dx x x(2 x ) dx C EJERCICIOS UNIDAD IV.- LA INTEGRAL 1.-Verificar las siguientes integrales a) dt C t t dx ax dx x a C

Tamaño: px
Comenzar la demostración a partir de la página:

Download "dx x x(2 x ) dx C EJERCICIOS UNIDAD IV.- LA INTEGRAL 1.-Verificar las siguientes integrales a) dt C t t dx ax dx x a C"

Transcripción

1 EJERCICIOS UNIDAD IV.- LA INTEGRAL.-Vrificr ls siguis igrls d C k) l) m) ) d C 5/ 5/ / / / ( 5 ) d C 5 5 ( ) d C 5/ / ( ) d C 5 5 d 5l C / ( bd C b dy by C by b ( b) ( b) d C b ( ) ( ) d C ( by ) y( by ) dy C b / ( ) d C ( ) d C d zdz (5 z ) 5z o) p) C C ( ) d C / 5 / q) ( ) d C 5 r) d C Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S. 77

2 dy ( by) b( by) s) d ( b ) b( b ) ) u) v) w) ) y) d ( b ) C b( b ) C C 5 8 z bz b z z( bz ) dz C 5 8 ( b ) b d C b ( ) d C ( ) d C.- Drmir l vlor d cd u d ls siguis igrls y vrificr los rsuldos por difrcició. ( ) d d d.-drmir l vlor d cd u d ls siguis igrls y vrificr los rsuldos por difrcició ( 7 d 5 d 9 8 d 9 ( ) d ( 7) d ( 5) d 5 ) d sc d k) d d ( ) d.- Uilizdo ls fórmuls y d u formulrio d igrls vrific ls siguis igrls d rcs C d C 9 9 l( 9 ) 78 Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S.

3 d l C 5 9 d rcs C 5 d 9 C 9 9 l( 9) 5.- Hllr l vlor d cd u d ls siguis igrls, y comprobr los rsuldos por difrcició 9 d 9 d 5 d 5 d 8 d.- Uilizdo l ididd rigooméric s cos, vrificr ls siguis igrcios. s d cos cos C s cos d s C cos s d cos C s cosd s C cos s d cos C Clculr cd u d ls siguis igrls, y comprobr los rsuldos por difrcició. s d s cos d cos d s cos d 5 s d cos s cos b d d s m cos m d 8.- Uilizdo l ididd rigooméric + = sc y + = csc, vrificr ls siguis igrcios. d lcos C co co l s d co csc d csc csc C d lsc C 5 s d cos s cos C d co C C csc d co co C Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S. 79

4 9.- Hllr l vlor d cd u d ls siguis igrls, y comprobr los rsuldos por difrcició 5 co d sc d csc d sc d sc d sc d csc.- Uilizdo ls ididds rigoomérics sucos u su, s dmosrr ls siguis igrcios. s s d C s d s s C 8 cos s cos d C 8 8 s s s d C 8 5 s s s d C 8 5 s s s s d s C s cos d s C 8 s d s s 8 C s cos d s s8 C s s d cos C 7 s s k) s cos l) m) ) d C 8 s cosd cos cos C s sd s s5 C cos cosd s s7 C co d u cosu y cos u cosu 8 Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S.

5 .- Dmosrr ls siguis igrcios por prs: s d s cos C l l C s s d cos C cos cos s d C sc lcos u u du u u u C us u du u usu cosu C cos y y sy y cos y y sy dy C d C l l l l d C rcs rcs d C k) rc rc l d C l) rc rc l m) y dy y y y C rccos rccos d C ) rcs rcs l y dy y y y y C o) rccsc rccsc l p) d C rc d rcco C q) rcco d rcco C r) d C d C s) cos s cos ) u) l d l l C rcs d rcs C 9 Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S. 8

6 v) l d l C w) ) d C s cos cos d C.- Dmusr ls siguis igrls por susiució rigooméric d c d k) l) c d c d rcs c d l c u du u u c rcs 9 u 9 u d l c d l y dy y 7 d 5 y 7 c 7y 5 5 c c d 9 rcsc d rcs c 8 Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S.

7 .-Rliz ls siguis igrls y comprub u rsuldo drivdo d y 9 dy y 9 d du u 9d u du u d 5 d d d 5.- Hllr l vlor d cd u d ls siguis igrls, y comprobr los rsuldos por difrcició. d 5 d 5 ( ) d cosd 8 d ( ) d k) m) d ( d c ( ) d 8 d d 9 8 ( ) d l) ) s cos p) l( ) d q) s) d ) ( ) d d o) s cos d d ( co ) d r) d 5.- Ls siguis prsios s h obido drivdo cirs fucios. E cd cso, hálls l fució Drivd d l Fució Vlor d l Vribl Vlor corrspodi d l fució y b y Solució 5 y b y b.- s cos ½ s cos Vrificr ls siguis igrcios ( ) d d d Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S. 8

8 d l d 8 l r rd r r ( ) d 7.-Hllr l ár d l suprfici limid por l curv dd, l j d ls y ls ordds dds. y = = sol: y 9 = = 8 y = = 5 y y k 95 = = = =b k l b y = = 5¾ 8.- Hllr l ár d l suprfici comprdid r ls dos prábols y p y py sol: 9.-Hllr l ár d l suprfici comprdid r ls dos prábols y y by sol. / b.- Vrificr ls siguis igrls ( ) d L C ( ) (5 ) d L ( ) C ( ) d ( )( ) L C 8 ( 5 ) d L( )( ) ( )( ) C p 8 Cálculo Difrcil Igrl, Árs I y II Prof. Jsús Clio S.

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho. 6 Igrl dfiid Ejrcicio rsulo EJERCICIOS PROPUESTOS Obé, co l méodo viso, l ár dl rpcio limido por l rc y +, l j X y ls vricls y Clcul l ár goméricm y compr los rsuldos S divid l irvlo [, ] subirvlos, cd

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad: Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

TEMA 4: TÉCNICAS DE INTEGRACIÓN

TEMA 4: TÉCNICAS DE INTEGRACIÓN loso Frádz Gliá TEM : TÉNIS DE INTEGRIÓN L igrció s l procso corrio l drivció. sí, igrr l fció f cosis corr ls fcios F ls q F f.. PRIMITIVS E INTEGRLES Dd fció f, dcimos q l fció F s primiiv d l fció f

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee señl f ( e,, mosrd e l figur. SOLUCION. L señl es f ( e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e.

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e. Hll l función F() l qu F ( ) y s primiiv d l función f ( ) + S r d nconrr l ingrl I d, qu si nos dmos cun d qu ( + ), s + inmdi: F( ) d ln( + ) + C +, si no nos dmos cun d so, l cmbio l convir n un rcionl

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSÉ ANTONIO ANZOÁTEGUI EL TIGRE-EDO-ANZOÁTEGUI

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSÉ ANTONIO ANZOÁTEGUI EL TIGRE-EDO-ANZOÁTEGUI INTEGRALES INDEFINIDAS I PARTE VERIFICAR LAS SIGUIENTES INTEGRALES. d a = a d= 6 + d = d = 6 + Ln ( a+ b dy a by a+ b d= + k 6 = b a by b ( + 7 8 + d= ( + d= + + 6 8 d + 8 a 9 = 0 ( a d= a + + 8 ( a d

Más detalles

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Teorem Fundmentl. Prof. Frith J. Briceño N. Objetivos cubrir Segundo Teorem Fundmentl del Cálculo. Teorem del Vlor Medio. Teorem sobre simetrí. Código : MAT-CDI. Ejercicios

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos Álger: Mrices wwwmemicsjmmmcom José Mrí Mríez Medio MTEMÁTIS II TEM Mrices: Prolems propuesos Opercioes co mrices Dds 7, 9 y, hll dos úmeros y pr que se verifique que Dds ls mrices y, hll ors dos mrices

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

PREINFORME 3 PERIODO DIRECCIÓN MEDIA VOCACIONAL

PREINFORME 3 PERIODO DIRECCIÓN MEDIA VOCACIONAL PROF. 12010483768 11A X X X X X X 12008465369 11A X X X X X X X 12009480558 11A X X X X X X 12010486829 11A 12011493890 11A X X X X 12012000956 11A X X X X X X X X 12008470492 11A X X 12010488239 11A X

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

Tarea 11. Integral Impropia

Tarea 11. Integral Impropia Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contenido: Integrl definid: (1º) Aplicción:

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Integración Numérica. La regla del trapecio.

Integración Numérica. La regla del trapecio. Integrción Numéric. L regl del trpecio. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

Tecnólogo Mecánico-Cartografía

Tecnólogo Mecánico-Cartografía PRÁCTICO MATEMÁTICA II Tecnólogo Mecánico - Tecnólogo en Crtogrfí. Mtemátic II En los cursos re-universitrios rendimos derivr funciones. Dd un función f (derivble) se estudiron cierts técnics que nos ermitín

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

INTEGRALES DOBLES Y MÚLTIPLES

INTEGRALES DOBLES Y MÚLTIPLES Análisis Mtemático C T.P. Nº TABAJO PÁCTICO Nº INTEALES DOBLES Y MÚLTIPLES Áre pln = dd olumen = f (, )dd ' ddd Áre de superficies lbeds = f f dd, sobre el plno. Cmbio de coordends: cos sen cos sen f (,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

(Chpter hed:)integrles MULTIPLES El concepto de integrl de un función de un sol vrible sobre un intervlo estudido en el Cálculo I, se extiende de mner nturl primero funciones de dos vribles sobre un región

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5.

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5. do. Medio. 0. 0. 0. Expresr en form rítmic : = 0, 9, = 7 Expresr en form exponencil : 64 = 6 = 9 Clculr los siguientes ritmos : 6 7 ( 8 ) 8 = 4 = 4 8 9 0, (h) 4 0 04. 0. 8 0, 06 7 4 Determinr el vlor de

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia]

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia] UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecucio Difrcil [Gui] E l hoj d orcio or l úmro d rgu, l drrollo qu juifiqu u ru, u ru co i crrd u rcágulo lugo u

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE TRNSFORMD DE PCE CROS S. CHINE TRNSFORMD DE PCE E l má coocid y uilizd d l rformd igrl. S h mordo d u gr uilidd l hor d rolvr muliud problm d l cici y cologí, plicádo d mr fciv l udio d m fudml como ori

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD TEMA 4. LOGARITMOS. REPASO DE POTENCIAS - Poteci de epoete turl: = ( veces) - Poteci de epoete ulo: 0 = - Poteci de epoete egtivo: - = / - Poteci de epoete frcciorio: Propieddes: - m = +m - : m = -m -

Más detalles

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias Uiversidd de l Repúblic Cálculo Fcultd de Igeierí - IMERL Segudo semestre 6 Práctico - Itegrles impropis y Series. Itegrles impropis. Se f : [,) R u fució cotiu tl que f (t) y defiimos F() = f (t)dt. Demostrr

Más detalles

3. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es claro que: Si f SC[-π,π] es una función impar, entonces. cosnx, (CM) SERIE DE FOURIER DE COSENOS (SFC)

3. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es claro que: Si f SC[-π,π] es una función impar, entonces. cosnx, (CM) SERIE DE FOURIER DE COSENOS (SFC) 3 SERIES DE FOURIER DE SENOS Y DE COSENOS Es clro que: Si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f(x)cosxdx, =,,,3, Si f SC[-,] es u fució

Más detalles

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a LA DERIVADA ) m+ m +C, m = m+ ln(), m=- ) Sen() = - Cos()+ C ) Cos() = Sen() + C ) Tn() = - ln( Cos() ) +C ) Cot() = ln( Sen() ) + C ) Sec() = ln( Sec()+Tn() ) +C Csc() = - ln Csc()+Cot() +C 7) ( ) 8)

Más detalles

Matemáticas II TEMA 8 Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital

Matemáticas II TEMA 8 Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital Aálisis Drivds Mtmátics II TEMA 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l límit: lím 0 Est límit s dot por f (),

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x)

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x) INTEGRALES INDEFINIDAS Un función F() se dice que es primiiv de or función f() cundo F'() = f() Por ejemplo F() = es primiiv de f() = Or primiiv de f() = podrí ser F() = + 5, o en generl, F() = + C, donde

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

CÁLCULO DE ÁREAS DE RECINTOS PLANOS

CÁLCULO DE ÁREAS DE RECINTOS PLANOS CÁLCULO DE ÁREAS DE RECINTOS PLANOS Ejercicio Hllr el áre del recinto limitdo por l gráfic de = sen el eje OX entre 0 π Ejercicio Clculr el áre del recinto limitdo por ls curvs =, = 0 8 = + 8, =, ls verticles

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Tema 8. Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital

Tema 8. Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital Mtmátics II (Bcillrto d Cicis) Aálisis: Drivds 8 Tm 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l it: 0 Est it s dot

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

EJERCICIOS TEMA 2 CÁLCULO INTEGRAL EN UNA VARIABLE

EJERCICIOS TEMA 2 CÁLCULO INTEGRAL EN UNA VARIABLE EJERCICIOS TEMA CÁLCULO INTEGRAL EN UNA VARIABLE EJERCICIOS TEMA EJERCICIOS TEMA INTEGRAL INDEFINIDA Ejercicio Clculr e ; b) 7 ; c) m n Solución: e + C; b) 7 ln 7 + C; c) Si n m = ; ln jj Si n m 6= (n=m)+

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

Capítulo 3: Integral definida. Módulos 12 al 17. I. Notación sigma. En los ejercicios 1 a 5 escriba en forma de sumatoria la suma dada.

Capítulo 3: Integral definida. Módulos 12 al 17. I. Notación sigma. En los ejercicios 1 a 5 escriba en forma de sumatoria la suma dada. Módulos l 7 I Nocó sgm E los jrccos scr form d sumor l sum dd + + + + + + + + 9 + + 7 6 7 8 l + l 6 + l 8 + l 6 6 Supog qu f ( ) 8, g( ) y h( ) Clcul l vlor d l prsó dcd los jrccos - c [ f ( ) g( ) h(

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) c) d) e) f) g) h) i) j) k) l) m) ) o) p) q) r) s) t)

Más detalles

Introducción a las SUCESIONES y a las SERIES NUMERICAS

Introducción a las SUCESIONES y a las SERIES NUMERICAS Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora):

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora): POTENCIAS EJERCICIOS RECORDAR m m m ) b b) m m b m b b b Tmbié es importte sber que lgo bse egtiv ) pr ) bse egtiv ) impr ) pr impr Añde ests fórmuls l formulrio que relizrás lo lrgo del curso). Clculr

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida.

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida. CONCEPTOS CLAVE DE LA UNIDAD. Si f y F son funciones de, tles que F '( ) f ( ), entonces se dice que F es ntiderivd de f. Siempre que f() esté definid. Alguns veces l ntiderivd, se le llm función primitiv..

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

Integrales Elipticas. Longitud de una Curva

Integrales Elipticas. Longitud de una Curva Unidd 3 Función Logritmo y Exponencil 3. Logritmo trvés de l integrl. Integrles Eliptics Longitud de un Curv Se f un función continu en [, b]. Si {t, t,..., t n } es un prtición de [, b] tenemos que en

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

[ 1] Transformada de Laplace Definición de la Transformada de Laplace

[ 1] Transformada de Laplace Definición de la Transformada de Laplace Trormd d Lplc. 8 Diició d l Trormd d Lplc S u ució cul, dcir diid pr, y pr odo

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) =

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) = I) De nición de derivd ) Use l de nición de derivd Universidd del Norte División de Ciencis Básics Deprtmento de Mtemátics y Estdístic Tller de Cálculo I Preprción pr el Tercer Prcil 0-0 f 0 () = lim h!0

Más detalles