A = Héctor Escobar Álgebra Lineal ÁLGEBRA LINEAL: Unidad 1: Álgebra De Matrices. 1. CONCEPTO DE MATRIZ. Una matriz A de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A = Héctor Escobar Álgebra Lineal ÁLGEBRA LINEAL: Unidad 1: Álgebra De Matrices. 1. CONCEPTO DE MATRIZ. Una matriz A de"

Transcripción

1 ÁLGEBRA LINEAL: Hécor Escobr Álgebr Liel Uidd : Álgebr De Mrices.. CONCEPTO DE MATRIZ. U mriz A de A = = m m m es u rreglo recgulr de m fils y colums: m ( ) Nos:. i m ; j b. Si R, eoces A es u mriz rel. Si C, eoces A es u mriz complej. c. Fi (,,, ) = es u vecor fil. i i i d. Cj = j j mj es u vecor colum. e. Si = 0 i, j, eoces A = Θ es l mriz ul.. CLASES DE MATRICES... Mrices Recgulres. So ls mrices A Mm l que m... Mrices Cudrds. So ls mrices A Mm l que m = (simbólicmee A M ). Nos: E ls mrices cudrds l sum de los elemeos de l digol pricipl recibe el ombre de rz. E ls mrices cudrds se puede disiguir:. Mriz digol: D = ( d ) Si d = d co i = j

2 d = 0 Si i j Hécor Escobr Álgebr Liel b. Mriz rigulr superior: A = ( ) Si = co i j = 0 Si i > j c. Mriz rigulr iferior. A = ( ) Si = co i j = 0 Si i < j No: cosulr. Mriz rigulr superior esric b. Mriz rigulr iferior esric 3. Algebrizció De Mrices. Se A, B, C Mm. Eoces sobre Mm se h defiido ls siguiees opercioes: 3.. Iguldd De Mrices. A = B Si = b i, j. 3.. Sum De Mrices. Es u O. B. I defiid sí: + : ( Mm ) ( Mm ) Mm (, b ) ( + b ) Es Operció Cumple Co Ls Siguiees Propieddes: A + B + C = A + B + C. Asociividd: ( ) ( ) b. Elemeo euro: A + Θ = Θ + A = A c. Elemeo iverso: A + ( A) = A + A = Θ d. Comuividd: A + B = B + A No: Por 3., 3. y sus propieddes, Mm, + form u grupo belio Muliplicció De U Mriz Por U Numero Rel. Es u O. B. E defiid sí: : R Mm Mm α, α. ( ) ( ) Es Operció Cumple Co Ls Siguiees Propieddes: Se α, β R :

3 α β α + β. ( + ) A = A A α ( A + B) = αa + αb Hécor Escobr Álgebr Liel b. ( αβ ) A = α( βa) c. A = A (euro pr ) Nos: Co 3., 3. y 3.3 Mm, +, form u espcio liel Muliplicció Ere Mrices. Pr que l muliplicció mricil de A co B esé defiid se ecesi que A y B se coformbles, es decir que el úmero de colums de A se igul l úmero de fils de B : : ( Mm ) ( M r) Mm r (, b ) ( c ) dode c se obiee muliplicdo esclrmee l j ésim colum de B. Propieddes De L Muliplicció Mricil AB C = A BC. Asociividd: ( ) ( ) b. Disribuiv: A ( B + C) = AB + AC ( A + B) C = AC + BC c. α ( AB) ( αa) B = A( αb) = co α R d. E geerl AB BA Si AB = BA, eoces A y B comu Si AB = BA, eoces A y B so icomuivos. 4. Mriz Ideidd. A M, Ι M l que ΙA = AΙ = Ι 5. Opercioes Uiris Co Mrices. 5. Mriz Trspues. i ésim fil de A por l : Mm M m ( ) ( ) ji Si A = ( ), eoces A = ( ) 3

