3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante."

Transcripción

1 37 Determinantes 11 Definición de determinante Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de cada columna como se ilustra en la siguiente figura: (1) Además, hacer una elección de elementos de esta forma no es suficiente Hay, en general, muchas formas de elegir n elementos de forma que se cumpla dicha condición y es necesario realizar todas las elecciones posibles Ejercicio (a) Cuál es el número total de dichos productos en una matriz de tamaño 3 3? (b) Cuál es la fórmula general que nos da el número de dichos productos para una matriz de orden n? Solución: (a) 6 (b) n! Para cada elección de n elementos elegidos como se ha dicho, tenemos que hallar el producto todos ellos y volver a elegir otros n elementos tomando sólo uno de cada fila y uno de cada columna y hallar su producto y así sucesivamente Definición El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante productos que se pueden formar eligiendo un elemento de cada fila de forma que estén todos en distintas columnas Qué es una suma equilibrada? La expresión suma equilibrada en la definición de deter- Significado de minante significa que cada uno de esos productos va multiplicado por +1 o por 1 según cómo se hayan elegido los factores Concretamente, cada uno de esos productos va multiplicado por suma equilibrada ( 1) p siendo p el número de intercambios de filas y columnas que sean necesarios para colocar todos los factores de ese producto en la diagonal Por ejemplo, para el producto de los elementos elegidos en (1), el número de intercambios 1 Versión de 16 de junio de 2017, 17:42 h

2 12 Consecuencias inmediatas de la definición de filas o columnas es p = 3 ya que se necesitan tres intercambios: F 1 F F 3 F F 4 F 5 por lo tanto el sumando correspondiente a esta elección de elementos es: ( 1) Si todos los factores se han elegido sobre la diagonal, p = 0 y el producto va multiplicado por ( 1) 0 = 1 El ejemplo típico de esto es el de cualquier matriz identidad En ella hay un único producto de elementos elegidos de distintas filas y columnas que no da cero: es el producto de los elementos de la diagonal Por tanto tenemos: Matriz identidad orden n, El determinante de una matriz identidad es 1 Si I n es la matriz identidad de det I n = 1, det( I n ) = ( 1) n Matriz diagonal Igual que en una matriz identidad, en una matriz diagonal el producto de los elementos de la diagonal es el único producto de elementos elegidos de distintas filas y columnas que no da cero Por lo tanto: d det 0 = 0 d 1 d n 0 0 d n Determinante de una matriz 2 2 El ejemplo general no trivial más sencillo de cálculo de determinantes es el del determinante de una matriz 2 2, A = a b c d En este caso sólo hay dos productas posibles: ad y bc El primero llevará signo positivo y el segundo negativo, por tanto: a b det = ad bc c d 12 Consecuencias inmediatas de la definición Determinante de la matriz traspuesta Dado que la definición de determinante es simétrica respecto a las filas y columnas, el valor del determinante de una matriz es igual al de su traspuesta det(a T ) = det A Consecuencia: Toda propiedad de los determinantes enunciada en términos de filas y columnas se cumple también al sustituir cada ocurrencia de la palabra fila por columna y cada ocurrencia de la palabra columna por fila 2

3 12 Consecuencias inmediatas de la definición Matriz con una fila o columna de ceros Si todos los elementos de una fila o de una columna son cero el determinante es cero (Puesto que en cada uno de los productos hay un factor igual a cero) det a b 0 d e 0 = 0 g h 0 Efecto de un intercambio de filas o columnas Si se intecambian las posiciones de dos filas o de dos columnas de una matriz, se cambia el signo de su determinante (ya que se cambia el signo de cada sumando en la suma equilibrada ) Consecuencia 1: Si P jk es la matriz elemental que intercambia las filas j y k, (a) det(p jk A) = det A (b) det P jk = 1 (c) det(p jk A) = det P jk det A Consecuencia 2: Si una matriz cuadrada tiene dos filas o dos columnas iguales, su determinante es cero (ya que intercambiando esas dos filas o columnas el determinante no cambia y a la vez cambia de signo) det a b a d e d = 0 g h g Trasladar una fila arriba o abajo o una columna a derecha o izquierda Trasladar una fila hacia arriba atravesando k filas es colocarla justo encima del bloque formado por las k filas inmediatamente anteriores sin alterar el orden de esas k filas Esto es equivalente a realizar k intercambios de filas y por tanto el determinante queda multiplicado por ( 1) k Lo mismo ocurre al trasladar una fila atravesando k filas hacia abajo o cuando esto se hace con columnas en lugar de filas Si se traslada una fila hacia arriba o abajo atravesando un bloque de k filas o se tralada una columna a derecha o izquierda atravesando un bloque de k columnas, el determinante queda multiplicado por ( 1) k 1 Ejercicio de tarea Usa la propiedad anterior para demostrar que si en una matriz se traslada todo un bloque de h filas hacia arriba o abajo atravesando un bloque de k filas, el determinante queda multiplicado por ( 1) hk Usa este resultado para calcular 0 In det I m 0 Efecto de un reescalado de una fila o columna Si se multiplican todos los elementos de una fila o de una columna de una matriz por un número, se multiplica su determinante por ese número Consecuencia 1: Si E λ es una matriz elemental de reescalado por el escalar λ, (a) det(e λ A) = λ det A (b) det E λ = λ (c) det(e λ A) = det E λ det A Consecuencia 2: Si una matriz cuadrada tiene dos filas o dos columnas que son una múltiplo de la otra, su determinante es cero (ya que es un múltplo del determinante de una matriz con dos filas o columnas iguales) 3

4 13 Cálculo del determinante por desarrollo de cofactores de una fila o columna det a b 3a d e 3d = 3 det a b a d e d = 0 g h 3g g h g Múltiplo escalar de una matriz Si una matriz cuadrada de orden n la multiplicamos por un número p, todas las columnas quedan multiplicadas por p, luego el determinante de la matriz queda multiplicado por p n veces, es decir, el determinante queda multiplicado por p n Esta propiedad nos permite contestar a la siguiente pregunta: Ejercicio: Sea A = Sabiendo que det A = 20 calcular det(3a) Solución: det(3a) = = 1620 Matriz triangular Si todos los elementos encima o debajo de la diagonal son cero, todos los productos en los que intervenga un elemento fuera de la diagonal son cero y el determinante es igual al producto de los elementos de la diagonal a a 11 a 21 a m1 det a 21 a 22 = 0 a 11 a mm = det 0 a 22 a m2 a m1 a m2 a mm 0 0 a mm 13 Cálculo del determinante por desarrollo de cofactores de una fila o columna Desarrollo por la primera columna Si queremos calcular un determinante, necesitamos formar todos los posibles productos que se pueden formar eligiendo un elemento de cada fila y de cada columna Esto se puede hacer ordenadamente de la siguiente forma: Primero formamos todos los productos en los que aparece el primer elemento de la primera columna, a 11 La suma de todos estos productos (cada uno con su signo) es igual a a 11 multiplicado por el determinante de la matriz A 11 que se obtiene al eliminar en la original la primera fila y la primera columna, es decir (ver más abajo), el determinante del menor del elemento (1, 1) Después formamos todos los productos en los que interviene el segundo elemento de la primera columna, a 21 La suma equilibrada de estos productos es igual a a 21 multiplicado por el determinante de la matriz A 21 que se obtiene al eliminar en la original la segunda fila y la primera columna (el menor del elemento (2, 1)) Continuando de esta manera, vemos que el determinante de la matriz se puede expresar como una suma de productos de los elementos a i1 de la primera columna, cada uno de ellos multiplicado por el determinante de una matriz de un orden menor que la dada: det A = a 11 det A 11 a 21 det A 21 + ± a n1 det A n1 (2) Para entender perfectamente esta forma de calcular un determinante necesitamos introducir algunos conceptos: Menor de un elemento Dada una matriz A, se llama menor del elemento que ocupa la posición (i, j) (es decir, fila i, columna j) y se denota A ij a la matriz obtenida al eliminar toda la fila i y toda la columna j de la matriz dada 4

5 14 Consecuencias no tan inmediatas de la definición Cofactor de un elemento Dada una matriz cuadrada A, se llama cofactor del elemento que ocupa la posición (i, j) al determinante det A ij del menor de ese elemento multiplicado por +1 o 1 dependiendo de si i + j es par o impar Así, el cofactor del elemento (i, j) de la matriz A se calcula por la fórmula: C ij = ( 1) i+j det A ij Usando cofactores, la fórmula (2) se puede escribir: det A = a 11 C a n1 C n1 Los cofactores de los elementos de una fila o columna nos permiten calcular el determinante de una matriz cuadrada mediante la fórmula de expansión del determinante por los cofactores de una fila o columna La expansión del determinante de una matriz n n, A = (a ij ) por la columna j es: det A = a 1j C 1j + + a nj C nj La expansión del determinante de la misma matriz por la fila i es: det A = a i1 C i1 + + a in C in 14 Consecuencias no tan inmediatas de la definición Efecto de descomponer una fila o columna como suma de dos Si en una matriz cuadrada se descompone una fila o columna como suma de dos, su determinante se descompone en suma de dos (esto se demuestra desarrollando el determinante por los elementos de dicha fila o columna) det a b c + p d e f + q = (c + p)c 13 + ( f + q)c 23 + (k + r)c 33 g h k + r = (cc 13 + f C 23 + kc 33 ) + (pc 13 + qc 23 + rc 33 ) = det a b c d e f + det a b p d e q g h k g h r Efecto de sumar o restar a una fila otra fila o a una columna otra columna Si en una matriz cuadrada se le suma o resta a una fila otra fila o a una columna otra columna, su determinante no cambia det a b c + b d e f + e = det a b c d e f + det a b b d e e = det a b c d e f g h k + h g h k g h h g h k Efecto de una operación de reemplazo de una fila o columna Si a una fila o columna se le suma otra multiplicada por un escalar el determinante de la matriz no cambia det a b c + 3a d e f + 3d = det a b c d e f g h k + 3g g h k Consecuencia: Si A es una matriz cuadrada y E es una matriz elemental de reemplazo del mismo tamaño que A, 5

6 15 Cálculo de un determinante por reducción a forma escalonada (a) det(ea) = det A (b) det E = 1 (c) det(ea) = det E det A Con lo anterior se completan las consecuencias de los efectos que tiene sobre el determinante de una matriz el realizar operaciones elementales de filas En el siguiente ejercicio se obtiene una importante propiedad de la que se obtendrán consecuencias en el ejercicio 4 2 Ejercicio de tarea (a) Usando el hecho de que toda matriz unitriangular inferior (triangular matriz unitriangular inferior con unos en la diagonal) multiplicada por la izquierda por cualquier matriz efectúa sobre ésta una sucesión de operaciones de reemplazo de filas que no cambian el determinante, justifica que si M es una matriz unitriangular inferior entonces det(ma) = det A (3) (b) Usa las propiedades de la traspuesta para deducir, a partir de (3), que si N es una matriz unitriangular superior det(an) = det A (4) Pista: (a) M es el producto de matrices elementales de reemplazo de filas 15 Cálculo de un determinante por reducción a forma escalonada De las propiedades enunciadas en la sección anterior se deduce que si una matriz A se transforma, mediante operaciones elementales de filas, en una matriz escalonada U y solamente se han usado operaciones de reemplazo y de intercambio (o sea, sin usar operaciones de reescalado, lo cual, por otra parte, siempre es posible), entonces el determinante de la matriz escalonada U es igual al determinante de A multiplicado por ±1 dependiendo de si el número de operaciones de intercambio ha sido par o impar En otras palabras, si U es una forma escalonada de A obtenida sin operaciones de reescalado y con r operaciones de intercambio, entonces det A = ( 1) r det U Al aplicar esta técnica de cálculo de un determinante no es necesario limitarse a operaciones elementales de filas Se pueden realizar operaciones elementales de filas y de columnas mezcladas según convenga, teniendo cuidado de contabilizar en r el número total de intercambios de filas y columnas Puesto que toda matriz cuadrada escalonada es triangular, el determinante de U es igual al producto de todos los elementos de su diagonal y en consecuencia, el determinante de A es igual a ( 1) r multiplicado por todos los elementos de la diagonal de U Si A no es inversible (es decir, es singular) entonces la matriz escalonada U tiene algún elemento de la diagonal igual a cero y en consecuencia su determinante es cero Recíprocamente si U tiene determinante cero, algún elemento de su diagonal es cero y su número de pivotes es menor que el número de columnas Esto implica que A es necesariamente singular, Por tanto tenemos: Proposición cero: Una matriz es singular (no tiene inversa) si y sólo si su determinante es igual a det A = 0 si y sólo si A es singular 6

7 16 Teorema fundamental del cálculo de determinantes 16 Teorema fundamental del cálculo de determinantes Teorema (a) De los efectos que tiene sobre el determinante de una matriz el realizar operaciones elementales de filas (véase más arriba) se deduce que para toda matriz elemental E y toda matriz A del mismo tamaño se verifica det(ea) = det E det A (5) (b) Del apartado (a) se deduce que si A y B son dos matrices cuadradas del mismo tamaño, det(ab) = det A det B (6) Demostración: Basta demostrar (b) ya que el apartado (a) se ha justificado ampliamente más arriba En el caso de que A no es inversible entonces AB tampoco lo es y, por la proposición de la sección anterior, ambos miembros de la ecuación son iguales a cero Si A es inversible entonces es igual a un producto de matrices elementales: A = E 1 E k y en consecuencia: det(ab) = det(e 1 ) det(e 2 E k B) = = det E 1 det E k det B = det(e 1 E k ) det B = det A det B Corolario 1 Si A es una matriz inversible, entonces det(a 1 ) = 1 det A (7) Corolario 2 Si A y B son dos matrices semejantes (esto es, existe una matriz inversible, M, tal que A = MBM 1 ) entonces, det A = det B 17 Ejemplos de determinantes especiales (a) Si en una matriz cuadrada de orden n todos los elementos de una columna son iguales a p, su determinante es igual a p multiplicado por un determinante de orden n 1 Lo mismo ocurre si todos los elementos de una fila son iguales Se resta la primera fila de cada una de las demás, con lo que la columna en cuestión se convierte en (p, 0,, 0) y ahora se desarrolla el determinante por esa columna det a b p d e p = det g h p a b p d a e b 0 g a h b 0 ( = ( 1) 1+3 d a e b p det g a h b (b) Si en una matriz cuadrada de orden n la suma de los elementos de una fila es igual a la de los de otra fila cualquiera (todas las filas tienen la misma suma) entonces el determinante es igual a esa suma multiplicada por un determinante de orden n 1 Para verlo, realizamos sobre la matriz original las siguientes operaciones de reemplazo: Sumamos a la primera columna todas las demás columnas, con lo cual la primera columna tiene todos los elementos iguales y estamos en la situación del ejemplo anterior det a b c b c a = det a + b + c b c a + b + c c a c b a a + b + c b a ( c b a c = (a + b + c) det b b a c ) ) 7

8 18 Determinantes de matrices por bloques 18 Determinantes de matrices por bloques Sean A y C matrices cuadradas (no necesariamente del mismo tamaño) y sea B una matriz con el mismo número de filas que A y el mismo número de columnas que C, de forma que se puede formar la matriz por bloques 0 C Entonces det = det A det C (8) 0 C Esto es una sencilla consecuencia del teorema fundamental (ver ecuación (6)) combinado con la siguiente identidad: ( A 0 I A = 1 ) B, 0 C 0 I 0 C pero también puede demostrarse de forma independiente del teorema fundamental usando solamente la definición de determinante Esa demostración independiente se basa en la observación de que al formar los productos de elementos que forman el determinante de 0 C, si en un producto determinado apareciese un elemento en posición (i, j) que cae dentro de B, también habría uno del bloque nulo bajo A a la izquierda de C y por tanto ese producto sería cero Cada uno de los productos no nulos es, pues, un producto de dos factores: un factor que es uno de los productos que forman det A y otro factor que es uno de los productos que forman det C Usando las propiedades de la traspuesta es muy sencillo deducir de (8) su versión traspuesta : A 0 det = det A det C (9) B C La fórmula (8) (y análogamente la (9)) sigue siendo cierta en un caso más general Supongamos que A es una matriz n n partida en k k bloques (no necesariamente del mismo tamaño) y tal que los bloques de la diagonal, A ii para i = 1, k, son cuadrados (siendo el tamaño de A ii, p i p i ) y los bloques debajo de la diagonal son todos matrices nulas, A 11 A 12 A 1k 0 A 22 A 2k A = 0 0 A kk Entonces el determinante de A es el producto de los determinantes de las matrices de la diagonal: det(a) = det(a 11 ) det(a kk ) (10) Esta fórmula puede deducirse de (8) por el método de inducción 3 Ejercicio de tarea Si A es una matriz inversible y M = C D es una matriz cuadrada, demuestra I 0 CA 1 = I C D 0 D CA 1 B y usa el ejercicio 2-ecuación (3) para deducir de ello det = det A det(d CA 1 B) C D Las operaciones de matrices por bloques son una poderosa herramienta para demostrar algunas fórmulas que aparentemente no tienen nada que ver con las matrices por bloques Como ejemplo, el siguiente ejercicio demuestra la fórmula (6) 8

9 18 Determinantes de matrices por bloques 4 Ejercicio de tarea El objetivo de este ejercicio es demostrar el teorema fundamental del cálculo de determinantes, det(ab) = det A det B, usando solamente las propiedades de las operaciones de matrices por bloques Para ello hacemos los siguientes pasos donde A, B, C y D son matrices cuadradas del mismo tamaño e I es la matriz identidad del mismo tamaño que A, B, etc: (a) Demuestra que C D det = det C D ) ) ( C D ) ( I I 0 I ) ( I 0 I I ( I I 0 I Pista: Calcula el producto (b) Usa el resultado anterior combinado con (9) (supuesto demostrado independientemente del teorema fundamental) para deducir det = det( C) det B C 0 (c) Usa la multiplicación de matrices por bloques para comprobar la identidad A 0 I B A AB = I B 0 I I 0 y deduce de ella, del apartado anterior y del ejercicio 2-ecuación (4), que A 0 det(ab) = det I B (d) Combina (9) con el resultado anterior para deducir la fórmula buscada Enlaces a todos los ejercicios de tarea de esta sección Usa los siguientes enlaces para visualizar cada uno de los ejercicios de tarea que aparecen en esta sección: Enlaces: Ejercicio 1, Ejercicio 2, Ejercicio 3, Ejercicio 4 9

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Matrices y Determinantes

Matrices y Determinantes Apuntes de Álgebra Lineal Capítulo 3 Matrices y Determinantes 31 Operaciones con matrices 311 Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21 Capítulo 4 Determinante Los determinantes se calculan para matrices cuadradas. Se usan para saber cuando una matriz tiene inversa, en el cálculo de autovalores y también para resolver sistemas de ecuaciones

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : III 1 / 8 Ejercicios sugeridos para : los temas de las clases del 5 y 7 de mayo de 2009. Temas : Matriz transpuesta. Matriz simétrica. Determinantes; propiedades de los determinantes. Matriz adjunta de

Más detalles

Tema I. Matrices y determinantes

Tema I. Matrices y determinantes Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

TEST DE MATRICES. Dadas A = (-3 4 1/2) y B = (1/3 0-2), cuál es el resultado de multiplicar la matriz A por la traspuesta de B?

TEST DE MATRICES. Dadas A = (-3 4 1/2) y B = (1/3 0-2), cuál es el resultado de multiplicar la matriz A por la traspuesta de B? file://:\mis documentos\u6mattest\u6mattesttodo.htm Página 1 de 7 TEST E MTRIES 1 eterminar la matriz opuesta de la siguiente matriz: 2 Si y son dos matrices de orden 3x2, de qué orden es la matriz resultante

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

Matemáticas. D e t e r m i n a n t e s

Matemáticas. D e t e r m i n a n t e s Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. 1 MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos horizontales

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Capítulo 1 DETERMINANTES

Capítulo 1 DETERMINANTES Capítulo 1 DETERMINANTES 1 Matemáticas II 2 1.1. DETERMINANTES DE 2 o ORDEN a11 a Sea A una matriz cuadrada de segundo orden A = 12. Se define el determi- a 21 a 22 nante det(a) = A = a 11 a 12 a 21 a

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

MATRICES DETERMINANTES

MATRICES DETERMINANTES MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Producto de matrices triangulares superiores

Producto de matrices triangulares superiores Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Curso: Álgebra. 1.- Determine el valor de la determinante

Curso: Álgebra. 1.- Determine el valor de la determinante 1.- Determine el valor de la determinante 5.- Determine el valor de verdad de las siguientes afirmaciones: I) Sea P una matriz no singular entonces A) B) C) D) 2.-Determine el valor de verdad de las siguientes

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una

Más detalles

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como:

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como: Materia: Matemática de 5to Tema: Definición de Determinantes Marco Teórico Un factor determinante es un número calculado a partir de las entradas de una matriz cuadrada. Tiene muchas propiedades e interpretaciones

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles