +

Más detalles

El dual tiene tantas restricciones como variables tiene el primal.

El dual tiene tantas restricciones como variables tiene el primal. .. EL MODELO DUAL A todo progr liel, lldo prole pril, le correspode otro que se deoi prole dul. Ls relcioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles coo restriccioes eiste e el pril.

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej:

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej: BLOQUE II: Núeros Álger Te : Sises de ecucioes lieles Pági de.- CLSIFICICIÓN DE LOS SISTEMS DE ECUCIONES. Sise liel heerogéeo: es quel e el que o odos los érios idepediees so ulos. Ej: Sise liel hoogéeo:

Más detalles

b con el signo contrario y la resta será: ab con el signo cambiado y la resta será: 4

b con el signo contrario y la resta será: ab con el signo cambiado y la resta será: 4 II. OPERACIONES ENTRE EXPRESIONES ALGEBRAICAS:. ADICIÓN O SUMA: es u operció que tiee por ojeto reuir dos o ás epresioes lgerics (sudos) e u epresió lgeric (su). E lger l su puede sigificr ueto o disiució,

Más detalles

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical RADICALES jp ºESO BC TEORIA DE RADICALES Defiició de ríz -esi de u úero rel Llos ríz -ési de u úero rel otro úero rel b que elevdo l poteci os d coo resultdo el rdicdo b b Ejeplos : pues 8 pues ( ) 8 E

Más detalles

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

Para ordenar números decimales debemos tener en cuenta la siguiente imagen:

Para ordenar números decimales debemos tener en cuenta la siguiente imagen: TEMA y NÚMEROS DECIMALES Y FRACCIONES. ORDENAR NÚMEROS DECIMALES Pr order úeros deciles deeos teer e cuet l siguiete ige: Lo que vos hcer es coprr priero l prte eter cifr cifr ver si so igules y si so

Más detalles

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales. POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics CCSSII º Bchillerto TEMA ÁLGEBRA DE MATRICES NOMENCLATURA Y DEINICIONES - DEINICIÓN Ls mtrices so tls umérics rectgulres ª colum ª fil m m m m ( ij ) Est es u mtriz de

Más detalles

EXPONENTES ( POTENCIAS Y RAÍCES )

EXPONENTES ( POTENCIAS Y RAÍCES ) EXPONENTES ( POTENCIAS Y RAÍCES Cursos ALBERT EINSTEIN - ONLINE Clle Mdrid Esqui c/ Av L Triidd LAS MERCEDES 9977 990 www. -eistei.co ALGEBRA es l prte de l teátic que estudi l ctidd e su for ás geerl,

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Tema 8: Teorema de Rouché-Frobenius

Tema 8: Teorema de Rouché-Frobenius www.selectividd-cgrnd.co Te : Teore de Rouché-Froenius Se lln ecuciones lineles ls ecuciones en ls que ls incógnits precen tods con grdo ; no están elevds ningun potenci ni jo ningún rdicl ni ultiplicds

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

Tema 1 Funciones(I). Definición y límites

Tema 1 Funciones(I). Definición y límites Uidd. Fucioes I.Defiició y Líites Te FucioesI. Defiició y líites. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució ivers. Líite de

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

POTENCIAS. Una potencia es una operación matemática y se realiza de de la siguiente forma: a = a a a a a a. n veces

POTENCIAS. Una potencia es una operación matemática y se realiza de de la siguiente forma: a = a a a a a a. n veces Aputes de Mteátics pr º de E.S.O. Potecis POTENCIAS Potecis Qué es u poteci? U poteci es u operció teátic y se reliz de de l siguiete for: = veces recibe el obre de bse se deoi expoete Ejeplo: ) = = =

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este docueto es de distribució grtuit y lleg grcis Cieci Mteátic www.ciecitetic.co El yor portl de recursos eductivos tu servicio! Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR CEPREUNF CCL REGULAR 017-018 Curso: MTEMATCA se 0 te: PRDUCTS NTABLES - DVSN DE PLNMS - CCENTES NTABLES. Los Productos Notles so csos especiles que se preset detro de l ultiplicció o potecició lgeric,

Más detalles

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso.

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso. TEMA : NÚMEROS REALES. Clsificció de los úeros reles.. Itervlos y seirrects.. Vlor bsoluto de u úero rel.. Potecis y rdicles. Propieddes.. Clsificció de los úeros reles. No olvideos: ) Los úeros rcioles

Más detalles

CAPITULO 3 SISTEMAS DE ECUACIONES LINEALES ...

CAPITULO 3 SISTEMAS DE ECUACIONES LINEALES ... LGEBR SUPERIOR Y LINEL.. INTRODUCCION. CPITULO SISTEMS DE ECUCIONES LINELES Se llm ecució liel ó ecució de primer grdo, u ecució que relcio cierto úmero coocido, co u ó má icógit, e et ecució cd icógit

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

UNIDAD 3.- ECUACIONES Y SISTEMAS (tema 3 del libro)

UNIDAD 3.- ECUACIONES Y SISTEMAS (tema 3 del libro) UNIDAD.- CUACIONS Y SISTMAS (tem del libro). CUACIONS D º GRADO. RSOLUCIÓN U idetidd es u iguldd literl que se verific pr culquier vlor umérico que se dé ls letrs que etr e l iguldd. jemplo: ( ) es u idetidd

Más detalles

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7,

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7, NÚMEROS REALES Los úeros reles, so u subcojuto de u cojuto ás grde lldo cojuto de úeros coplejos. El cojuto de úeros reles está fordo por todos los úeros que prece e l rect uéric y su vez está itegrdo

Más detalles

TEMA 4: LÍMITES Y CONTINUIDAD.

TEMA 4: LÍMITES Y CONTINUIDAD. Profesor: Rf Gozález Jiéez Istituto St Eulli TEMA 4: LÍMITES Y CONTINUIDAD ÍNDICE 4- Líite de u fució e u puto Geerliddes 4- Idetericioes 4- Ideterició del tipo 4- Ideterició del tipo k 4- Ideterició del

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

+ 2 =. Dos mil años. obtener sus valores aproximados por medio de la regla ( a b )

+ 2 =. Dos mil años. obtener sus valores aproximados por medio de la regla ( a b ) POTENCIAS PROPIEDADES DE LAS POTENCIAS - ECUACIONES EXPONENCIALES RAÍCES PROPIEDADES DE LAS RAÍCES APLICACIÓN EJERCICIOS B.I. EJERCICIOS PSU - LOGARITMOS PROPIEDADES DE LOS LOGARITMOS CAMBIO DE BASE -

Más detalles

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros.

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros. Epoetes Epresioes lgebrics E el curso de rzoieto teático se lizro coceptos básicos e lgebr se hiciero trduccioes del leguje verbl l leguje lgebrico vicevers. Recuerd lguos coceptos iporttes Es u cobició

Más detalles

TEMA 2 Números reales*

TEMA 2 Números reales* TEMA Núeros reles* Itroducció y propieddes. Vios e el te terior que todo úero rciol tiee u epresió decil fiit o periódic y vicevers. Por tto: Llreos úero irrciol todo úero que teg u epresió decil ifiit

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Capítulo 3. Potencias de números enteros

Capítulo 3. Potencias de números enteros Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició

Más detalles

Programación y Métodos Numéricos: Integración Numérica Procesos de de obtención de de fórmulas y análisis del error

Programación y Métodos Numéricos: Integración Numérica Procesos de de obtención de de fórmulas y análisis del error Progrmció y Métodos Numéricos: Itegrció Numéric Procesos de de oteció de de fórmuls y álisis del error Prof. Crlos Code LázroL Prof. Arturo Hidlgo LópezL Prof. Alfredo LópezL Mrzo, 27 2 Progrm Geerliddes

Más detalles

( 2)( 2).( 2).( 2)

( 2)( 2).( 2).( 2) º ESO UNIDAD.- POTENCIAS Y RAÍCES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente:

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente: OPCIÓN Proble.. En el espcio se dn ls rects : r : α s Obtener rondente: El vlor de α pr el que ls rects r s están contenids en un plno. puntos b L ecución del plno que contiene ls rects r s pr el vlor

Más detalles

Clase-09 Potencias: Una potencia es el producto de un número "a" por si mismo "n" veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a

Clase-09 Potencias: Una potencia es el producto de un número a por si mismo n veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a Clse-9 Potecis: U poteci es el producto de u úero "" por si iso "" veces lo que se deot por ; co IR y Z ; luego: dode "" se ll se, "" es el expoete y el producto oteer es l poteci.... veces Clculr plicdo

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).

Más detalles

= igual a > mayor que < menor que 3. Signos de agrupación:

= igual a > mayor que < menor que 3. Signos de agrupación: 1.8. ÁLGEBRA, PRODUCTOS NOTABLES, FACTORIZACIÓN Y ECUACIONES INTRODCUCIÓN Pr el que iici el estudio del Álger dee teer u pricipl propósito que cosiste e propirse de sus coteidos e usrlo coo u herriet pr

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució

Más detalles

Radicales MATEMÁTICAS I 1

Radicales MATEMÁTICAS I 1 Rdicles MATEMÁTICAS I. POTENCIAS DE EXPONENTE FRACCIONARIO. RADICALES..- Cocepto de rdicció Ddo u úero rel R y N, l ecució x tiee: Si es ipr, y culquier úero, u úic solució que se deot por. Si es pr y

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles