( x) ( ) ( ) ( ) ( x) RESOLUCIÓN Aplicando dos veces ruffini bajo el principio de divisibilidad. RESOLUCIÓN Sea este Polinomio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( x) ( ) ( ) ( ) ( x) RESOLUCIÓN Aplicando dos veces ruffini bajo el principio de divisibilidad. RESOLUCIÓN Sea este Polinomio"

Transcripción

1 SEMANA 4 DIVISIBILIDAD COCIENES NOABLES FACORIZACIÓN I. Cuál será quel poliomio cudrático de coeficiete pricipl 4, cpz de ser divisible por + y que l ser evludo e () tom el vlor de? E) B) 4 4 D) Se este oliomio b : or codició: b +.q' b -+b-...() Además: b ( )q'' + Etoces: 4()² + +b +b...() De: ()+() : b- b- E ():-8-4 Coclusió: 4 4 RA.: C. r qué vlor de m el poliomio: y + z + y + z + m yz es divisible por (+y+z)? 4 B) D) -8 E) -4 E l bse l idetidd: ( y + z )( + y z ) + m yz ( + y + z) q' (,y,z) Co: ; y; z- evludo: (-+4)(+-4)+m.(-) -8m m-4 RA.: E. Busque l relció que debe eistir etre p y q fi de que el poliomio: p + q Resulte ser divisible por ( + ) q B) D).q E) q q q Aplicdo dos veces ruffii bjo el pricipio de divisibilidd. R Si: ( ) Reemplzdo e: R + q q Coclusió: q. ( ) ( q) RA.: A 4. Determie bc sbiedo que el poliomio : 4 + c + (b + c) + ( + b) 6 es divisible por ( )( ) - B) -4 4 D) -6 E) 7 or eorem de divisibilidd q' R + p ( p) p + q R ( ) ( + ) q'' R ( ) q''' R Empledo Ruffii ( tres veces)

2 R c + + b + + b bc c bc Evludo e : R ( ) RA.: A Si: +b+c-4 +b+c4 b+c-6 b+c6 +b-8 +b8 e () c-4 e () b4 Luego: bc7. RA.: E. Si el oliomio: ; es divisible por: (-), (-b) y (-c) idistitmete. Cuál será el residuo de: ( )? b b c c B) b + bc + c D) D) b + cb + c Al ser divisible idistitmete lo será tmbié por el producto es decir: ( )( b)( c) q er grdo Uo (moico) b + c + b + bc + c bc De dode: + b + c 6 b +bc + cd bc 6 Se pide: R R 6. Cuál será quell divisió otble que geere l cociete ( ) B) 4 + or pricipio teórico de sigo y vrició de epoete de e, es l B. 7. Ecuetre el vlor de: ( 9 ) ( 999 ) B) D) E) Acodiciodo el divisor: ( ) ( ) + ( ) + 9 RA.: C 8. Sbiedo que el cociete de l divisió térmios. y + y Determie el vlor de: m m ; cost de 6 B) 8 D) 6 E) 8 or codició:

3 m m Luego: ³ 8 9. Se dese coocer de cuátos térmios está costituido el cociete de : 6 ( )( )( ) α sbiedo que 96 B) D) 6 E) α α α α... αk α α α k.. α α α 6 α6 6 De dode: α 6 6 α 96 α Luego: # térmios+ Luego: 6 ( ) ( y ) y 6 y y tep tepeúltimo y y. Después de dividir el cociete de 6 + ; N. Etre ( + ); se obtiee u uevo cociete que l ser dividido por ( + + ) obtedremos como residuo. B) - + D) - E) Efectudo l divisió otble Luego e: Aplicdo Ruffii Eiste 6 térmios. Si l divisió idicd: y y 4 geer u cociete otble. Averigüe l térmio tepeúltimo y 9 B) 6 6 y D) E) 6 y y Si l divisió idicd es otble, debe cumplir que: Eiste 6- térmios q Filmete e: q + + Segú el teorem del residuo Si: + + < > ω Que l evlurlo e este vlor R q ω + ω + ( ω) Cero RA.: A

4 . Fctor rimo de: Q (,b ) +b+c+(+b+c+bc)+bc será: +c B) +b +b D) +bc E) +bc Asocido: + b + c + bc + + b + c (, ) ( + bc) Etryedo fctor comú + b + c + bc (, ) [ + ] (, ) {( + b) + c( + b) }( + ) Q c b ( + ) i,b ( + ) ( + ) Costte. Cuátos fctores primos biómicos dmite el poliomio; + X + + ; N. B) D) E) iguo Asocido de e : ( ). + + ( ) + ( ) + ( ) ( ) [ + + ] + ( + + ) 4. Uo de los divisores de: b c + d ( d bc) -b+c-d B) +b-c+d -b-c + d D) +b+c-d E) -b-c-d Asocido coveietemete b c + d d + bc ( d d ) ( b bc c ) Será: + + ( d) ( b c)... d + b c d b + c RA.: A. Cuál será el divisor triomio del poliomio e vribles: m,,p. m m m m + +? m-- B) m+- m-+ D) m++ E) m++ Medite l distribució e el segudo y tercer térmio: m ( ) + m + m Asocido: + p m( p ) ( )( ) + ( )( + p + ) (-) m + + m² m m (-) [ mm ( ) m ( ) ( m) ] (m+)(m-) ( ) [( m )( m + m )] ( )m ( ) [( m + )( m ) + (m ) ] ( )m ( )( m )[ m + + ] RA.: D 6. El oliomio: ( + y) + y( y) M,y Será divisible por: + y + y + + y + B) + y + y + y + + y + y + + y + Asocido coveietemete ( + y) y( + y ) M,y Difereci de cubos M (, y) ( + y ) ( + y) + ( + y) + -y(+y-) Etryedo el fctor comú M(, y) ( + y ) y + y + + y + RA.: C

5 7. U fctor primo rciol de: R + b + 9b 7; será: +b+ B) -b+ b-(+b) D) + b b + ( + b) + 9 E) + b + b ( + b) + 9 R + b + ( ) b( ) Correspode l idetidd Gussi, que proviee de: { b} [ + b+ ] + b + b ( + b+ c) + b + 9b+ ( + b) [ ] RA.: D 8. Cuátos divisores dmitirá el oliomio: y b b b y ( ; ) 8 B) 7 D) 4 E) Empledo el sp simple: y b b (, ) y.y b y 9. Hlle l sum de los elemetos de quellos oliomios irreductibles que se desprede de: Q Q 4 z ( y ) z ( y ),y, z + 4 B) 4y 4z D) (-y) E) (+y) Medite u sp simple Q z Q 4 ( + y ) z + ( ) y + y z z + y [ z ( + y) ] z ( y) { } (,y, z ) ( z + + y)( z y)( z + y)( z + y) Sumdo estos elemetos 4z. U divisor del oliomio: (,y) RA.: C + 7y y(y + ) + 48 será: -4y B) 4-y -y D) - E) -y+ b b y 4 4 y Buscdo l form de u sp doble: y 4 4 (, ) ( b y )[ b + y ] 4 (, ) ( + by )( by )[ b + y ] y Nº divisores: (+)(+)(+) RA.: A y (, ) 8 + 4y y y + 4 -y y y (, ) ( 4 y)[ + y + ]

7. Solución. Como: Se pide: mn = (2)(15) = 30 Rpta. 8. Solución IV.

7. Solución. Como: Se pide: mn = (2)(15) = 30 Rpta. 8. Solución IV. CERU ALGEBRA. Solució SOLUCIONARIO Como G. A. 0 + ( + ) + 0 + 0 6 Rpt.. Solució Como + b + c 7 ( b c) 7 ( bc + c) 8 b 8 b. bc + c. Solució G. A( ) 8 ( + ) + ( b ) 8 + b 7 G. A( Q ) 6 ( + ) + ( b) 6 b +

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

TEMA 8: LÍMITES Y CONTINUIDAD

TEMA 8: LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN 1.1. Límite fiito de u fució TEMA 8: LÍMITES Y CONTINUIDAD Decimos que: lim f ( x) L, si x / x ' x f ( x') L x Decimos que: lim f ( x) L, si x / x ' x f ( x') L x 1.2. Límite ifiito

Más detalles

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador.

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador. Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS)

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) ATENCIÓN Se eser que el estudite, o solo coozc ls defiicioes y teorems que rece e est list, sio que se cz de resoder stisfctorimete culquier

Más detalles

Matemáticas técnicas. Física Sexta edición Paul E. Tippens. Capítulo 2

Matemáticas técnicas. Física Sexta edición Paul E. Tippens. Capítulo 2 Cpítulo 2 Físic Sext edició Pul E. Tippes Mtemátics técics Números co sigo Repso de álgebr Expoetes y rdicles Notció cietífic Gráfics Geometrí Trigoometrí del triágulo rectágulo Números co sigo Regl de

Más detalles

3 LÍMITE Ejercicios Resueltos

3 LÍMITE Ejercicios Resueltos LÍMITE Ejercicios Resueltos Límites Determiados a) 6 6 6 c) π π se π b) ( ) cos cos e) 0 π + + d) 0 f) e 0 + 5 5 g) 4 64 Idetermiació (0/0) Fucioes Racioales Factorear y Simplificar ( + ) + 6. a). ( ).

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

Cálculo del ph de disoluciones de ácidos

Cálculo del ph de disoluciones de ácidos álculo del ph de disolucioes de ácidos Si se disuelve e gu u ácido H, de cocetrció y costte : H H H O H OH Pr clculr ls cocetrcioes de ls especies e el equilibrio, pltemos:.m. [.. [ [OH L expresió de l

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30 Fcultd de Cotdurí y Admiistrció. UNAM Fctorizció Autor: Dr. José Muel Becerr Esios MATEMÁTICAS BÁSICAS FACTORIZACIÓN CONCEPTO DE FACTORIZACIÓN U fctor es cd uo de los úmeros ue se multilic r formr u roducto.

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

TEMA 2: EXPRESIONES ALGEBRAICAS

TEMA 2: EXPRESIONES ALGEBRAICAS Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre

Más detalles

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 )

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 ) La factorizació e la resolució de problemas. Co la habilidad para resolver ecuacioes poliomiales por factorizació se puede resolver problemas que Se habría esquivado hasta ahora. Se debe rechazar solucioes

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c Elbrd pr: Jhy Chquehuc Lizrrg Mtemátics Pre-Uiversitri. Hllr el ceficiete del mmi M ( ) si su grd es. Slució: empled l siguiete prpiedd de prduct de bses c u mism epete detr de l llve c c c M ( ) Orded

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos

Más detalles

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales.

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales. SUCESIONES Y SERIES Sucesió Es u cojuto ordedo de térmios. Se represet medite u ució cuyo domiio es el cojuto de los úmeros turles. Se expres l ució que geer los térmios de l sucesió como ( ) =. Al térmio

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

Capítulo 3. Postulados de la mecánica cuántica

Capítulo 3. Postulados de la mecánica cuántica Cpítulo 3 Postuldos de l mecáic cuátic 3 Postuldos 3 Medició 33 Form de los operdores 34 Iterpretció de l fució de od 35 cució de Schrödiger 3 Postuldos de l mecáic cuátic L mecáic cuátic se puede costruir

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

Raíces Reales y Complejas

Raíces Reales y Complejas Ríces Reles y Complejs Rmó Espioz Armet AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Durte el siglo XVIII, Euler, d Alembert y Lgrge probro, idepedietemete, que todo poliomio de grdo 1 teí u ríz sobre el cmpo

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical RADICALES jp ºESO BC TEORIA DE RADICALES Defiició de ríz -esi de u úero rel Llos ríz -ési de u úero rel otro úero rel b que elevdo l poteci os d coo resultdo el rdicdo b b Ejeplos : pues 8 pues ( ) 8 E

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7,

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7, NÚMEROS REALES Los úeros reles, so u subcojuto de u cojuto ás grde lldo cojuto de úeros coplejos. El cojuto de úeros reles está fordo por todos los úeros que prece e l rect uéric y su vez está itegrdo

Más detalles

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas U.T.N. F.R.C.U. Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo

Más detalles

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O MATEMÁTICAS BÁSICAS X+J?..~±~b' -4.c ~±.Jb' -4.c 1. {a si a > O ( Recordar que -. 4a - =. ) a 4a a - a SI a < O Así que, si b - 4ac ~ O hay solamete dos raíces e R de la ecuació ax + bx + c = O, a saber,

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Prof. OSCAR GARCÍA Página 1

Prof. OSCAR GARCÍA Página 1 Istituto S 0 EL NIÑO JESÚS Espcio urriculr: MTEMÁTI II EGO Fech: FUNIONES OLINÓMIS Módulo Teórico - ráctico resetmos l fució poliómic segú l siguiete otció: F 0 lizremos como está formd: omo tod epresió

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

P O L I T E C N I C O Potencia de exponente entero Potencia de exponente natural. CAPÍTULO 4: POTENCIACIÓN EN R

P O L I T E C N I C O Potencia de exponente entero Potencia de exponente natural. CAPÍTULO 4: POTENCIACIÓN EN R Potecició e R Fctoreo Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic CAPÍTULO : POTENCIACIÓN EN R. Poteci

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización:

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización: GYMNÁZIUM UDĚJOVICKÁ. MTEMÁTICS. EXPRESIONES LGERÁICS..- Técics de fctorizció: No h u orde clro, slvo u primer pso: scr fctor comú después vri técics que depederá de cuál se l epresió que tegmos. Scr fctor

Más detalles

Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración

Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración Resume Teórico. Curso de Iicio de MATEMÁTICAS. Tem : Fucioes Elemetles Tem : Derivció Tem 3: Itegrció Pedro Grcí Ferrádez Mª Ágeles Cstro López Curso de Iicio EPS. Mtemátics. Frccioes. Iguldd de dos frccioes:

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por co dos opercioes

Más detalles

Seminario de problemas. Curso Soluciones hoja 6

Seminario de problemas. Curso Soluciones hoja 6 Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá

Más detalles

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD TEMA 4. LOGARITMOS. REPASO DE POTENCIAS - Poteci de epoete turl: = ( veces) - Poteci de epoete ulo: 0 = - Poteci de epoete egtivo: - = / - Poteci de epoete frcciorio: Propieddes: - m = +m - : m = -m -

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova.

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova. PLANTEL IGNACIO RAMÌREZ CALZADA Progrm Istituciol de Tutorí Acdémic Escuel Preprtori de l Uiversidd Autóom del Estdo de Méico ACTIVIDAD. GUÌA DE ÀLGEBRA PRIMERA FASE Elorció: M. A. E. Roerto Mercdo Dortes

Más detalles

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden.

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden. Clse : Sistems uméricos de úmeros reles Distiguir diferetes sistems uméricos de úmeros reles, sus opercioes, estructur lgebric y propieddes de orde. Clculr expresioes de úmeros reles usdo ls propieddes

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones:

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones: SOLUCIONES BLOQUE INÚMEROS Ejercicio º Reduce comú deomidor y orde de form creciete ls siguietes frccioes ), y, y 0 0 9 0 9 0 ), y,, b ), 0 y 0,, 0 0 0 0 0 0 0 0 Ejercicio º Iterpret ls siguietes epresioes

Más detalles

1 Antiderivadas. DEFINICIÓN: una función F, se denomina antiderivada de f en un intervalo I, si. Ejemplo 2

1 Antiderivadas. DEFINICIÓN: una función F, se denomina antiderivada de f en un intervalo I, si. Ejemplo 2 Atiderivds DEFINICIÓN: u fució F, se deomi tiderivd de f e u itervlo I, si I. F () = f() Ejemplo Se F() F'() () f Atiderivd G() 8 G'() () f H () H'() () f J () k J'() () f TEOREMA:Si F es u tiderivd de

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

POLINOMIOS DEF. Llamaremos polinomio en x con coeficientes en C a una expresión de la forma

POLINOMIOS DEF. Llamaremos polinomio en x con coeficientes en C a una expresión de la forma POLINOMIOS DEF. Llamaremos poliomio e x co coeficietes e C a ua expresió de la forma px ( ) ax axax... ax 0 1 2 0 1 2 dode a, a, a,..., a 0 1 2 GRADO DE UN POLINOMIO DEF. Sea el poliomio e x co coeficietes

Más detalles

= igual a > mayor que < menor que 3. Signos de agrupación:

= igual a > mayor que < menor que 3. Signos de agrupación: 1.8. ÁLGEBRA, PRODUCTOS NOTABLES, FACTORIZACIÓN Y ECUACIONES INTRODCUCIÓN Pr el que iici el estudio del Álger dee teer u pricipl propósito que cosiste e propirse de sus coteidos e usrlo coo u herriet pr

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia.

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia. Muel José Ferádez, mjfg@uiovi.es CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - TEMA. SUCESIONES Y SERIES.: Sucesioes umérics. Sucesioes de úmeros reles: mootoí, cotció y covergeci. Se llm sucesió de

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

Desigualdades II. Tarea #3 rumbo al nacional de septiembre de 2016 Por: Argel y Fernando. a 1 + a a n n. 1 n. n (f (x 1) + + f (x n ))

Desigualdades II. Tarea #3 rumbo al nacional de septiembre de 2016 Por: Argel y Fernando. a 1 + a a n n. 1 n. n (f (x 1) + + f (x n )) Desigulddes II Tre # rumbo l ciol 8-22 de septiembre de 206 Por: Argel y Ferdo Tchevyshev Se 2 y b b 2 b etoces Ahor les toc demostrrl b + 2 b + + b + 2 + + b + b 2 + + b 2 Jese Se cuerd de l ecució fuciol

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES I.E.P - YANAPAY AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo

Más detalles

Operaciones con números fraccionarios

Operaciones con números fraccionarios Opercioes co úmeros frcciorios ADICIÓN EN NÚMEROS FRACCIONARIOS. De igul deomidor Pr efectur l sum o dició de dos o más frccioes co igul deomidor, se sum los umerdores y se escrie el mismo deomidor. Vemos

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2 Solucioes de ls ctividdes Pági. Los resultdos so ) - ) -, -, π π π 0,. Los resultdos epresdos e otció cietífic so ) ) 0, 0, 0, 0, 0, 0 (0 0 - ),0 0 (,,) 0,0 (0,,) (0-0 ) 0,, 0 0 -, 0 -. Los resultdos so

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

GUIA DE EXTRARDINARIO MATEMÁTICAS 1

GUIA DE EXTRARDINARIO MATEMÁTICAS 1 Profesora Dolores García García GUIA DE EXTRARDINARIO MATEMÁTICAS Suraa la respuesta que cosideres correcta, recuerda que los ejercicios que requiere algú proceso matemático lo dees desarrollar para cotestar

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA DE PROGRESIONES Y TEOREMA DEL BINOMIO Profesor: David Elal OLivero Primer año Pla Comú de Igeiería Primer Semestre

Más detalles

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros.

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros. Epoetes Epresioes lgebrics E el curso de rzoieto teático se lizro coceptos básicos e lgebr se hiciero trduccioes del leguje verbl l leguje lgebrico vicevers. Recuerd lguos coceptos iporttes Es u cobició

Más detalles

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes

Más detalles

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles