MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos"

Transcripción

1 Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente sus rterístis, los tipos de intereses que pueden plirse (entre otros, itr los tipos de refereni del merdo hipoterio que publi el bno de Espñ) y enumerr los gstos que osionn est lse de préstmos. (,5 puntos). b) Práti: L empres K neesit un millón de euros pr onstruir un nve industril en l que se v fbrir mteril elétrio. Pr finnir est inversión obtiene un préstmo por es untí y durión 2 ños, de los que los dos primeros son de reni de mortizión (sólo se bonn ls uots de intereses). L mortizión se relizrá en los 0 ños restntes medinte nuliddes onstntes. Los tipos de interés son del 7% pr los dos primeros ños y del 6% pr el resto. Obtener rzondmente: 2. Empréstitos b) Anuliddes pgr en los dos primeros ños y en los diez restntes. ( punto). Cuots de intereses del segundo y sexto ño. (0,5 puntos). b) Cuots de mortizión de esos mismos ños. (0,5 puntos). b) Préstmo vivo después de trnsurridos 8 ños ompletos desde el iniio de l operión. (0,5 puntos). ) Explir rzondmente ómo se obtiene el tnto de rentbilidd de un título que pg upones venidos y se mortizrá dentro de r ños. Los dtos son: C = nominl de d obligión; i = tnto nul pr el pgo de upones; V = vlor de emisión; C r = vlor de reembolso. ( punto). b) Amortizión por reduión de nominl. L empres ZYX h emitido un empréstito formdo por obligiones de euros d un on durión totl de 0 ños. Durnte los dos primeros ños sólo se bonrán los intereses, mortizándose en los 8 restntes por reduión de nominl nul onstnte. Los intereses se pgn un 6% nul. Obtener rzondmente: b) Cuntí en l que se redue d ño el nominl de ls obligiones y nominl vivo de d obligión después de trnsurridos 5 ños. ( punto). Términos mortiztivos orrespondientes los ños º y 7º de l vid del empréstito. (2 puntos).. Operiones de rrendmiento finniero (lesing). Explir rzondmente ómo se efetú l vlorión finnier desde l perspetiv del rrenddor on objeto de obtener l untí mensul del lquiler. Los dtos son: C 0 = preio de merdo del tivo; n = número de ños que dur l operión; m = 2 pgos en el ño; j 2 = tnto nominl pr freueni mensul que dese obtener omo rentbilidd; C n = vlor residul l finlizr el periodo de lquiler. Se h de lulr l untí mensul que on ráter onstnte y prepgble h de peribir el rrenddor. (2 puntos).

2 Soluión Junio 09 - Primer Semn. ) Teorí b) b) = = C i = ,07 = C = C = = =5.867, n-2 i 0 0,06 I = C i = C i = ,07 = I = C i =5.867,96 0,06 = 5.508, ,06 A =A =0 2 A = -I =5.867, ,0= 90.59, b) C =5.867,96 = ,82 8 0,06 2. ) Teorí b) C A = = = 625 /ño 8 8 C = C - A = =.25 5 [ ] [ ] [ ] [ ] = (C i+ A) N = (C - A) i+ A N = ( ) 0, = = (C i+ A) N = (C - A) i+ A N = ( ) 0, = ) Teorí

3 Fultd de Cienis Eonómis Convotori de Junio Segund Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 0 de Junio de ,0 hors Durión: 2 hors ) Teorí: Estudir rzondmente l mortizión de préstmos por el método de uots de mortizión onstntes (A = A 2 = = A n = A). Dtos: Cuntí iniil del préstmo: C 0, durión totl: n ños, tnto nul onstnte: i durnte tod l operión. Not: Se h de obtener l untí onstnte de d uot de mortizión, el pitl vivo y el pitl mortizdo undo hn trnsurrido s ños desde el iniio de l mortizión sí omo ls nuliddes que lo mortizn (l primer y l relión de reurreni pr obtener ls restntes). (,5 puntos) b) Práti: Un préstmo de un millón de euros se h de mortizr en oho ños; durnte los tres primeros ños solmente se pgn intereses y prtir del urto se entregn nuliddes onstntes. Sbiendo que l operión se vlor un tnto nul de 5%, obtener rzondmente: ( puntos) 2. Empréstitos b.) Los términos mortiztivos de los ños º y º. b.2) El pitl vivo después de trnsurridos ños. Idem después de trnsurridos 6 ños. b.) Cuots de mortizión de los ños º y 6º. ) Teorí: Explir rzondmente ómo se resuelve un empréstito upón ero que se mortiz por sorteo medinte nuliddes onstntes y on unos gstos de dministrión sobre ls nuliddes del g por mil. (,5 puntos). b) Práti: L empres X emite un empréstito formdo por obligiones de.000 euros d un, mortizr en oho ños por reduión de nominl nul onstnte durnte los utro primeros ños y tmbién durnte los utro últimos ños pero en untí un 50% superior en estos últimos respeto los primeros. Los intereses se pgn un 8% nul. Obtener rzondmente: (2 puntos) b.) Cuntís en ls que se redue el nominl d ño. b.2) Nominl vivo de d título después de trnsurridos ino ños y nominl mortizdo después de utro ños. b.) Importe que se dedi pgr intereses durnte el quinto ño. b.) Término mortiztivo orrespondiente l º ño de vid del empréstito.. Operiones de onstituión Un person de 5 ños susribe un pln de pensiones l que port 500 euros mensules y pospgbles. L rentbilidd que obtiene el fondo es, en promedio, del 5% nul. Obtener rzondmente: (2 puntos) ) El fondo de pitlizión undo lne l edd de 50 ños. b) Cpitl que reibirá en el momento de l jubilión.

4 Soluiones Junio 09 Segund Semn. ) Teorí b) = 2 = = C0 i = ,05 = b) C = C 0 = = 5 0,05 = = 20.97,80 A =A 2 =A =0 C = = 29.76, ,05 5 0, ,80 = I + A I = C i = = A = 20.97, =80.97,80 A 5 = A (+i) =80.97,80 (+0.05) =90.02,5 A = A (+i) =99.52, ) Teorí b) b) b) C =.000 = A i = A +,5A =0A A = =00 0 Cutro primeros ños: 00 Cutro últimos ños: 50 C = A + A + A =,5A = i M = A = A = 00 I =C i N 5 C = C - A = A = 600 i I = 600 0, = = C i N+ A N = 700 0, = C = C - A = A = 700 i. ) S = F = 500 /2 =2.0, i 2 (+0,05) -=0,0007 b) F = 500 S = , ,0007

5 Fultd de Cienis Eonómis Convotori de Septiembre Prinipl Mteril Auxilir: Cluldor finnier MATEMÁTICA FINANCIERA II de Septiembre de 2009,0 hors Durión: 2 hors. Préstmos ) Préstmos sindidos. Explir rzondmente sus rterístis, forms de sindiión. Subst de préstmos. (,5 puntos). b) L empres HJK h obtenido un préstmo de ien mil euros mortizr en 8 ños pliándose un tipo de interés nul del 5,5%. Obtener rzondmente: 2. Empréstitos b.) Si se mortiz por el método frnés: Anulidd onstnte que lo mortiz. (0,5 puntos). Cpitl vivo trnsurridos tres ños. (0,5 puntos). Cuot de mortizión del 5º ño. (0,5 puntos). b.2) Si se mortiz por el método de uots de mortizión onstntes: Cuot de mortizión onstnte. (0,5 puntos). Anulidd orrespondiente l quinto ño. (0,5 puntos). ) Empréstitos on mortizión úni totl. Crterístis, estrutur de los términos mortiztivos. Poner un ejemplo de emisiones que se relizn en Espñ por este proedimiento. (,5 puntos). b) Un empréstito que pg upones venidos y se mortiz en 2 ños medinte nuliddes onstntes. Se hn emitido en totl obligiones de nominl euros d un. Los upones nules importn 00 euros y se ofree un prim de mortizión de 00 euros por título. Obtener rzondmente: b) L nulidd omeril onstnte que lo mortiz. ( punto). El número de títulos que se mortizn en el sorteo del ño 2. ( punto). b) Tnto de rentbilidd de un título que se mortiz en el 7º sorteo si se ofreió un prim de emisión de 50 euros (Solmente plntemiento numério). (0,5 puntos).. Constituión de pitles Un empres, on objeto de renovr un equipo industril, reliz portiones trimestrles y pospgbles on objeto de onstituir un pitl de ien mil euros en 6 ños. Si l operión se vlor un tnto nominl pr freueni trimestrl J = 6% nul. Determinr rzondmente: ) Imposiiones trimestrles que hn de relizrse. ( punto). b) Cpitl onstituido los tres ños del origen de l operión. ( punto).

6 Soluiones Septiembre 09. ) Teorí b) = =5.786,0 8 0,055 C =5.786, = 67.2,2 5 0,055 A = -I =5.786, ,055 =0.286,0 A = A (+i) =0.286, (+0,055) =2.7,05 5 C C 0 = 8 A A = = = = A +I = ,055 =8.000 = -(s -) A i = (5 -) ,055 =5.250 s 5 2. ) Teorí b) Anulidd omeril : = C i N s- +(C+P) Ms C Ci Normlizión : = C N s- + C M s α = C Ns- i +C Ms C+P C+P C α = C N = α n i on : C+P = α 2 0,0588 α= , C i ,06 i = = = 0,0588 C+P C (C+P) α = = α = , = ,8 C+P C N M = = =.58,6 M 2 = M (+i ) =.58,6 (+0,0588) = 6.7,78 S S n i 2 0, b) = 00 +( ) (+i ) i = 0,067 7 ir r r. ) = C S =.92, 2 0,06 i = = 0,05 b) F =.92, S = 5.55, ,05

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL II

E-CONTABILIDAD FINANCIERA: NIVEL II E-CONTABILIDAD FINANCIERA: NIVEL II MÓDULO 5: LA FINANCIACIÓN AJENA EN LA EMPRESA OBJETIVOS DEL MÓDULO: Conocer ls distints modliddes que tiene l empres pr finncirse con recursos jenos. Estudir otrs operciones

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN Contbilidd (RR.LL.) T7 OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN 1. - Considerciones generles 2. - Proveedores 3. - Acreedores. 4. - El Impuesto sobre el Vlor Añdido.

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2 Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.

Más detalles

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO.

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. Gregorio Lbtut Serer. Profesor Titulr de l Universidd de Vlenci. http://gregorio-lbtut.blogspot.com.es/ Vmos presentr el trtmiento contble de los préstmos con

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

Ejemplo de un plan financiero

Ejemplo de un plan financiero Ejemplo de un pln finnciero 6 6.1 Enuncido Not: ls cntiddes son intenciondmente bjs pr fcilitr el cálculo. L señor J.G. posee un cpitl de 140 y lo port pr crer un pequeño comercio. Dese inugurr su estblecimiento

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

EVALUACION DE PROYECTOS

EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS FINANCIACIÓN DE PROYECTOS: CREDITOS Elementos del crédito Principl del préstmo se puede frccionr en vrios desembolsos nules, generlmente

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

PGC, nuevo tratamiento contable de las operaciones de arredamiento

PGC, nuevo tratamiento contable de las operaciones de arredamiento PGC, nuevo trtmiento contble de ls operciones de rredmiento El nálisis de ls operciones de rrendmiento se h vuelto obligtorio trs l prición del Borrdor del nuevo Pln Generl de Contbilidd. En este sentido

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO.

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci L Norm de Registro y

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

TEMA 9 - INMOVILIZADO

TEMA 9 - INMOVILIZADO TEMA 9 - INMOVILIZADO 1. Considerciones generles. 1.1. Descripción. 1.2. Clsificción. 1.3. Registro y reconocimiento. 1.4. Forms de dquisición. 1.5. Vlorción. 1.6. Bjs de inmovilizdo 2. Inmovilizdo mteril.

Más detalles

2008 ENE AMORTIZACIONES / REGISTRO CONTABLE AMORTIZACION CONTABLE DEL INMOVILIZADO. Índice 1.- Introducción general

2008 ENE AMORTIZACIONES / REGISTRO CONTABLE AMORTIZACION CONTABLE DEL INMOVILIZADO. Índice 1.- Introducción general AMORTIZACION CONTABLE DEL INMOVILIZADO Índice 1.- Introducción generl 1.- Introducción generl 2.- Introducción los sistems de mortizción 2.1.- Introducción y Concepto 2.2.- Definiciones 2.3.- Métodos de

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Actividades de Contabilidad Financiera

Actividades de Contabilidad Financiera Actividdes de Contbilidd Finncier Mª del Consuelo Alonso Jr Elidi Villlb López PORTADA ACT. FINANCIERA.indd 1 05/06/2013 14:23:40 DIRIGIDO A LAS ASIGNATURAS DE 2º CFGM DE GESTIÓN ADMINISTRATIVA. MÓDULO

Más detalles

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000 . Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso

Más detalles

GUIA DE TRABAJO # 28. Materia: Matemáticas. Tema: Múltiplos y divisores. Fecha: Profesor: Fernando Viso. Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO # 28. Materia: Matemáticas. Tema: Múltiplos y divisores. Fecha: Profesor: Fernando Viso. Nombre del alumno: Sección del alumno: GUIA DE TRABAJO # 28. Mteri: Mtemátis. Tem: Múltiplos y divisores. Feh: Profesor: Fernndo Viso Nombre del lumno: Seión del lumno: CONDICIONES: Trbjo individul. Sin libros, ni udernos, ni nots. Sin elulres.

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Contabilización del impuesto de sociedades

Contabilización del impuesto de sociedades Contbilizción del impuesto de socieddes Autor: Toshiro - foros.plngenerlcontble.com Fech de elborción: Julio 2012 Distribuido por plngenerlcontble.com Artículo extrído de foros.plngenerlcontble.com cuy

Más detalles

TEMA 6. El proceso contable general: regularización y cierre

TEMA 6. El proceso contable general: regularización y cierre (Introducción l Contbilidd finncier, Ed. Pirámide 2008) TEMA 6 El proceso contble generl: regulrizción y cierre 1 (Introducción l Contbilidd finncier, Ed. Pirámide 2008) PROCESO (CICLO) CONTABLE GENERAL:

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

PROCEDIMIENTO SOLICITUD Y PRESTACIÓN DEL SERVICIO DE PARQUEADERO

PROCEDIMIENTO SOLICITUD Y PRESTACIÓN DEL SERVICIO DE PARQUEADERO OBJETIVO ALCANCE PUNTOS DE INTERÉS Culquier inquietud omunirse on l Coordinión de Prquederos ls extensiones 5016 5252-3416 Atender y ontrolr ls soliitudes del serviio de prquederos relizds por los usurios

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA EMPRESA CRECESA Ejercicios Contbilidd Tem 4 CRECESA es un empres dedicd l comercilizción de plnts de interior. Se h constituido principios de 20XX y su Blnce finles de ese ño (expresdo en uniddes monetris)

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias.

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias. Contbilidd (RR.LL.) T6 TEMA 6 EXISTENCIAS 1. Considerciones generles. 2. Vlorción de ls Existencis. 3. Registro de ls Existencis. Contbilidd (RR.LL.) T6 1.-CONSIDERACIONES GENERALES. Contbilidd (RR.LL.)

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

FICHA 1: OPERACIONES CON FRACCIONES Sumas y restas con el mismo denominador = 2 3 =

FICHA 1: OPERACIONES CON FRACCIONES Sumas y restas con el mismo denominador = 2 3 = REFUERZO DE VERANO. º ESO FICHA OPERACIONES CON FRACCIONES Sums y rests on el mismo denomindor ± ± ) Sums y rests on distinto denomindor Igul, pero primero se redue denomindor omún simplifio simplifio.

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

E. E. T. N 6 (Escuela de Educación Técnica N 6)

E. E. T. N 6 (Escuela de Educación Técnica N 6) E. E. T. N 6 (Esuel de Eduión Téni N 6) Resoluión N 96/9 CAPITULO RAZONES Y PROPORCIONES Rzones y proporiones. Propieddes de ls proporiones. Proporionlidd diret. Proporionlidd invers. Reprtiión proporionl.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

PLAN DE EMPRESA. Datos del solicitante Nombre o razón social Actividad Programa de ayuda solicitado Inversión total prevista (euros) Nº expediente

PLAN DE EMPRESA. Datos del solicitante Nombre o razón social Actividad Programa de ayuda solicitado Inversión total prevista (euros) Nº expediente PLN DE EMPRES Datos del solicitante Nombre o razón social ctividad Programa de ayuda solicitado Inversión total prevista (euros) Persona de contacto Nº expediente Teléfono 1 1. DESCRIPCIÓN GENERL DE L

Más detalles

Casos prácticos resueltos

Casos prácticos resueltos Apéndice A Csos prácticos resueltos A.1. Introducción Hst hor, dentro de cd unidd temátic, se hn ido resolviendo supuestos concernientes l tem trtdo en el cpítulo. En éste, se pretenden desrrollr ejercicios

Más detalles

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos.

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos. Protección de forjdos de hormigón con Igniplster. Resistenci l fuego 60, 90, 0 y 80 minutos. Ensyo: LICOF - 56/0 0.06 Dtos técnicos: Forjdo de hormigón. Armdur de cero. Igniplster plicdo por proyección

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

En este empréstito hay que tener en cuenta que los cupones no son iguales y en consecuencia, tampoco los tipos de interés :

En este empréstito hay que tener en cuenta que los cupones no son iguales y en consecuencia, tampoco los tipos de interés : 1 1.- Sea un empréstito con las características siguientes : --Número de títulos emitidos : N 1 = 200.000. --Nominal de cada título : C = 1.000 --Duración del empréstito 5 años. --Cupones anuales y pospagables,

Más detalles

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1.

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1. CASOS TEMA 3 CASO PRÁCTICO Nº 1 El ptrimonio de l empres individul "ALFA", cuy ctividd es l comercilizción de los rtículos A, B y C, está integrdo por el siguiente conjunto de bienes derechos y obligciones,

Más detalles

Índice. Presentación... Ejercicio n.º 6... Solución ejercicio n.º 6...

Índice. Presentación... Ejercicio n.º 6... Solución ejercicio n.º 6... Índice Presentción............................................................... Ejercicio n.º 1.............................................................. Solución ejercicio n.º 1....................................................

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar)

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar) IMPUESTO SOBRE SOCIEAES (Cierre fiscl ejercicio 2013) (Ajustes y conceptos considerr) (13) LIMITACIÓN A LAS AMORTIZACIONES FISCALMENTE EUCIBLES EN EL IMPUESTO SOBRE SOCIEAES Novedd introducid por l Ley

Más detalles

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2015/7 Confereni de los Estdos Prtes en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 3 de septiemre de 2015 Espñol Originl: inglés Sexto período de sesiones Sn Petersurgo

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

INTRODUCCIÓN A LA CONTABILIDAD

INTRODUCCIÓN A LA CONTABILIDAD Deprtmento de Comercio y Mrketing Introducción l contbilidd Profesor J. A. Pstor http://www.jpstor.com INTRODUCCIÓN A LA CONTABILIDAD 1. Contbilidd: Definición. 2. El ptrimonio. 2.1. Composición del ptrimonio.

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar Los psivos finncieros. Problemátic contble de los débitos y prtids pgr Rquel Flórez López rquel.florez@unileon.es Universidd de León Fc. de Ciencis Económics y Empresriles Cmpus de Vegzn, s/n 24071 León

Más detalles

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización.

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización. FECHA EMISION 8 1 1992 ORGANO EMISOR INTERVENCIÓN GENERAL DE LA ADMINISTRACIÓN DEL ESTADO PUBLICACION BOLETÍN INFORMATIVO DE LA IGAE nº 5, ño 1992. TITULO CONSULTA Nº 8/1992, formuld por l Intervención

Más detalles

PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN. Tema 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES

PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN. Tema 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES Introducción l Contbilidd Curso 2010-2011 PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN Tem 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES PARTE I. TEORÍA GENERAL DE LA CONTABILIDAD Tem 1: L contbilidd

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

UNIDAD I. El Punto y la Recta

UNIDAD I. El Punto y la Recta SSTEMS E REPRESENTÓN 10 UN SESÓN 3 L Ret: efiniión, trzs y posiiones notles ORE L. LERÓN S. SSTEMS E REPRESENTÓN 10 1.5 L RET Es el eleento geoétrio unidiensionl y puede deterinrse trés de un segento de

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

SEPTIEMBRE 2015 NO.1

SEPTIEMBRE 2015 NO.1 SEPTIEMBRE 2015 NO.1 02 Cmpñ de Comunicción Autos Reinvéntte y Crece P r AXA es muy importnte mntenerte informdo sobre todos los tems relciondos l Rmo de Autos por eso prtir del 31 de gosto y hst el 20

Más detalles

METODOLOGÍA DE ELABORACIÓN DE LOS ÍNDICES DE TENDENCIA (ITCS) DE LA COMPETITIVIDAD

METODOLOGÍA DE ELABORACIÓN DE LOS ÍNDICES DE TENDENCIA (ITCS) DE LA COMPETITIVIDAD MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD SUBDIRECCIÓN GENERAL DE EVALUACIÓN DE INSTRUMENTOS DE POLÍTICA COMERCIAL METODOLOGÍA DE ELABORACIÓN DE LOS ÍNDICES DE TENDENCIA DE LA COMPETITIVIDAD (ITCS) Revisd

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

(II)La contabilización del Impuesto sobre Sociedades

(II)La contabilización del Impuesto sobre Sociedades Cierre Contble y Fiscl I. SOCIEDADES (II)L contbilizción del Impuesto sobre Socieddes Luis Alfonso Rojí Chndro (Febrero 2012) L.A. Rojí Asesores Tributrios, S.L. - Inscrit en el Registro Mercntil de Mdrid,

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

CONTENIDO 1 INTRODUCCION... 1 2 IMPEDANCIA SERIE DE UNA RED... 5 2.1 RESISTENCIA DE LA LINEA... 6

CONTENIDO 1 INTRODUCCION... 1 2 IMPEDANCIA SERIE DE UNA RED... 5 2.1 RESISTENCIA DE LA LINEA... 6 MOEACIÓN E REES E TRANSMISIÓN E ENERGÍA EÉCTRICA rofesor Asoido ESCUEA E INGENIERÍA EÉCTRICA Y MECÁNICA SEE MEEÍN AGOSTO 004 CONTENIO ág. INTROUCCION... IMEANCIA SERIE E UNA RE... 5. RESISTENCIA E A INEA...

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles