ESPACIO VECTORIAL 12 de marzo de ligado, entonces al menos un vector de H es combinación lineal del resto de ellos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESPACIO VECTORIAL 12 de marzo de ligado, entonces al menos un vector de H es combinación lineal del resto de ellos."

Transcripción

1 ESPACIO VECTORIAL de marzo de 00 PRUEBA Nº - Demostrar que en un espacio vectorial V, si H u, u,, u r es un sistema ligado, entonces al menos un vector de H es combinación lineal del resto de ellos - Si u, v, w, z es libre, lo es alguno de los siguientes conjuntos? a) u v, v w, w u b) u v, v w, w z, z u a) No es libre: u v v w w u 0 0 u v w b) No es libre: u v v w w z z u 0 u v w z 0 - En R se considera el subespacio vectorial S engendrado por los vectores {(,0,), (,,0), (,-,)} el hiperplano H de ecuación {x + = 0} respecto de la base canónica de R Se pide: a) Obtener las ecuaciones implícitas de S H b) Dar una base de S+H a) Para S: r 0 una base {(,0,), (,,0)} U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía

2 ESPACIO VECTORIAL de marzo de 00 x x 0 ecuaciones paramétricas de S z 0 z ecuación implícita x=+z, o bien x--z=0 Para H: x+=0 tenemos una ecuación cartesiana o implícita de aquí se deduce que dim (H)= Intersección S H Para sacar las ecuaciones implícitas basta unir las de S H xz0 que, como se ve son independientes forman las ecuaciones de S H x0 luego dim (S H) = dim (R ) nº ecuaciones = - = b) Suma S+H Dim (S+H) = dim S+ dim H - dims H=+-= S+H=R La base canónica B c ={(,0,0),(0,,0),(0,0,)} es una base de S+H - Sean B u, v, w B' u ', v ', w ' dos bases de R, tales que u' u v w, v ' u v w' u w Hallar las ecuaciones del cambio de la base B a B de la base B a B El sistema u' u v w, v u v w' u w en forma matricial sería: u' v' w' u v w 0 0 Cualquier vector v R se puede escribir respecto a las dos base B B en la x' x forma matricial v u v w u v w ' ' ' ' z' z Ahora sustituendo la ecuación anterior, resulta x' x x' x vu' v' w' ' u v w u v w 0 ' u v w z' z 0 z' z Como la expresión de un vector respecto de una base es única queda x' x 0 ' que son las ecuaciones del cambio de base de B a B 0 z' z Para obtener las ecuaciones del cambio de base de B a B basta con despejar (x,,z ) con respecto a (x,,z) en el sistema anterior, U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía

3 ESPACIO VECTORIAL de marzo de 00 x' x x x' x x' 0 ' 0 ' ' 0 z' z 0 z z' z z' CADA EJERCICIO PUNTÚA SOBRE 0, puntos PRUEBA Nº - Demostrar que las coordenadas de un vector respecto de una base son únicas - Si u, v, w, z es libre, lo es alguno de los siguientes conjuntos? a) u v, v w, w u b) u v, v w, w z, z u a) Sí es libre: u v v w w u 0 0 u v w b) No es libre: u v v w w z z u 0 0 v w u - Sean los subespacios vectoriales: E,, /,, R F x,,z R /xz 0 Se pide: U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía

4 ESPACIO VECTORIAL de marzo de 00 a) Obtener las ecuaciones implícitas de E F b) Hallar una base de E+F a) Para E: r 0 una base {(,0,), (0,,)} x 0 x 0 ecuaciones paramétricas de E z z ecuación implícita z=x+, o bien x+-z=0 Para F: x-+z=0 tenemos una ecuación cartesiana o implícita dim (F)= Intersección E F Para sacar las ecuaciones implícitas basta unir las de E F xz0 que, como se ve son independientes forman las ecuaciones de E F xz0 luego dim (E F) = dim (R ) nº ecuaciones = - = b) Suma E+F Dim (E+F) = dim E+ dim F - dim E F=+-= E+F=R La base canónica B c ={(,0,0),(0,,0),(0,0,)} es una base de E+F - Sea la matriz A= 0 de cambio de base de B a B, siendo B={ u, u u } B ={ v v, v } Escribir el vector u en función de los vectores de B Hallar la matriz del cambio de base de B a B La matriz A que representa el cambio de base de B a B esta construida con las coordenadas de los vectores de la base B referidos a la base B, en nuestro caso será 0 siendo cada vector u u u u (,,) ' v v v ; B u (,0,) v 0v v ; B' u (,,) ' v v v B U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía

5 ESPACIO VECTORIAL de marzo de 00 La matriz del cambio de base de B a B será la inversa de la matriz A: A CADA EJERCICIO PUNTÚA SOBRE 0, puntos PRUEBA Nº - Definir: a) Sistema generador b) Sistema libre c) Base - Si u, v, w, z es libre, lo es alguno de los siguientes conjuntos? a) u,uv,uv w b) u,v,w, z a) Sí es libre: uuvuvw 0 0 uv w b) Sí es libre: uvwz uvww Sean los subespacios vectoriales: E,, /,, R F x,,z R /xz 0;xz 0 U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía 5

6 ESPACIO VECTORIAL de marzo de 00 Se pide: a) Obtener las ecuaciones implícitas de E F b) Hallar una base de E+F a) Para E: r 0 una base {(,0,), (0,,)} x 0 x 0 ecuaciones paramétricas de E z z ecuación implícita z=x+, o bien x+-z=0 Para F: xz0 tenemos dos ecuaciones cartesianas o implícitas de aquí se deduce que xz0 dim (F)=-= Intersección E F Para sacar las ecuaciones implícitas basta unir las de E F Exz0 x 0 xz00luego F x z 0 z 0 EF0 son las ecuaciones de E F luego dim (E F) = dim (R ) nº ecuaciones = - = 0 b) Suma E+F Dim (E+F) = dim E+ dim F - dim E F=+-0= E+F=R La base canónica B c ={(,0,0),(0,,0),(0,0,)} es una base de E+F 0 - Sea la matriz A= 0 de cambio de base de B a B, siendo B={ u, u u } B ={ v v, v } Escribir el vector u en función de los vectores de B Hallar la matriz del cambio de base de B a B La matriz A que representa el cambio de base de B a B esta construida con las coordenadas de los vectores de la base B referidos a la base B, en nuestro caso será 0 0 siendo cada vector u u u U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía 6

7 ESPACIO VECTORIAL de marzo de 00 u (, 0,) B' v v ; u (0,,) B' 0v v v ; u (,,) B' v v v La matriz del cambio de base de B a B será la inversa de la matriz A: 0 A 0 CADA EJERCICIO PUNTÚA SOBRE 0, puntos PRUEBA Nº - Demostrar que en un espacio vectorial V, si H u, u,, u r al menos un vector de H es combinación lineal del resto de ellos, entonces es un sistema ligado - Si u, v, w, z es libre, lo es alguno de los siguientes conjuntos? a) uvw,wu,uv w b) u v, v w, w z, z u a) Sí es libre: uvwwuuvw 0 0 u v w b) No es libre: u v v w w z z u 0 U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía 7

8 ESPACIO VECTORIAL de marzo de 00 u v w z 0 - En R se considera el subespacio vectorial S engendrado por los vectores {(,0,), (0,,), (,,)} el hiperplano H de ecuación {x + + z = 0} respecto de la base canónica de R Se pide: a) Obtener las ecuaciones implícitas de S H b) Dar una base de S+H a) Para S: r 0 una base {(,0,), (0,,)} x 0 x 0 ecuaciones paramétricas de S z z ecuación implícita z=x+, o bien x+-z=0 Para H: x++z=0 tenemos una ecuación cartesiana o implícita de aquí se deduce que dim (H)= Intersección S H Para sacar las ecuaciones implícitas basta unir las de S H xz0 x que, como se ve son independientes forman las ecuaciones xz0 z0 de S H luego dim (S H) = dim (R ) nº ecuaciones = - = b) Suma S+H Uniendo las dos bases {(,0,), (,,0), (0,0,), (,-,0)} se obtiene un sistema generador de S+H, pero que no puede ser base de S+H, a que S+H= R, sin embargo, {(,0,), (,,0), (0,0,)} es una base de S+H dos bases de R, tales que u' u w, v' vw w' uvw Hallar las ecuaciones del cambio de la base B a B - Sean B u, v, w B' u', v', w' de la base B a B U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía 8

9 ESPACIO VECTORIAL de marzo de 00 El sistema u' u w, v' vw, w' uvw en forma matricial sería: 0 u' v' w' u v w 0 Cualquier vector v R se puede escribir respecto a las dos base B B en la x' x forma matricial v u v w u v w ' ' ' ' z' z Ahora sustituendo la ecuación anterior, resulta x' x 0 x' x vu' v' w' ' u v w u v w 0 ' u v w z' z z' z Como la expresión de un vector respecto de una base es única queda 0 x' x 0 ' que son las ecuaciones del cambio de base de B a B z' z Para obtener las ecuaciones del cambio de base de B a B basta con despejar (x,,z ) con respecto a (x,,z) en el sistema anterior, 0 x' x 0 x x' x x' 0 ' 0 ' ' z' z z z' z z' CADA EJERCICIO PUNTÚA SOBRE 0, puntos U D de Matemáticas de la ETSI en Topografía, Geodesia Cartografía 9

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha:

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha: Tipo 1 Apellidos: Nombre: Grupo: Fecha: 1.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

{ } { 1, 0, 0, 0, 0,1,1,1,(1,1,1,1)} ( ) ( ) ( )

{ } { 1, 0, 0, 0, 0,1,1,1,(1,1,1,1)} ( ) ( ) ( ) .- Se considera R con la suma habitual con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,+, ) es espacio vectorial señalando alguna propiedad del

Más detalles

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1 ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;

Más detalles

referencia ortonormal del espacio que tenga a este vector como primer vector de la base. Los (1, 0,1) 1 1 (1, 0,1) 2 2

referencia ortonormal del espacio que tenga a este vector como primer vector de la base. Los (1, 0,1) 1 1 (1, 0,1) 2 2 EJERCICIO ENTREGABLE EN CLASE (Tipo A) Obtener las ecuaciones de la transformación geométrica siguiente: GIRO: eje r (1,0,0)+(-1,-1,1)t y ángulo: 120º. Y obtener los transformados de los siguientes elementos:

Más detalles

CAPÍTULO 4 ESPACIOS VECTORIALES

CAPÍTULO 4 ESPACIOS VECTORIALES CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1 En IR 2 se definen las siguientes operaciones + : x, y + x, y = x + x, y + y, IR

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Soluciones de la hoja de diagonalización MATEMÁTICAS I

Soluciones de la hoja de diagonalización MATEMÁTICAS I Soluciones de la hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y, en caso afirmativo, hallar una matriz A tal que f(x) Ax, así como los subespacios

Más detalles

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados: 10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 9 de junio de 2008

MATEMÁTICAS I 2º EXAMEN PARCIAL 9 de junio de 2008 MATEMÁTICAS I º EXAMEN PARCIAL 9 de junio de 008 Sólo una respuesta a cada cuestión es correcta Respuesta correcta: 0 puntos Respuesta incorrecta: -0 puntos Respuesta en blanco: 0 puntos - Sean F y G dos

Más detalles

MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín.

MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín. ETS Arquitectura. UPM Curso 009-010. 1 MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín. 1. En el espacio afín (R 3 ; R 3 ; ) con : R 3 R 3! R 3 de nida por ((x 1 ; x ; x 3 ); (y 1 ; y ; y 3 )) = (y

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía 3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

4.3. Subespacios vectoriales

4.3. Subespacios vectoriales 4.3 Subespacios vectoriales Concepto de subespacio vectorial Un subconjunto H de un espacio vectorial V es un subespacio vectorial de V si, con las operaciones de V de suma de vectores y multiplicación

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

2.9 Ejercicios resueltos

2.9 Ejercicios resueltos 86 Sistemas de ecuaciones lineales. Espacios vectoriales. 2.9 Ejercicios resueltos Ejercicio 2. Sea A = ( ) 2. Se pide: 3 m a) Encontrar m para que existan matrices cuadradas B ynonulastalesque A B =0.

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Tema 7. El espacio vectorial R n Conceptos generales

Tema 7. El espacio vectorial R n Conceptos generales Tema 7 El espacio vectorial R n. 7.1. Conceptos generales Un vector es un segmento orientado que queda determinado por su longitud, dirección y sentido. Sin embargo, desde el punto de vista del Álgebra,

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES Capítulo 1 CONCEPTOS TEÓRICOS ESPACIO VECTORIAL Un conjunto E = {a, b, c, } de elementos (llamados vectores) se dice que constituyen un espacio vectorial sobre un cuerpo conmutativo K (que generalmente

Más detalles

ETSI en Topografía, Geodesia y Cartografía

ETSI en Topografía, Geodesia y Cartografía 4ª Prueba de Evaluación Continua 24-5-17 TRANSFORMACIONES GEOMÉTRICAS DEL ESPACIO EUCLÍDEO (Grupo A) APELLIDOS: NOMBRE: Grupo: 1.- a) Definición de transformación involutiva. b) Demostrar que la matriz

Más detalles

ESPACIO VECTORIAL. ley de composición binaria interna definida sobre el conjunto, E, al que le da estructura de grupo abeliano

ESPACIO VECTORIAL. ley de composición binaria interna definida sobre el conjunto, E, al que le da estructura de grupo abeliano ESPACIO VECTORIAL CPR. JORGE JUAN Xuvia-Narón Sea E, K conjuntos +:ExE E +:KxK K.:KxK K f:kxe E (,a) f(,a)= ley de composición binaria interna definida sobre el conjunto, E, al que le da estructura de

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Espacio Euclídeo. a b = a b. a b = b a c)

Espacio Euclídeo. a b = a b. a b = b a c) .- Un hiperplano de R es: a) Una recta. b) Un plano. c) {0}..- Sean a y b dos vectores de R, si a es ortogonal a b, entonces: a) a b = 0 b) a b = b a c) a b = a b.- Sea F una recta vectorial de R y F un

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

Matemáticas Empresariales II. Aplicaciones Lineales

Matemáticas Empresariales II. Aplicaciones Lineales Matemáticas Empresariales II Lección 5 Aplicaciones Lineales Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 34 Definición - Aplicación Lineal Sean

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos Bloque 3. Geometría y Trigonometría Tema Vectores Ejercicios resueltos 3.- Obtener el vector PQ, donde los puntos P y Q son los dados 4 5 b) P00,, Q90, a) P,, Q, 83 83 d) P4,, Q3, 7 c) P,, Q, 4 5 PQ 5,

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 140 Fundamentos de Matemáticas : Álgebra Lineal 9.1 Espacios vectoriales Capítulo 9 Espacios vectoriales reales Los conjuntos de vectores del plano, R 2, y del espacio, R 3, son conocidos y estamos acostumbrados

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del

Más detalles

GEOMETRÍA EN EL ESPACIO

GEOMETRÍA EN EL ESPACIO GEOMETRÍA EN EL ESPACIO 1. PUNTOS Y VECTORES OPERACIÓN TEORÍA Y FORMULACIÓN EJEMPLO Coordenadas de un punto Punto medio de un segmento Dividir un segmento en n partes iguales Coordenadas de un vector (

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general.

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general. Solciones de la hoja Espacio Vectorial Crso 9- - En cada caso, determinar si F es n sbespacio ectorial de R En caso afirmatio, bscar na base nas ecaciones implícitas paramétricas de F F,, R /, R a) b)

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

1. Hallar el rango de cada una de las siguientes matrices

1. Hallar el rango de cada una de las siguientes matrices Tarea 5 Hallar el rango de cada una de las siguientes matrices 5 5 a) = 7 6 5 5 b) = 5 8 Solución: a) rang ( ) = b) rang ( ) = Determinar si cada uno de los siguientes conjuntos de vectores es linealmente

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Espacios Vectoriales 1. Sea V un espacio vectorial sobre K k K

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Matemáticas Empresariales II. Conceptos Fundamentales E. V.

Matemáticas Empresariales II. Conceptos Fundamentales E. V. Matemáticas Empresariales II Lección 2 Conceptos Fundamentales E. V. Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 13 Propiedades de los Espacios

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 2017Asturias: Red de 1 Universidades Virtuales Iberoamericanas Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

A-PDF Page Cut DEMO: Purchase from to remove the watermark. Ejercicios resueltos 125

A-PDF Page Cut DEMO: Purchase from   to remove the watermark. Ejercicios resueltos 125 A-PDF Page Cut DEMO: Purchase from www.a-pdf.com to remove the watermark Ejercicios resueltos 125 Las matrices asociadas a g f y f g son, respectivamente 0 3 8 ) 14 13 g f BA = 3 3 1 f g AB = 16 22 7 2

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Apellidos: Nombre: NIF:

Apellidos: Nombre: NIF: Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algebra Lineal 7/06/008 Segunda parte Apellidos: Nombre: NIF: Ejercicio 1 Sea f : R 3 R [x] una aplicación lineal definida en las bases

Más detalles

ESPACIOS VECTORIALES CON MATHEMATICA

ESPACIOS VECTORIALES CON MATHEMATICA ESPACIOS VECTORIALES CON MATHEMATICA Dados los vectores u 1 =(1,-1,0,2,0), u 2 =(0,0,-1,0,1), u 3 =(1,-1,1,1,0) y u 4 =(0,0,m,1,1), discutir su dependencia o independencia lineal en función del parámetro

Más detalles

en t erminos de coordenadas; si las coordenadas de P, P 0 y u son, respectivamente, (x, y, z), (x 0, y 0, z 0 ) y (u 1, u 2, u 3 ) obtenemos:

en t erminos de coordenadas; si las coordenadas de P, P 0 y u son, respectivamente, (x, y, z), (x 0, y 0, z 0 ) y (u 1, u 2, u 3 ) obtenemos: Ecuaciones Cartesianas y Paramétricas de la Recta en R 3 Distintas formas de la ecuación de la recta En R 3 1. Denimos una recta de R 3 eligiendo un vector no nulo (o dirección) u R 3 jo, y un punto de

Más detalles

x x x x Nº Matrícula Apellidos Nombre. Ejercicio 1: (6 ptos) a) Resolver el siguiente sistema aplicando factorización LU: = U y L =

x x x x Nº Matrícula Apellidos Nombre. Ejercicio 1: (6 ptos) a) Resolver el siguiente sistema aplicando factorización LU: = U y L = Dpto. Matemática Aplicada. Facultad de Informática. UPM 8 de Octubre de GRUPO SM-M+I ÁLGEBRA LINEAL er PARCIAL MATRICES, SISTEMAS y ESPACIOS VECTORIALES Nº Matrícula Apellidos Nombre. Ejercicio : (6 ptos)

Más detalles

Espacio Vectorial Abstracto

Espacio Vectorial Abstracto . Introducción Espacio Vectorial Abstracto Dado un conjunto E se denomina Ley de composición interna a la aplicación f : E E E de modo que a, be ; f ( a, b) c E que se suele expresar a b c, también se

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye. (a,b) (a',b') (a a',b b')

Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye. (a,b) (a',b') (a a',b b') ESPACIOS VECTORIALES Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye un espacio vectorial sobre un cuerpo conmutativo K (que generalmente es el cuerpo de los reales) si se

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Aplicaciones lineales (Curso )

Aplicaciones lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. Tema 4. ÁLGEBRA APLICACIONES LINEALES. Curso 2017-2018 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) =

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) = BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA BOLETINES E PROBLEMAS E MATEMÁTICAS I 1. Estudiar la continuidad de las siguientes funciones:

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 4/4 Vectores en física II: Coordenadas y componentes

Tema 1: Introducción y fundamentos matemáticos. Parte 4/4 Vectores en física II: Coordenadas y componentes Tema 1: Introducción y fundamentos matemáticos ntonio González Fernández Departamento de Física plicada III Universidad de Sevilla Parte 4/4 Vectores en física II: Coordenadas y componentes plicaciones

Más detalles

COMPLEMENTOS FISICA. Práctica 2. Espacios Vectoriales

COMPLEMENTOS FISICA. Práctica 2. Espacios Vectoriales MATEMATICA 3 Primer Cuatrimestre de 2002 COMPLEMENTOS FISICA Práctica 2 Espacios Vectoriales A lo largo de esta práctica K simbolizará el conjunto de los números reales o el conjunto de los números complejos

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles