Análisis de Sistemas Realimentados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Sistemas Realimentados"

Transcripción

1 Aálii de Sitema Realimetado Paorama: Dado u cotrolador y ua plata coectado e realimetació, vamo a platear y cotetar la iguiete preguta: E el lazo cerrado etable? Cuále o la eibilidade a ditita perturbacioe? Cuál e el impacto de errore de modelado? Ademá, itroduciremo herramieta de aálii como El Lugar de la Raíce El criterio de etabilidad de Nyquit CAUT clae 5 2 Iicialmete aalizaremo el lazo omial, o ea, el formado co el modelo omial de la plata. Má tarde veremo el efecto de coiderar errore de modelado. R K U D i D m. x D Y Figura : Sitema de cotrol de u grado de libertad Uamo fucioe traferecia y traformada Laplace para decribir la relacioe etre la eñale e el lazo: la etrada de referecia R, la perturbacioe D i, el etado iicial de la plata x, la alida Y y el cotrol U. Do Dm CAUT clae 5 Etructura de realimetació La realimetació puede teer mucha propiedade deeable, tale como la capacidad de reducir el efecto de perturbacioe, dimiuir la eibilidad a errore de modelado, o etabilizar u itema ietable. Si embargo, e poible tambié co realimetació mal aplicada ietabilizar u itema previamete etable, icorporar ocilacioe e ua repueta previamete uave, o geerar alta eibilidad a ruido de medició. Comezamo el aálii de itema e realimetació co la etructura de cotrol SISO de la Figura, llamada de u grado de libertad, pue hay ólo ua traferecia modificable para alcazar lo objetivo deeado: la del cotrolador K. CAUT clae 5 3 E particular, K y repreeta la fucioe traferecia del cotrolador y el modelo omial de la plata, que puede repreetare e forma racioal e la forma () K P L Tomamo como alida de iteré e el lazo la alida perturbada de la plata, Y, y la eñal de cotrol U, que e relacioa a la etrada a travé de la ecuacioe (2) (3) U Y G G K K K G Di R Dm f K A x B A G R Dm Di f Do A x

2 ! CAUT clae 5 4 Fucioe de eibilidad omiale T S S i S u T S S i S u G G G G K K K K K K A A A A P L P L L P L L P P L P B B A B B B A B : Fució de eibilidad complemetaria : Fució de eibilidad : Fució de eibilidad a perturbació de etrada : Fució de eibilidad de cotrol CAUT clae 5 6 Etabilidad de lazo cerrado e bae al Poliomio Caracterítico Lazo omial e el reultate de coectar u cotrolador al modelo omial de la plata. Etabilidad itera. Decimo que el lazo omial e iteramete etable i la ocho fucioe traferecia e (7) o etable. Eta defiició e equivalete a pedir que toda la eñale e el lazo ea acotada para cada cojuto de etrada r t t t y d m t di do acotada. CAUT clae 5 5 La fucioe de eibilidad etá relacioada algebraicamete: (4) (5) (6) S S i S u T S S G K T K T Co la fucioe de eibilidad y bajo codicioe iiciale ula, (2) y (3) puede expreare e la forma compacta (7) Y U K K G K K K G K K R D i D o D m CAUT clae 5 7 Teorema. [Etabilidad itera omial] Dado el lazo cerrado de la Figura co el cotrolador y modelo defiido por (). Etoce el lazo cerrado e iteramete etable i y ólo i toda la raíce de la ecuació caracterítica a lazo cerrado (8) A L tiee parte real egativa. B P La idea de etabilidad itera implica má que la etabilidad de la referecia a la alida. Ademá e requiere que o haya cacelacioe de polo ietable etre plata y cotrolador. La ecuació caracterítica (8) e de la forma p p e el poliomio caracterítico del lazo cerrado., dode

3 a # # # a a! # # # ( ) CAUT clae 5 8 Ejemplo. Dada K 2 puede vere que la fució de eibilidad complemetaria omial 3 T e etable. Si embargo, la eibilidad a perturbació de etrada omial S io 2 e ietable. Por el Teorema de etabilidad itera omial, el lazo cerrado o e iteramete etable, ya que A L B P CAUT clae 5 Algua propiedade poliomiale de iteré: Propiedad El coeficiete a atiface a λ i & i dode λ Propiedad 2 El coeficiete a atiface a λ 2 λ o la raíce de p λ i & i. Propiedad 3 Si toda la raíce de p tiee parte real egativa, etoce eceariamete i' a,. i$ Propiedad 4 Si cualquiera de lo coeficiete del poliomio e o poitivo (egativo o cero), etoce al meo ua de la raíce tiee parte real o egativa. CAUT clae 5 9 Etabilidad y aálii poliomial CAUT clae 5 El criterio de Routh-Hurwitz Coideremo el poliomio p defiido por E uo de lo método má uado para determiar i u poliomio e Hurwitz o o baádoe e u coeficiete. E particularmete útil para poliomio de grado elevado. (9) p dode a i$ %. El procedimieto e el iguiete: El problema a etudiar e determiar i p tiee algua raíz co parte real o egativa. Obviamete, podemo repoder a eta cuetió calculado la raíce de p. Si embargo, e mucha aplicacioe iterea etudiar la relació etre la poició de la raíce y cierto coeficiete del poliomio. Poliomio Hurwitz. Lo poliomio que tiee toda u raíce co parte real egativa e dice poliomio Hurwitz.. Ecribir el poliomio e la forma a a a 2 2 a a 2. Si cualquiera de lo coeficiete e cero o egativo y al meo uo de lo coeficiete poitivo, etoce exite al meo ua raíz que e imagiaria o tiee parte real poitiva (el poliomio o e Hurwitz).

4 5 -, CAUT clae *Si todo lo coeficiete o poitivo, ordearlo e fila y columa egú el iguiete arreglo umérico, a a 2 a 4 a 6... a a 3 a 5 a b b 2 b 3 b 4... co b 3 c c 2 c 3 c 4... co c d d 2 e f a a 2 a a 3 a b a 3 a b 2 b b2 c2 a a 4 a a 5 a b a 5 a b 3 b El criterio de Routh-Hurwitz etablece que el úmero de raíce co parte real poitiva e igual al úmero de cambio de igo e la primera columa de la tabla. U poliomio Hurwitz tiee todo u coeficiete, y tambié todo lo térmio de la primera columa de la tabla, poitivo. CAUT clae 5 4 Pao para cotruir a mao el LR Hay 7 pao para cotruir el LR:. Dibujar lo polo y cero de F (lazo abierto). 2. Dibujar la parte del LR obre el eje real. 3. Determiar el cetroide y ebozar la aítota. 4. Determiar lo puto de bifurcació. 5. Determiar lo águlo de alida/llegada. 6. Calcular lo cruce co el eje imagiario. 7. Dibujar el reto del LR. Sólo e eceario dibujar el LR e el emiplao uperior al eje real, ya que el LR e iempre imétrico repecto del mimo. Eta ecció etá baada e la clae o-lie del Dept. of Mechaical Egieerig del MIT CAUT clae 5 3 Lugar de la raíce A meudo e u problema de dieño e eceario teer u ebozo rápido del comportamieto a lazo cerrado del itema. Ete e el tipo de iformació que da el Lugar de la Raíce. El Lugar de la Raíce permite examiar la ubicació de la raíce del poliomio caracterítico e fució de u parámetro variable (ua gaacia, u cero del cotrolador, etc). Coideremo la ecuació () λf dode F M D & m i i& c i p i repectivame- dode λ tiee grado m te. La olució del problema del lugar de la raíce requiere ecotrar todo lo puto del plao complejo que o olucioe de () para todo lo valore de λ. y M D + CAUT clae 5 5 Vamo a ir viedo la aplicació de la regla obre u ejemplo. Coideramo la fució traferecia F K G K G el modelo omi- dode K repreeta u cotrolador y al de la plata. 4 para di- Etudiaremo el LR de λf, que repreeta lo polo del lazo cerrado omial formado co K y tito valore de λ, que repreeta e ete cao la gaacia variable del cotrolador.

5 m CAUT clae 5 6. Dibujar lo polo y cero a lazo abierto Como el LR repreeta la poició de lo polo a lazo cerrado a medida que λ varía, comezamo co lo polo de lazo abierto, que correpode a λ. Cada líea e el LR empieza e u polo de lazo abierto (λ ) y termia e u cero a lazo abierto (λ. ). Si el itema a lazo abierto tiee má polo que cero, algua de la rama del LR termia e (cero e) ifiito. CAUT clae Determiar el cetroide y ebozar la aítota. La aítota idica a dóde tederá lo polo a medida que la gaacia tiede a ifiito. Para itema co má polo que cero, el úmero de aítota e igual al grado relativo m (úmero de polo meo úmero de cero). E alguo itema o hay aítota; cuado el grado relativo e, toda rama del LR termia e u cero (fiito). La aítota o imétrica repecto al eje real, y parte de u puto σ defiido por la magitude relativa de lo polo y cero a lazo abierto. Ete puto e el cetroide. CAUT clae Dibujar la parte del LR obre el eje real. Mucho LR tiee parte obre el eje real. La porcioe del eje real que perteece al LR e determia egú la iguiete regla: CAUT clae 5 9 El cetroide e obtiee co la fórmula σ & i pi m i&c i m Lo águlo de la aítota o η η k 2k m ; k π η 2 2 η m, dado por Si hay u úmero impar de polo y cero a lazo abierto a la derecha de u puto e el eje real, etoce el puto perteece al LR.

6 / / CAUT clae Determiar lo puto de bifurcació. Lo puto de bifurcació e produce dode do o má rama del LR e ecuetra y luego diverge. Auque e má comú ecotrarlo obre el eje real, puede ocurrir e cualquier parte del plao complejo. Lo puto de bifurcació o puto dode e da u polo múltiple para algú valor de λ. La forma má imple de ecotrarlo e por prueba y error reemplazado valore de e u etoro del poible puto de bifurcació e la ecuació caracterítica, depediete de λ, hata ecotrar u míimo. CAUT clae Determiar lo águlo de alida/llegada. Lo águlo de alida/llegada e qué direcció e mueve la raíce a medida que λ va de a (alida e lo polo a lazo abierto; llegada e lo cero de lazo abierto). Se calcula e calcula e c/u de lo polo y cero complejo a lazo abierto. Águlo de alida: E cada polo complejo umar lo águlo θ i dede lo cero al polo, luego retar lo águlo φ i dede lo otro polo al mimo: α p8 m θ i & i i& φ i CAUT clae 5 2 Para u cálculo má precio, dada la ecuació del LR λ M D lo puto de bifurcació puede calculare de la ecuació dλ d D M D D 2 M Si λ e real y poitivo e algú valor de que atifaga eta ecuació, etoce el puto e u puto de bifurcació. Siempre hay u úmero par de rama e u etoro de u puto de bifurcació, ya que por cada rama que etra al puto de bifurcació debe haber ua que alga de él. CAUT clae 5 23 Águlo de llegada: E cada cero, umar lo águlo φ i dede lo polo al cero, y retar lo águlo θ i dede lo otro cero al mimo: α p8 m & i θ i i& Por coveció, lo águlo de alida/llegada e mide e relació al eje real, de modo que el eje real e. φ i Lo polo y cero reale iempre tedrá águlo de alida/llegada de o 8, debido a la imetría de la raíce compleja.

7 CAUT clae Calcular lo cruce co el eje imagiario. Lo puto de cruce co el eje imagiario marca valore de λ para lo que el itema a lazo cerrado e margialmete etable. El lazo cerrado erá ietable para valore de λ para lo que el LR etá e el emiplao derecho de. No todo LR iterecta el eje jω, por lo que primero hay que determiar, i e poible, i defiitivamete e cruza el eje (por ejemplo, cuado hay má de do aítota), o i hay buea chace de que e cruce (por ejemplo, i hay polo o cero cerca del eje jω y lo águlo de alida/llegada idica que podría haber u cruce). CAUT clae Dibujar el reto del LR. Para fializar el LR comezamo de lo polo a lazo abierto, coectado la porcioe e el eje real, lo puto de bifurcació, lo cruce del eje imagiario, termiado e lo cero fiito, o bie hacia ifiito iguiedo la aítota. E geeral, lo cero tiede a «atraer» la rama del LR, mietra que lo polo la «repele». El coocimieto del LR exacto ólo e eceario cerca del eje jω, o e regioe dode e eceite particular coocimieto detallado del comportamieto del itema. La fucioe rlocu y rltool de MATLAB calcula el LR exacto. CAUT clae 5 25 Hay tre forma de ecotrar lo cruce del eje jω: Por prueba y error, bucado lo puto del eje jω dode la fae de F jω. Por el criterio de Routh-Hurwitz, determiado el valor de λ que hace al lazo cerrado ietable (y luego el correpodiete valor de jω). Plateado la ecuació caracterítica e ω, igualado parte real e imagiaria a cero, y luego reolviedo lo valore de λ y ω. e 8 Cual método debe uare depede de cua preciamete deba coocere lo puto de cruce.

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B TEORÍA DE CONTROL Tema 7. Aálii de la repueta e frecuecia Itroducció Se deomia repueta e frecuecia a la repueta e etado etable de u itema ujeto a ua eñal iuoidal de amplitud () fija pero a ua frecuecia

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 7. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DESCONOCIDA

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 7. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DESCONOCIDA ETADÍTICA (Q) 13 7. TET DE HIPÓTEI PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DECONOCIDA ea X1,..., X ua muetra aleatoria de ua població Normal co media = µ y variaza = σ, N(µ,σ ). upogamo ahora

Más detalles

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt UNIDAD 3 Traformada de aplace 3. Defiicioe a traformada de aplace de ua fució f ( t ), repreetada co el ímbolo, e la operació memática defiida mediate la iguiete itegral impropia: { lim b t e dt b Por

Más detalles

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN.

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN. PRAA 6: SSEA DE SEUENO. ONROL DE POSÓN. Aigatura: Sitema Lieale. º de geiería e Automática y Electróica ESDE. Departameto de Automática y Electróica uro 6-7 Práctica º 6: Sitema de Seguimieto. otrol de

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver Págia de Sitema de cotrol 67- Verió 003 Tema Aálii de Repueta e Frecuecia Sub - tema Diagrama Logarítmico, Diagrama de Bode Volver La repueta de u itema, e etado etacioario, ate ua etrada iuoidal e la

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

4. Análisis de Sistemas Realimentados

4. Análisis de Sistemas Realimentados 4. Análisis de Sistemas Realimentados Panorama: Dados un controlador y una planta conectados en realimentación, vamos a plantear y contestar las siguientes preguntas: Es el lazo cerrado estable? Cuáles

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Capítulo III DITRIBUCIOE BIDIMEIOALE 3 Itroducció Etudiaremo do caracterítica de u mimo elemeto de la població (altura peo, do aigatura, logitud latitud) De forma geeral, i e etudia obre ua mima població

Más detalles

APROXIMACIÓN DE FILTROS CAPÍTULO 2

APROXIMACIÓN DE FILTROS CAPÍTULO 2 APROXIMACIÓN DE FILTROS CAPÍTULO . Aproximacioes de Filtros E el capítulo se mecioaro los filtros ideales, e la realidad o se puede lograr ua aproximació ideal, por lo que los filtros reales sólo puede

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC Laboratorio de Aálii de Circuito Práctica 8 Repueta traitoria de circuito RLC Objetivo Verificar experimetalmete el valor de reitecia que e eceita para que u circuito RLC e erie ea críticamete amortiuado,

Más detalles

CAPITULO I Reflexión y refracción

CAPITULO I Reflexión y refracción CAPITULO I elexió reracció. Pricipio de Fermat Exite ua demotració de carácter geométrico para la llamada lee de la relexió de la reracció, la cuale permite decribir la maoría de lo eómeo que e relacioa

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

1. Conceptos Generales

1. Conceptos Generales Cocepto Geerale Defiicioe báica Sitema: arreglo, cojuto o colecció de compoete relacioado de maera que cotituya u todo Sitema de cotrol: arreglo de compoete coectado de maera tal que el arreglo e pueda

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURAS III Pandeo Elástico de Barras

Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURAS III Pandeo Elástico de Barras Facultad de Igeiería Uiveridad Nacioal de a lata ESTRUCTURAS III adeo Elático de Barra Ig arco Daiel Acti Ig Jua ablo Durrut Sr Julio A Guimmarra ANDEO EASTICO DE BARRAS Itroducció E el etudio de lo cuerpo

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

ANÁLISIS TEMPORAL. Análisis temporal de sistemas de segundo orden.

ANÁLISIS TEMPORAL. Análisis temporal de sistemas de segundo orden. Uiveridad Carlo III de Madrid Señale y Sitema ANÁLISIS TEMPORAL Aálii temporal de itema de egudo orde. 1. Sitema de egudo orde.. Repueta impulioal de itema de egudo orde. 3. Repueta ate eñale ecaló y rampa

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza Módulo de Etadítica Tema 7 : Etimació paramétrica e Itervalo de cofiaza Etimació U etimador e ua catidad umérica calculada obre ua muetra y que eperamo que ea ua buea aproximació de cierta catidad co el

Más detalles

Respuesta en el tiempo de un Sistema de Control

Respuesta en el tiempo de un Sistema de Control Reueta e el tiemo e u Sitema e Cotrol La reueta e u itema e cotrol, o e u elemeto el itema, etá formaa e o arte: la reueta e etao etable y la reueta traitoria. La reueta traitoria e la arte e la reueta

Más detalles

UNIVERSIDAD ANTONIO NARIÑO DEPARTAMENTO DE MATEMÁTICAS CALCULO INTEGRAL GUÍA 12. SUCESIONES Y SERIES TIEMPO DE DURACIÓN 6 HORAS 2 TUTORÍAS

UNIVERSIDAD ANTONIO NARIÑO DEPARTAMENTO DE MATEMÁTICAS CALCULO INTEGRAL GUÍA 12. SUCESIONES Y SERIES TIEMPO DE DURACIÓN 6 HORAS 2 TUTORÍAS UNIVERSIDAD ANTONIO NARIÑO DEPARTAMENTO DE MATEMÁTICAS CALCULO INTEGRAL GUÍA 2. SUCESIONES Y SERIES TIEMPO DE DURACIÓN 6 HORAS 2 TUTORÍAS OBJETIVO : Co el desarrollo de esta guía el estudiate estará e

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 0: PRUEBA DE CORRELACIÓN DE SPEARMAN. INTRODUCCIÒN: El coefciete de correlació de Spearma e ua

Más detalles

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

FORMULARIO DE CINEMÁTICA

FORMULARIO DE CINEMÁTICA Cl. Miguel Fleta, 5 Tel/Fax: 978 83 33 6 446-Alcañiz (Te) www.academia-ipho.e FOMULAIO DE CINEMÁTICA. MOVIMIENTOS ECTILINEOS (Deplazamieto horizotal co otació ectorial) Moimieto rectilíeo uiorme: x xo

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

Medidas de dispersión

Medidas de dispersión MB000_MAA4L_Diperió Verió: Septiembre 0 Medida de diperió por Oliverio Ramírez La medida de tedecia cetral aalizada e la ituació aterior, dirige u iteré al comportamieto de lo dato e relació a u valor

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Capítulo II. Teoría de Filtros

Capítulo II. Teoría de Filtros apítulo II Teoría de Filtro apítulo II Teoría de Filtro E ete capítulo e preeta lo cocepto báico de lo cuale e debe teer coocimieto para eteder la teoría de lo filtro. Primero e da ua defiició de lo que

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO DINÁMIC Y CONTROL DE PROCESOS 4 MODELOS LINELES Y NO LINELES - REPRESENTCIÓN EN VRIBLES DE ESTDO Itrodcció Hemo mecioado qe lo modelo co lo qe amo a trabajar o del tipo de ecacioe matemática má epecíicamete

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

ECUACIONES DIFERENCIALES PARABÓLICAS EN DERIVADAS PARCIALES. Armando Blanco A.

ECUACIONES DIFERENCIALES PARABÓLICAS EN DERIVADAS PARCIALES. Armando Blanco A. ECUACIONES DIFERENCIALES PARABÓLICAS EN DERIVADAS PARCIALES Armado Blaco A Capitulo VI ECUACIONES DIFERENCIALES PARABÓLICAS EN DERIVADAS PARCIALES Itroducció Diferecia fiita Nocioe de etabilidad, covergecia

Más detalles

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS Metodología de Ecueta I: 575-7803 Vol 6, úm, 00, 9- ETIMACIÓ DE LA VARIAZA POBLACIOAL E EL MUETREO E OCAIOE UCEIVA Amelia V. García Luego Eva M. Arté Rodríguez Imaculada Oña Caado Uiveridad de Almería

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA Y TAMAÑO DE MUESTRA (PARTE I) TEMA 9: INTERVALOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN

LECTURA 05: INTERVALOS DE CONFIANZA Y TAMAÑO DE MUESTRA (PARTE I) TEMA 9: INTERVALOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN Uiveridad Lo Ágele de Chimbote LECTURA 05: INTERVALOS DE CONFIANZA Y TAMAÑO DE MUESTRA (PARTE I) TEMA 9: INTERVALOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION Actualmete e debe etar bie cociete

Más detalles

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites

Más detalles

Lím f(x) Lím f(x) = f(a).

Lím f(x) Lím f(x) = f(a). CÁLCULO DE LÍMITES Y CONTINUIDAD 1. TEOREMA SOBRE LÍMITES Defiició: El límite de ua fució f(), cuado tiede a o es L si y sólo si para todo ε > 0 eiste u δ(ε) > 0 tal que para todo úmero real que perteece

Más detalles

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. PRUEBA OBJETIVA Ecierre co u círculo la letra o letra que correpoda a la alterativa válida de etre la propueta. 1. El emprétito puede defiire como u cojuto de prétamo: a) De pretació ditita y cotrapretació

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

4. Técnica del Lugar de las Raíces Definición del lugar geométrico de las raíces Técnica del Lugar de las Raíces

4. Técnica del Lugar de las Raíces Definición del lugar geométrico de las raíces Técnica del Lugar de las Raíces 4. Técica del Lugar de las Raíces 4. Técica del Lugar de las Raíces 4.. Técica del Lugar de las Raíces 4...Defiició del lugar geométrico de las raíces 4... Propiedades del lugar geométrico de las raíces

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Idice: Señales periódicas. Aálisis de Simetría Simetría Par Simetría Impar Simetría de Media Oda Simetría de Cuarto de Oda Señales Ortogoales Prof. Raquel Frías Aálisis de Señales 1 1. Señales Periódicas

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales.

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales. NUMEROS COMPLEJOS El cojuto de los úmeros complejos fue creado para poder resolver alguos problemas matemáticos que o tiee solució detro del cojuto de los úmeros reales. Por ejemplo x 2 + 1 = 0 o tiee

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

11 Análisis en el dominio de la

11 Análisis en el dominio de la Aálii e el domiio de la frecuecia Para el etudio de la repueta diámica de lo itema ate ua excitació extera e ha empleado, hata ahora, do método. El primero e realizaba e el domiio del tiempo a travé de

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles