TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)"

Transcripción

1 TMS D MTMÁTICS (Oposcoes de Secud) TM 6 DISCUSIÓN Y RSOUCIÓN D SISTMS D CUCIONS INS. TORM D ROUCH. RG D CRMR. MÉTODO D GUSS- JORDN.. Itoduccó.. Sstes de cucoes eles... Defcó... Sstes quvletes... Tpos de Sstes..4. Itepetcó de u Sste e Téos de u plccó el.. Teoe de Rouché-Föeus. 4. Regl de Ce. 5. Método de Guss-Jod. 5.. Métodos de Guss. 5.. Método de Guss co Pvote Pcl. 5.. Método de Guss co Pvote Totl Método de Guss-Jod. Blogfí Recoedd. /9

2 TM 6 DISCUSIÓN Y RSOUCIÓN D SISTMS D CUCIONS INS. TORM D ROUCH. RG D CRMR. MÉTODO D GUSS- JORDN.. INTRODUCCIÓN. Po todos es coocd l potc que tee los sstes de ecucoes leles e l esolucó de poles, tto e l teátc pu coo e l plcd. este cso vos tt de l esolucó de sstes de ecucoes leles co cógts cd uo y co coefcetes e u cuepo (que htulete seá, peo puede se o ). l teoe de Rouché-Föeus (té coocdo o el oe de oecke) os d ls codcoes ecess y sufcetes p l estec de solucó. Regl de Ce os pete otee dch solucó de fo eplíct, uque cost de elz u g úeo de opecoes. Desceos po tto, dfeetes étodos uécos que os petá de fo dect otee l solucó ect. teoí de espcos vectoles y de plccoes leles os v pet deduc esultdos soe el couto de ls solucoes.. SISTMS D CUCIONS INS... Defcó. U sste de ecucoes leles co cógts y co coefcetes e u cuepo es u sste de ecucoes de l fo () dode ( ),,. os ece el oe de coefcetes, los de téos depedetes y ls so ls cógts. DF Ddo el sste de ecucoes leles (), deos que es hoogéeo s 0. l sste () se puede esc de fo tcl coo o de fo ás secll coo M M... /9

3 X B DF Deos que ( α α,..., α ), es u solucó del sste () s l susttu cd cógt po α ls ecucoes se tsfo e detddes. l couto fodo po tods ls solucoes lo lleos solucó del sste... Sstes quvletes. DF Deos que dos sstes de ecucoes leles co el so úeo de cógts so quvletes s tod solucó del peo lo es del segudo, y l evés. Té seá equvletes s os cece de solucoes. OBS l defcó de sstes equvletes, e gú oeto se lude que de tee el so úeo de ecucoes. NOTCIÓN pt de ho esceos l ecucó de lug... coo e () o, ás secllete, po DF Ddo el sste e () e () () e () deos que u ecucó e es cocó lel de ls ecucoes del sste s este úeos λ, λ,., λ e el cuepo tles que se vefc e ( ) e ( )... e ( ) λ λ y λ... λ PROP Ddo u sste co ecucoes leles,,., y cógts, se puede otee sstes equvletes efectudo ls sguetes opecoes eleetles. /9

4 ) Peut el ode de dos ecucoes. ) Susttu u ecucó po el esultdo de ultplc todos los eleetos de l ecucó po u escl λ o ulo. c) Susttu u ecucó po el esultdo de su l ecucó el poducto de u escl to λ po ot ecucó. (co ). Más geelete, susttu l ecucó po λ. p culesque escles λ. d) ñd l (sup del) sste de u ecucó que se cocó lel del esto. De. ) l peut el ode de dos ecucoes oteeos u uevo sste que tee ls ss ecucoes que el teo, po tto u solucó p uo de ellos, té lo es p el oto. ) Se el sste M co... Se (α,..,α ) solucó del pe sste. toces, po se gules, té es solucó tods ls ecucoes del segudo sste eos l del lug. Copoeos que p ést té es solucó: λ α λ α... λ α ( α... α ) λ λ Coo λ 0, λ - α... α sedo l epesó cet l se (α,.., α ) solucó de. c) Ddo el sste 4/9

5 M () susttuos e el po λ (elegos l últ po cooddd) M λ (4) os sstes tee ls pes ecucoes gules, sólo l últ es dfeete, sedo λ ( ) λ e ( )... λ e ( ) e ( ) λ e... λ λ λ Veos que os sstes so equvletes. S α (α,., α ) es solucó de (), té lo es de (4). Po se α solucó del pe sste se vefc (α) y té es ceto que λ e (α) λ :,., :,.., co λ. Sudo ls detddes oteeos que ( α) λ e( α)... λ e ( α) λ... λ λ e es ceto, y st to λ (euto de poducto e ) p que es epesó se λ, l cul es cet p α. Coo ls pes de (4) cocdí co ls de (), té so cets y α es solucó de (4). S α ( α, α,, α ) es solucó de (4), té lo es de (). Po se α solucó de (4) se vefc que e ( ) :,..., α 5/9

6 λ e ( α) e ( α) λ Sólo heos de copo que α es solucó de l últ ecucó de (). e ( ) λe ( α) e ( α) λ α λ... uego e (α) y l ecucó es cet. d) Ddo el sste (), s ñdos u ecucó que se cocó lel del esto, oteeos e e e λ e ( ) ( )... ( ) ( ) λ (5) s clo que tod solucó (5) es solucó de () pues ls ecucoes del pe sste so té ecucoes del segudo. álogete, u solucó de () vefc ls pes ecucoes de (5), y té l últ, coo es fácl de copo, luego es solucó de (5)... Tpos de sstes. Segú el úeo de solucoes de u sste de ecucoes leles, los podeos clsfc e: DF Deos que u sste es Coptle s tee solucó. S es úc seá Coptle detedo y s es últple Coptle detedo. el cso de o tee solucó deos que es coptle. Detedos ( Solucó Uc) Coptle Sstes Idet edos ( Solucó Múltple) Icoptles ( S solucó).4. Itepetcó de u Sste e Téos de u plccó el. pt de ho cosdeeos que el cuepo es. Ddo u sste de ecucoes co cógts, epesdo de fo tcl se esce coo 6/9

7 X B Cosdeeos l úc plccó F: que tee coo tz socd (po eeplo, especto de ls ses cócs). tz colu X es u vecto culque y l tz colu B es u vecto fo. toces el sste se puede epes coo f ( ) sedo l solucó l sste el couto f ( ) epesó f ( ) o coespode l sste hoogéeo socdo f ( ).. s solucoes de u sste hoogéeo so los eleetos de f ( o) defcó es, ef, el úcleo de l plccó. que po PROP l couto de solucoes de u sste hoogéeo fo u suespco vectol de. De. s dedo que ef tee estuctu de suespco vectol. PROP l couto de solucoes de u sste de ecucoes leles puede oteese sudo u solucó ptcul del sste tods ls solucoes del sste hoogéeo socdo. De. su de u solucó ptcul α co u solucó del sste hoogéeo socdo α es solucó: uego α α es solucó del sste. f ( α α ) f ( α) f ( α ) o Tod solucó del sste puede descopoese coo su de u solucó ptcul α y u solucó del sste hoogéeo socdo α. Se β solucó del sste f(β) 7/9

8 toces f ( β α) f ( β) f ( α) o uego β - α ef y β - α α ef Y β α α coo queíos po. Podeos ho cctez los dfeetes tpos de sstes e téos de l plccó lel socd. S ( ) ( ) I f f S I( f ) α f ( α) Ø y el sste es Icoptle. /, dádose dos stucoes - S ef { o }, l plccó es yectv y l solucó es úc. Sste Coptle detedo. - S ef { } Idetedo. o, l solucó o es úc y el sste es Coptle tz socd l plccó lel f vefc lo cul os pete dec D (I (f)) Rg () d e (f) d d I (f) Rg () y podeos cctez u sste de ecucoes coptle sólo co el úeo de cógts y el go de l tz de coefcetes. OBS U sste hoogéeo sepe es coptle y que O I ( f ). TORM D ROUCHÉ-FRÖBNIUS DF Ddo u sste de ecucoes leles X B, lleos tz pld l tz que se otee de ñd l tz colu B l tz coo ( )- és colu. Se epeset po (/B). ( / B) /9

9 TORM. Teoe de Rouché-Föeus. Se X B l epesetcó tcl de u sste de ecucoes leles co cógts. X B es coptle g () g (/B). deás, seá coptle detedo s g () e detedo e cso coto. De. Supogos que el sste es coptle y se α (α,, α ) u solucó del so. Se tee ls sguetes detddes: coo α α α α... α... α... α α... α S llos (,..., ), co α α... α el sste lo podeos esc lo cul os dc que es cocó lel de {,..., } de. toces Rg () g (/B), que so ls colus S el sste es coptle detedo, l cocó lel teo es úc y se deduce que {,,..., } es u couto lelete Idepedete. Y de quí podeos f que Rg () Coo po hpótess g () g (/B) se d que es cocó lel de {,..., },. α, α,..., α / α toces α (α, α,., α ) es solucó del sste 9/9

10 f ( α) α y el sste es Coptle. S Rg () {,..., }, es u couto elete Idepedete lo cul sgfc que l cocó lel es úc, sedo té l solucó l sste. CORORIO vefc Se X B u sste de ecucoes leles co cógts. Se ) X B es Coptle Detedo g () g (/B) ) X B es Coptle Idetedo g () g (/B) < c) X B es Icoptle g () g (/B) De. Iedt s ás que tee e cuet el teoe teo. OBS S g () g (/B) co < teeos que d ef d d If Rg () y etoces ls solucoes del sste, l fo u suespco de desó, se epes e fucó de páetos. 4. RG D CRMR. DF Deos que u sste co el so úeo de ecucoes que de cógts es de Ce s tee solucó úc (s es coptle detedo). PROP U sste co gul úeo de ecucoes que de cógts es de Ce s y solo s 0. De. Se el sste X B co u tz cudd de tño. toces l tz (/B) es de ode ( ) sedo po tto g (/B). Seos que g () 0 y plcdo el teoe de Rouche-Föeus oteeos que el sste es coptle detedo s y solo s 0. 0/9

11 /9 os sstes de Ce tee u fo especl de esolvese, que es plcdo l lld Regl de Ce. Veos e que cosste: codcó 0 os pete gtz l estec de -. Po tto, ddo el sste X B podeos despe X coo: X B - X - B X - B Sedo l solucó úc. Veos ho coo desoll es epesó p otee el vlo de cd cógt. Seos que ( ) ( ) t d y podeos esc l guldd X - B coo: M sedo cd el duto del eleeto de l tz ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) y detlldo ls opecoes ecess p clcul cd cógt ( ),...,,,,...,, det... OBS S u sste hoogéeo es de Ce, l úc solucó es l tvl.

12 /9 egl de Ce té es plcle sstes coptles detedos, uque p ello es eceso plcl u sste equvlete que vefque se de Ce. Se u sste coptle dode ( ) ( ) { } B g g, / Supogos, s pédd de geeldd, que { },,..., es lelete depedete (dode ). s lo so que f g Teedo e cuet que s e u sste de ecucoes se el u de ell que se cocó lel de ls deás, el sste que se otee es equvlete, podeos dc que el sste cl es equvlete que se puede esc coo

13 y lldo c os qued que es u sste de Ce, sedo los téos depedetes fucoes especto de ls cógts,,..,. plcdo l egl de Ce teeos c c c ( ) f,,..., y ls solucoes del sste cl vee dds po f f ( λ, λ,..., λ ) ( λ, λ,..., λ )... λ λ... sedo λ k,., λ páetos. 5. MÉTODO D GUSS-JORDN. egl de Ce os pete otee l solucó de culque sste coptle, co de elz u g ctdd de opecoes. s po ello que su uso qued ltdo sstes co pocs ecucoes. fdo u poco ás, p otee l solucó de u sste de ecucoes co cógts, l egl de Ce plc elz ( )! poductos, ( ) (! ) sus y dvsoes, lo cul es u totl de ( )! opecoes. Dedo l efcc del étodo de Ce co sstes de 5 o ás ecucoes, vos estud ots fos de esolve u sste de ecucoes leles. Veeos el étodo de Guss, y lgu de sus vtes, que os d l solucó ect gcs u see de opecoes eleetles. l étodo de Guss tsfo el sste esolve e oto equvlete, tl que su tz de coefcetes se tgul supeo, sedo sí fáclete esolule. l úeo de opecoes que heos de elz p esolve u sste de ecucoes 7 co cógts es que es uy feo l Método de Ce. 6 /9

14 4/9 5.. Método de Guss. l étodo de Guss tsfo u sste e oto equvlete co tz de coefcete tgul supeo. Ptedo del sste de ecucoes leles teo, veos los psos segu: Pso. Se cosgue ceos e l pe colu po deo de l dgol pcpl (supoeos 0 eodedo el sste s fuese eceso). plcdo l sste cl ls ecucoes: oteeos Resuedo, ls opecoes elzds so y

15 Pso. Se cosgue ceos e l segud colu po deo de l dgol pcpl (supoeos 0, eodedo el sste s fuese eceso). plcos l sste otedo e el pso ls ecucoes: y oteeos ste sste se h otedo plcdo l teo ls tsfocoes Pso. Se cosgue ceos e l colu po deo de l dgol pcpl (podeos supoe que 0, eodedo s fuese eceso, slvo que todos los 0 co,sedo eceso etoces elz este pso). plcos l sste otedo el pso ls ecucoes: ) ) ) ) ) ) ) ) 5/9

16 ) ) oteedo u uevo sste equvlete l del pso, y po tto, todos los teoes. s opecoes eleetles plcds h sdo: ) ) ) ) Después de psos coo ucho, se otee u sste equvlete l cl co tz de coefcetes tgul supeo. l sste X B seá equvlete TX C co T tgul supeo. Se vefc g () g (T) g (/B) g (T/C) que esuelve fáclete s s que tee e cuet: ) l Sste es Icoptle s y solo s g (T) g (T/C). Y eso es equvlete ecot e TX C u ecucó del tpo 0 C sedo C 0. ) l sste es Coptle detedo s y solo s g (T) g (T/C), que es equvlete que el sste TX C se de l fo: t t t... t c t t... t c t... t c... t c sedo los eleetos de l dgol pcpl todos o ulos. l sste se esuelve ptedo de l últ ecucó y scededo hst l pe. ) l sste es Coptle Idetedo s y solo s g (T) g(t/c) <. Supogos, s pédd de geeldd, que 6/9

17 t t t 0 t t g 0 0 t lo que olg que todos los eleetos de l dgol pcpl se o ulos hst l fl. toces el sste cl, X B, es Coptle Idetedo s y solo s el sste equvlete TX C puede escse coo: t t t... t... t t sedo ls solucoes l sste: f f f( c, ),..., ( c,,..., )... ( ) c,,..., ( λ,..., ) g λ λ dode los páetos λ,..., λ so úeos eles. ) OBS el pso, sedo, el coefcete dee se o ulo p que ls coespodetes ecucoes teg setdo. Bst elz u eodecó de ls ecucoes p pode otee dch hpótess, vcó que o fect ls cógts. o que s que es u coveete potte es el hecho de que se ) ) uy pequeño y, po tto, / uy gde, pudedo peset dfcultdes el t co estos úeos. os eoes de edodeo podí educédose y uet pso pso, desvtudo l solucó. f de esolve est dfcultd, veeos cotucó vtes del étodo de Guss. 5.. Método de Guss co Pvote Pcl. Cosste e to, e el pso, e lug del eleeto que ) ) { / } ) el eleeto ) ) tl Se tt, e deftv, de tec l fl po l y segu plcdo e étodo de Guss. 7/9

18 5.. Método de Guss co Pvote Totl. l gul que el teo, e el pso, toeos e lug del eleeto eleeto k) { / } ) el ho o sólo tecos fls (ecucoes) s o té colus (cógts). U vez elzdo el teco y colocdo el eleeto elegdo e el lug de, se sgue plcdo el étodo de Guss. ) 5.4. Método de Guss-Jod. Ddo el sste X B, s es u tz cudd co 0, el étodo de Guss puede se copletdo tguldo té l pte supeo, covtedo sí l tz e u tz dgol. st vte se cooce co el oe de Método de Guss-Jod, y cosste e covet ceo todos los eleetos de tz eos los de dgol pcpl. Ddo el sste X B se tsfo l tz ( / B) po el étodo de Guss e ( T / C ) oteédose el sste TX C. t 0 0 t t 0 t c t c t c P otee ceos po ec de l dgol pcpl e T, se pocede de fo sl, sguedo el sguete lgoto. Pe pso. Se cosgue ceos e l colu de l tz (T/C) po ec de l dgol pcpl, tsfodo cd ecucó e edte 8/9

19 Pso. t t Se cosgue ceos e l colu po ec de l dgol pcpl, ) ) ptedo del sste e el pso, tsfodo cd ecucó e edte ) ) ) k) t t ) ) ( ) ( )( ) ) lo suo psos oteeos el sste 0 0 d d p p p oteédose de fo tvl l solucó coo P d Blogfí Recoedd. Álge el. ut: leto uzág. Álge y Geoetí. ut: Bulo de Dego. dt: Deos. Cuso de Álge y Geoetí. ut: Ju de Bugos. dt: lh. Cuso de Mteátcs See. ut:. Nego, V. Zoo. dt: lh. 9/9

Sistemas de ecuaciones lineales. Discusión y resolución

Sistemas de ecuaciones lineales. Discusión y resolución Sstes de ecucoes leles. Dscusó y resolucó Título: Sstes de ecucoes leles. Dscusó y resolucó. Trget: Profesores de Mteátcs. studtes de l Lcectur e Mteátcs.. sgtur: Mteátcs. utor: l Olvá Clzd Lcecd e Mteátcs

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

Unidad 1 Fundamentos de Algebra Matricial Parte 1

Unidad 1 Fundamentos de Algebra Matricial Parte 1 Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor

Más detalles

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

Algunas series e integrales con funciones trigonométricas

Algunas series e integrales con funciones trigonométricas Revst Tecocetífc URU Uvesdd Rfel Udet Fcultd de Igeeí Nº Julo - Dcembe ISSN: 44-775X / Depósto legl pp ZU86 Algus sees e tegles co fucoes tgoométcs Alfedo Vlllobos y Gley Gcí Uvesdd del Zul. Fcultd de

Más detalles

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits LBORTORIO DE PROGRMCIÓN EN LENGUJE ENSMBLDOR x86-6ts Covesó o-scii Ojetvo El ojetvo de est páctc es l pogcó del códgo eceso p covet u úeo eteo o lcedo e eo l cde SCII coespodete su codfccó e u vedd de

Más detalles

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.-

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.- Tto e teés ol, tto efectvo y tto peóco.- El tto e teés ol o tee e cuet l evesó e los teeses cobos o pgos peócete ute los peoos posteoes. Poeos epeset l tto ol ul cptlzble c / e ño coo. Se poí tepet el

Más detalles

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x)

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x) POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS Ddos los polioios e soe R : p 5 8 q 7 Ecot : p q, c p - q p q Solució : p q 5 7 8 9 5 8 5 7 9 5 6 56 5 65 5 8 7 8 5 p q c p q p q 5 7 8 Detei ls

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Autovectores y Teorema de Cayley Hamilton

Autovectores y Teorema de Cayley Hamilton utovetoes eoe de Ce Hto Ce ÁNCHZ DÍZ. Oedoes ees Cosdeeos u eso veto sobe u ueo K V.K u edoofso e do eso : V V que eos oedo sobe e eso V que uede se tto u devó oo u tegó u ogto u eoe et. es de e oedo e

Más detalles

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES LCCIÓN 2 - NTS Y SISTAS D VCTRS 2.. Clsfccó de vectes. 2.2. met cetl de u vect. Cmb del cet de mmets. 2.3. met áxc de u vect. 2.4. Sstems de vectes deslztes. 2.4.. Sstems de vectes ccuetes. 2.4.2. P de

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Te 5: Opecó de otzcó. Péstos.- Plteeto geel de l opecó de otzcó co teeses pospgbles. Recbe est deocó tod opecó de pestcó úc y cotpestcó últple: Pestcó - { 0,t 0 } otpestcó -{, t, t..., t } El cptl de l

Más detalles

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II)

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II) Hos de olems stdístc V 44. Cosdeemos tes us que llmemos I, II y III. Cd u de ells cotee ols lcs y ols egs. temos u ol l z de l u I y l toducmos e l u II, cotucó etemos u ol l z de l u II y l toducmos e

Más detalles

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales TEMA3: Métodos tertvos pr Sstems de Ecucoes Leles TEMA 3. Métodos tertvos pr Sstems de Ecucoes Leles 3. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A=b, cosste e trsformrlo

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

Métodos Numéricos. Resolución de sistemas de ecuaciones

Métodos Numéricos. Resolución de sistemas de ecuaciones Al flzr est udd el prtcpte estrá e cpcdd de resolver u sstem de ecucoes leles o o leles de ecucoes co cógts por los métodos drectos e tertvos. Itroduccó Prolem clásco del álger lel: se quere solucor u

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

ÁLGEBRA LINEAL I SISTEMAS DE ECUACIONES LINEALES

ÁLGEBRA LINEAL I SISTEMAS DE ECUACIONES LINEALES ÁGBR IN I SISTMS CUCIONS INS. INTROUCCIÓN port tul del Álger el rd udetlete e sus tés pr l resoluó de grdes sstes de euoes leles o l estle ud de los ordedores. Resolver u sste de euoes leles pequeño o

Más detalles

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes:

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes: º Bchilleto Mteátics II Dvid Miguel del Río IES Euop (Móstoles) Vos coside ls tices coo u disposició ectgul de úeos que cotiee ifoció. Si se quiee es u fo de ode ifoció. Po ejeplo: * Teeos quí el p de

Más detalles

INTRODUCCION AL ALGEBRA.

INTRODUCCION AL ALGEBRA. INTRODUCCION AL ALGEBRA. 6- COMBINATORIA. Aputes de l Cátedr. Ves Bergoz, Alerto Serrtell. Colorró: Crst Mscett Edcó Prev CECANA CECEJS CET Juí. UNNOBA Uversdd Ncol de Noroeste de l Pc. de Bs. As. Pr esjes:

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Enseñanza Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Enseñanza Secundaria) TEAS DE ATEÁTICAS (Oposcoes de Eseñz Secudr TEA ITEGRACIÓ UÉRICA. ETODOS Y APLICACIOES.. Itroduccó.. Itegrcó co css dds... Fóruls de tegrcó terpoltor.. Error de ls óruls de tegrcó terpoltor... Fórul de

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRIMER CURSO DE INGENIERO DE TELECOMUNICACIÓN CURSO 2009/2010

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRIMER CURSO DE INGENIERO DE TELECOMUNICACIÓN CURSO 2009/2010 FUNDMNTOS FÍSICOS D L INGNIRÍ PRIMR CURSO D INGNIRO D TLCOMUNICCIÓN CURSO 009/00 FÍSIC CUÁNTIC. l estdo de u sstem e Físc Clásc.. Fllos de l Físc Clásc sto e clse.. l epemeto de l doble edj sto e clse.

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

[ ] [ ] { } LONGITUD DE ARCO. n entonces: = [ ] dy dx dx. Demostración: Se tiene usando las definiciones previas con sumas de Riemann.

[ ] [ ] { } LONGITUD DE ARCO. n entonces: = [ ] dy dx dx. Demostración: Se tiene usando las definiciones previas con sumas de Riemann. pccoes de te ded CÁLCULO DIFEENCIL E INTEGL I.. LONGITUD DE CO. e u ucó ded soe co devd cotíu soe. e deás u ptcó I... etoces podeos otee poo od po uó de seetos co eteos P P ;... etoces: L I { } P P es

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales. Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes

Más detalles

Experimento 1 Medición de Índices de Refracción

Experimento 1 Medición de Índices de Refracción Expemeto Medcó de Ídces de Refccó Objetvos Istumet e el lbotoo métodos de medcó de ídces de efccó de sustcs tspetes que puede est e estdo líqudo o sóldo, tles como vdo, luct, gu, glce, etc. Relz u álss

Más detalles

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3 Ídce de ateas.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3..- FUNDAMENTOS MATEMÁTICOS DE LA MECÁNICA CUÁNTICA...3 Álgeba Leal Opeadoes ucoes popas....3.- LOS POSTULADOS DE LA

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

CONDUCCIÓN ESTACIONARIA UNIDIMENSIONAL(I)

CONDUCCIÓN ESTACIONARIA UNIDIMENSIONAL(I) em : Coduccó estco udmes. I. fel oyo, José Mguel Coeá. Cuso 000-000 Dpostv em : Coduccó estco udmesol CONDUCCIÓN ESCIONI UNIDIMENSIONLI PLICCIÓN PEDES PLNS Y CONDUCOS JM Coeá, oyo UPV em : Coduccó estco

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

EL TEOREMA EGREGIUM. Introducción

EL TEOREMA EGREGIUM. Introducción CARLOS S CHIEA EL TEOREMA EGREGIUM DE GAUSS Itoduccó Joha Ca Fedch Gauss (30 de ab de 777 3 de febeo de 855) e sus Dsqustoes eeaes cca supefces cuvas de 88 expoe e teoea coocdo coo eeo Eeu que ha tedo

Más detalles

x que deben ser calculados

x que deben ser calculados UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Núeros Coplejos PREGUNTAS MÁS FRECUENTES. Qué es la udad agara? Es u eleeto del que cooceos úcaete su cuadrado:.obvaete, o se trata de u úero real.. Qué es u úero coplejo? Es

Más detalles

i j k

i j k Ejemplos de oblems p evo I I. Descpcó del Movmeto de U tícul, Coodeds de u ptícul ví co el tempo de cuedo co ls fomuls: t s t, t cos t, t.) Demuéstese ue l tecto de ptícul es espl ubcd sobe supefce de

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad...

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad... Fdmetos Teoís Físcs TS Aqtect.. CÁLCUL VCTIAL... INTDUCCIÓN L ecác es l pte de l Físc qe estd el eqlbo el mometo de los cepos. Se dde e Cemátc qe se ocp del mometo de los cepos depedetemete de ls fes qe

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS Oposcoes de Secud TEMA 60 PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGIFICADO Y PROPIEDADES.. Itoduccó.. dds de Poscó... L d Atétc.... Popeddes.... Cálculo Abevdo...3. Vetjs e Icoveetes...

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

Cada uno de los resultados son los pares o ternas del producto cartesiano AxBxC

Cada uno de los resultados son los pares o ternas del producto cartesiano AxBxC OMBINTORI. 4º E.S.O. OLEGIO LSNIO. MDRID. RINIIO GENERL DEL REUENTO. S u expereto se copoe de vrs prtes y cd u de ells puede suceder de,, c posles ers, el úero de fors e que puede ocurrr el expereto copuesto

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposcoes de Secudr) TEMA 3 POLINOMIOS. OPERACIONES. FÓRMULAS DE NEWTON. DIVISIILIDAD DE POLINOMIOS. FRACCIONES ALGERAICAS.. El Allo de los Poloos de u vrle... Su de Poloos... Producto

Más detalles

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3 E Medteáeo de Málaga olucó Juo Jua Calos loso Gaoatt ee.- Dga aa qué alo del aáeto los laos π :, π : π : tee coo teseccó ua ecta. [ utos] Tee coo teseccó ua ecta cuado el sstea que foa sea coatle deteado

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s )

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s ) SISTEMAS DE ECUACIONES LINEALES Todo problem cuyo eucdo somete úmeros descoocdos vrs codcoes, es susceptble de ser epresdo por medo de gulddes o desgulddes que form u sstem de ecucoes o ecucoes. De hí

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA Mtemát Fís Astoomí shom 6 ESOLVIENDO POBLEMAS DE MATEMÁTICA ESOLUCIÓN DE LOS POBLEMAS POPUESTOS POBLEMA 8 (6 Hll l eó el lg geométo e los tos ese oe se ee tz os tgetes qe fome ete sí áglo eto l v: SOLUCIÓN:

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Ju Atoo Gozález Mot Poeso de Mtemátcs del Colego Ju XIII Zdí de Gd INTEGRAL DEFINIDA Se u ucó cotu y postv e el tevlo [,]. L gác de l ucó, y ls ects, e y, detem u egó del plo que ece el ome de tpeco mtlíeo.

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial étodos Nuércos C 5: Iterolcó Arocó olol / Arocó ucol e Iterolcó Reresetcó edte ucoes lítcs seclls de: Iorcó dscret Resultte de uestreos Fucoes colcds Sedo u cert ucó de l que o se cooce u órul elíct o

Más detalles

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucó TEMA. Métodos tertvos de resolucó de Sstems de Ecucoes Leles. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A = b, cosste e trsformrlo e

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

INICIO. Elaborado por: Enrique Arenas Sánchez

INICIO. Elaborado por: Enrique Arenas Sánchez INICIO Elbordo or: Erque Ares Sáchez EL PROMEDIO El cálculo del romedo de u lst de vlores [,, K,,, ], 2 K ormlmete se clcul medte l coocd exresó: m...() U form geerl r clculr el romedo de u lst

Más detalles

suma sucesiva de los primeros m términos como se ve a continuación m 1

suma sucesiva de los primeros m términos como se ve a continuación m 1 A veces se ecest deterr l su de uchos téros de u sucesó ft. Pr expresr co fcldd ess sus, se us l otcó de sutor. Dd u sucesó ft,,,...,... el síbolo represet l sutor o su sucesv de los preros téros coo se

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIA NACIONA E INGENIERIA P.A. - FACUTA E INGENIERIA MECANICA // ACIBAHCC EXAMEN PARCIA E METOOS NUMERICOS MB6 SOO SE PERMITE E USO E UNA HOJA E FORMUARIO Y CACUAORA ESCRIBA CARAMENTE SUS PROCEIMIENTOS

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Pág del Colego de temátcs de l ENP-UN trces y ermtes utor: Dr. José uel ecerr Espos RICES Y DEERINNES E V V. DEFINICIÓN DE RIZ U mtrz es u cojuto de úmeros, ojetos u operdores, dspuestos e u rreglo dmesol

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej:

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej: BLOQUE II: Núeros Álger Te : Sises de ecucioes lieles Pági de.- CLSIFICICIÓN DE LOS SISTEMS DE ECUCIONES. Sise liel heerogéeo: es quel e el que o odos los érios idepediees so ulos. Ej: Sise liel hoogéeo:

Más detalles

Fundamentos matemáticos del método símplex

Fundamentos matemáticos del método símplex Fudetos teátcos del étodo síple Oscr Edurdo Góez Ros oegros@yhoo.co Trbo de Grdo pr Optr por el Título de Mteátco Drector: Pervys Regfo Regfo Igeero Uversdd Ncol de Colob Fudcó Uverstr Kord Lorez Fcultd

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

Las variables (X, Y) que representan los valores de dos caracteres cuantitativos, pueden clasificarse:

Las variables (X, Y) que representan los valores de dos caracteres cuantitativos, pueden clasificarse: Etdítc Decptv Bdeol Fcultd Cec Ecoóc Epele Depteto de Ecooí Aplcd Pofeo: Stgo de l Fuete Feádez VARIABLE ESTADÍSTICA BIDIMESIOAL Cudo e code tucoe e l que el etdítco elz l oevcó ulte de do cctee e el dvduo,

Más detalles

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs.

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs. Mètodes Mtemàtcs Aplcts l Químc, Cus 006-007. Pedo Sldo.- Àlgeb lel o etem e detlls e defcos mss fomls só que euem úcmet quells coceptes que ecesstem dut el cus.. Esps ectols U espco ectol es u estuctu

Más detalles

1 i. Hojas de Problemas Álgebra IX

1 i. Hojas de Problemas Álgebra IX Hojs e Polems Álge IX 7 Se A l ml e uoes :R * R es o log, " N R *{ R:>} Estu su eee lel e el R-eso etol AlR *,R Hll l mesó y u se el sueso que ege Soluó: Es log log log S m, y m so lelmete eeetes: α β

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Tem 5: Opecó de motzcó. Pétmo. Pltemeto geel de l opecó de motzcó co teee popgble. Recbe et deomcó tod opecó de petcó úc y cotpetcó múltple: Petcó: {(, t } otpetcó: {(, t, (, t,, (, t } El cptl de l petcó

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposcoes de Secudr TEM 9 DETERMINNTES. PROPIEDDES. PLICCIÓN L CLCULO DEL RNGO DE UN MTRIZ.. Itroduccó... Resultdos preos.. Forms multleles lterds. 3. Determtes. 3.. Determtes de N ectores.

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA.

ALGEBRA Y GEOMETRIA ANALITICA. ALGEBRA Y GEOMETRIA ANALITICA. - ESPACIOS VECTORIALES. Aptes de l Cáted. Albeto Setell. Colboo Cst Mscett Ves Begoz Edcó Pe CECANA CECEJS CET Jí. UNNOBA Uesdd Ncol de Nooeste de l Pc. de Bs. As. P meses

Más detalles

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma:

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma: CRISTIN ROND HERNÁNDEZ Sistes de ecucioes SISTEMS DE ECUCIONES. Sistes de ecucioes lieles. Epresió tricil de u siste. Clsiicció de sistes de ecucioes. Teore de Rouché-Fröeius. Discusió de sistes 6. Método

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero. RADICALES Ete los úeos eles se euet los diles, ue se uede exes oo íz de u ídie de u úeo eteo. Ríz eési de u úeo eteo. Si Ζ y Ν, o, dieos ue l íz eési de es u úeo el y lo oteos sí:, si. Se ll: dido. íz

Más detalles

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura:

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura: Puede ocurrr que NEGRACON o CUADRAURA d se u ucó cotu ácl de tegrr o u ucó cotu dícl o posle de tegrr drectete o que o coozcos l ucó tuld, solo u couto de vlores eddos. Los étodos se s e que, dd ecotrr

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

MODELAJE DE SISTEMAS MECÁNICOS ROTACIONALES

MODELAJE DE SISTEMAS MECÁNICOS ROTACIONALES Deprteto de Proceo y Ste MODA D SISMAS MCÁICOS OACIOAS Pro. Alexder Hoyo uo 00 Crc, Veezuel Pro. Alexder Hoyo. Uverdd So Bolívr. Deprteto de Proceo y Ste. Pág. / ÍDIC Pág. Ste ecáco rotcol Servootor de

Más detalles

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales.

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales. uesoes Título: uesoes. Tget: Pofesoes e Mteáts. Asgtu: Mteáts. Auto: El Olvá Clz Le e Mteáts Pofeso e Mteáts e Euó eu. UCEIONE. TÉRMINO GENERAL Y FORMA RECURRENTE Vos estu u tpo e fuoes uyo oo e efó es

Más detalles

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III)

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III) Facultad de.ee. Dpto. de Ecooía Facea I Dapostva Mateátca Facea TEMA 6 VALORAIÓN FINANIERA DE RENTAS III. Faccoaeto atétco y faceo de ua eta 2. Retas faccoadas 3. Retas cotuas Facultad de.ee. Dpto. de

Más detalles

d = 0,04 comisión: 0,1%

d = 0,04 comisión: 0,1% U comecte vede plzos u tículo p lo cul ecbe e el mometo de l comp 2.000 euos y le fm tes lets po l msm ctdd de l eteg cl y co vecmetos espectvos los 0, 60 y 90 dís. Obtee el peco l cotdo del tículo, sbedo

Más detalles

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo

Más detalles

TEMA 4. REGRESIONES LINEALES Y NO LINEALES

TEMA 4. REGRESIONES LINEALES Y NO LINEALES TEMA 4. REGRESIONES LINEALES Y NO LINEALES. Itroduccó. Noecltur 3. Lelzcó de ecucoes 4. Ajuste lel 5. Regresó lel últple 6. Regresoes o leles 7. RESUMEN 8. Progrcó e Mtlb . Itroduccó E este te se lz coo

Más detalles

UNIDAD III. Solución de Sistemas de Ecuaciones Lineales, No-Lineales y Valores Característicos

UNIDAD III. Solución de Sistemas de Ecuaciones Lineales, No-Lineales y Valores Característicos UNIDAD III Solucó de Sstems de Ecucoes Leles, No-Leles y Vlores Crcterístcos Sstems de Ecucoes Leles Form Geerl Coefcetes (Costtes) Térmos Idepedetes (Costtes) Número de Ecucoes Los sstems de dos y tres

Más detalles