4 Propieddes De L Trsposició. Se A, B mrices coformbles, α R. Eoces se cumple que:. ( ) = A A b. ( A + B) = A + B c. ( α A) = α ( A ) d. ( AB ) = B A A A A = A A A e. ( ) 5.. Mriz Siméric. Se A M. Eoces A es siméric si =. ( ) ji Hécor Escobr Álgebr Liel A = A 5.3. Mriz Aisiméric. Se A M. Eoces A es isiméric si A A = = ( ) ji Propiedd. E u mriz isiméric, los elemeos de l digol so cero Cojugció. Se A ( + ib ) Mm ( C ) mriz A se defie sí: A = ( ) Propieddes de l cojugció.. A = A b. α A = α A Si α C α A = α A Si α R c. AB = AB d. A + B = A + B e. ( ) A + B = A + B f. ( AB ) = ( B )( A ) A g. ( ) = A =. Eoces l cojugd de l ib 4

5 Hécor Escobr Álgebr Liel Cojugció E Ls Mrices Cudrds. A = + ib M C. Eoces A es hermíic si. Mriz Hermíic. Se ( ) ( ) A = A. Propiedd. E ls mrices hermíics los elemeos de l digol so reles. b. Mriz Aihermíic. Se A ( + ib ) M( C ) ihermíic si A = A. = eoces A es Propiedd. E u mriz ihermíic los elemeos de l digol so imgirios puros Poecició r : M M co r Ν ( ) ( ) r A r = AA A = r veces r i= A Propieddes De L Poecició. r r r. A = A A = AA r s r+ s b. A A = A r rs c. ( ) s A = A A B C = A B C r s q r s q d. ( ) ( ) e. Si A y B comu eoces r r r r A B = B A co r r r r f. Si A y B comu eoces ( ) A B AB = co r Mrices Origid Por L Poecició.. Ivoluiv: Si A = Ι b. Idempoee: Si A = A c. Periódic: Si A r = A co período r r d. Nilpoee: Si A = Θ co ídice de il poecis r 6. Ivers De U Mriz. 6.. Defiició. Si A M y B M l que AB = BA = Ι, decimos que B es l ivers de A ( B = A ). 6.. Propieddes De L Mriz Ivers.. Si l ivers de A eise eoces es úic. b. Si A es regulr eoces ( A ) = A 5

6 Hécor Escobr Álgebr Liel = B A c. Si A y B so regulres eoces AB es regulr y ( AB ) d. Si A es regulr eoces e. Si A M( C ) es regulr eoces 7. Deermie. A mbié lo es y ( A ) = ( A ) A es regulr y ( A ) = ( A ) 7.. Cocepo. El deermie de A M es u operció que le sig l mriz A u úmero rel o u úmero complejo. 7.. Como clculr el deermie de u mriz.. Se A = de A = b. Se A = 3 de A = c. Meor de ( M ). Es el deermie de l mriz que resul l suprimir l i ésim fil y l j ésim colum de A M. i+ j : A = M. d. Cofcor de ( ) e. Mriz de cofcores cof ( A) de A.. Es l mriz formd por odos los cofcores f. Mriz dju dj ( A). Es l rspues de l mriz de cofcores. g. Propiedd. L sum de los producos formdos l muliplicr los elemeos de u fil (colum) de A por el correspodiee cofcor de or fil (colum) de A es cero. h. Como hllr u deermie de: A = i. De A = A : desrrollo del deermie por los cofcores de l i ésim fil. j= 6

7 ii. De A = i= j ésim colum. A : desrrollo del deermie por los cofcores de l 8. Propieddes De Los Deermies. 8.. Si B se obiee l muliplicr u fil (colum) de A por α R, eoces se cumple que de B = α de A. α = siedo A M. 8.. de( A) α de A 8.3. AB ( de A)( de B) A A A ( de A )( de A ) ( de ) de = o e form más geerlizd: de k = A k Si u fil (colum) de A es cero, eoces de A = de A = de A. de A = de A de = de A A Hécor Escobr Álgebr Liel 8.6. Si e u mriz se iercmbi dos fils (colums) el deermie cmbi de sigo Si u mriz iee dos fils (colums) igules eoces el deermie es cero Si e u mriz u fil (colum) es u múliplo esclr de or fil (colum) eoces el deermie es cero Si u fil (colum) se le sum u múliplo esclr de or fil (colum) el deermie de l mriz o cmbi Si A es rigulr o digol eoces de A = co i = j. 8.. A Es regulr si de A de Ι =. i= 8.3. Si A es regulr eoces de A =. de A 8.4. El deermie de u mriz A M es ulo si u fil (colum) es 7

8 C.L de ls reses fils (colums). Hécor Escobr Álgebr Liel 9. Teorems: Se A M, eoces se cumple que: 9.. ( A)( A) = dj ( A)( A) = ( de A)Ι dj. 9. A = dj A de A 0. Opercioes Elemeles. 0. U operció elemel es quell que coviere u mriz e or equivlee. Ls opercioes elemeles so:. Iercmbio de dos fils (o dos colums) b. Muliplicció de u fil (o colum) por u esclr diferee de cero. c. Sum u fil (o colum) de u múliplo esclr de or fil (o colum). 0.. Mrices Elemeles. So quells que resul l ejecur sobre u mriz ideidd u úic operció elemel Propiedd. Se A Mm ; E Mm u mriz elemel, eoces EA es l mriz que resul l efecur sobre A l operció elemel fil idéic e E. No: cudo se posmuliplic es u operció elemel colum Mrices Equivlees. i. Mrices equivlees por fils, Se A, B Mm decimos que B es equivlee por fils A si B se obiee l ejecur sobre A u úmero fiio de opercioes elemeles fil: B = E E Ek A = PA E E i Mm. ii. Mriz equivlee por colums. Se A, B Mm decimos que B es equivlee por colums A si B se obiee l ejecur sobre A u úmero fiio de opercioes elemeles colum: B = AE E E A = AQ E E j M. iii. Mrices equivlees. A, B Mm, so equivlees si B se obiee l efecur u umero fiio de opercioes fil/colum sobre A. B = PAQ B Q 0.5. Se dice que A es regulr l hcer sobre A u úmero fiio de opercioes elemeles fil (o colum) se obiee l mriz ideidd: = ( E E E )A A Ι Ι A. Ι Ó [ ] [ ] k 8

9 Hécor Escobr Álgebr Liel 0.6. L Mriz Esclod. U mriz esá esclod por fils (M.E.F) si cumple lo siguiee:. Si posee fils uls, éss se locliz e l pre iferior de l mriz. b. El primer elemeo diferee de cero que se ecuere e u fil de izquierd derech es el ( pricipl). c. El pricipl de u fil siempre es l derech del pricipl de l fil imedimee superior. d. Si los elemeos de u colum que posee el pricipl so ulos, eoces esá e form esclod por fil reducid (M.E.F.R). No: mbié se puede defiir l M.E.C.R. Rgo De U Mriz.. Rgo por fils. El rgo por fils de u mriz es el umero de fils o uls e le M.E.F o e l M.E.F.R. b. Rgo por colums. El rgo por colums de u mriz es el umero de fils o uls e le M.E.C o e l M.E.C.R. c. Si Rg Fils ( A ) = Rg colums ( A) = K, decimos que K es el rgo de l mriz.. Sisem De Ecucioes. Se el sisem de ecucioes m m = b = b m = b m. Ese sisem se puede epresr e form mricil sí: 3 3 = b b b m Ó A = B A : Mriz de coeficiees : Mriz de icógis B : Mriz de érmios idepediees Lo que se preede es hllr ls ds que sisfce el sisem A = B. Pr eso podemos eer e cue lo siguiee: 9

10 . Si B Θ, eoces A = B es u sisem o homogéeo. Hécor Escobr Álgebr Liel b. Si B = Θ, eoces A = Θ es homogéeo. c. A = B es compible si iee solució úic o ifiis solucioes y es icompible si o iee solució. d. A = Θ puede eer solució úic (e ese cso rivil) o ifiis solucioes (que icluye l rivil). e. Si A es regulr eoces A = B iee solució úic. f. Vribles básics. So ls socids los uos priciples de l M.E.F ó M.E.F.R. Vribles libres so ls reses. Numero de vribles básics = ( A ) = K Numero de vribles libres = g. Si ( A ) R ( A B) h. Si ( A ) R ( A B) i. Si ( A ) = R ( A B) = j. Si ( A ) = R ( A B) < R. K R = eoces el sisem iee solució. R eoces el sisem o iee solució. R eoces el sisem iee solució úic. R eoces el sisem iee ifiis solucioes. k. Dos ó más sisems so equivlees si posee l mism solució. l. Ls fils uls idic el úmero de ecucioes redudes. m. Si A M es regulr, eoces se cumple que: de A 0 A Ι A = Θ Tiee solució úic. A = B Tiee solució úic. R A = ( ) 0

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Unidad 5: MATRICES. m x n a todo conjunto de elementos dispuestos en m. La matriz tiene. La Tabla se puede expresar como matriz:

Unidad 5: MATRICES. m x n a todo conjunto de elementos dispuestos en m. La matriz tiene. La Tabla se puede expresar como matriz: Uidd : MTRIES º ch M pl SS II Ídice: MTRIES Tipos de Mrices OPERIONES DE MTRIES Sum de Mrices Produco De Mrices Produco de u mriz por u úmero Produco de Mrices Poecis de Mrices MTRIZ TRSPUEST DEPENDENI

Más detalles

Sistemas de ecuaciones lineales. Matrices y determinantes curso

Sistemas de ecuaciones lineales. Matrices y determinantes curso Sisems de ecucioes lieles. Mrices y deermies curso - jercicios resuelos:.- Se y B mrices cudrds de orde. Pror que si I-B es iverile, eoces I-B mié es iverile y que ( I B) I B( I B). No: I es l mriz uidd

Más detalles

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ Cpíulo Álgebr mricil vers de u mriz Cpíulo ÁLEBRA MARCAL NVERSA DE UNA MARZ Mrices E el cpíulo erior se irodujo el cocepo de mriz, defiiédose u mriz A de mño m x co elemeos e u cuerpo (geerlmee cosiderremos

Más detalles

Sistemas, matrices y determinantes

Sistemas, matrices y determinantes .- Dd l mriz Sisems, mrices y deermies æ ö, hllr ls mrices ç è ø ) B ( + I )(( - I) -, b) C (I - )..- Comprobr que culquier mriz cudrd se puede expresr de form úic como sum de dos mrices, u siméric y or

Más detalles

TEMA 9: SISTEMAS DE ECUACIONES LINEALES

TEMA 9: SISTEMAS DE ECUACIONES LINEALES MTEMÁTICS II TEM 9: SISTEMS DE ECUCIONES LINELES. Defiició Clsificció U ecució liel de "" icógis,,,,, es u iguldd del ipo:., siedo i úmeros reles coocidos, llmdos coeficiees. i so ls icógis cuo vlor h

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMS DE ECUCIONES LINELES Tem : SISTEMS DE ECUCIONES LINELES. Ídice:. Epresió mricil de u sisem de ecucioes lieles.. Méodos de resolució... Resolució por el méodo de l mri ivers... Méodo de Guss...

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sisems de ecucioes lieles º Bchillero Sisems de ecucioes lieles. Iroducció Primos de que hemos esudido ls mrices deermies. U epresió de l form es u ecució liel co icógis. Los úmeros i se llm coeficiees;

Más detalles

EJERCICIOS CÁLCULO DEL RANGO

EJERCICIOS CÁLCULO DEL RANGO elblogdeedeid: repso rices y deeries pág. curso - EJERCICIOS CÁLCULO DEL RNGO.- Clcul el rgo de ls siguiees rices: 9 b c d e Solució: ; b ; c ; d.- Clcul el rgo de ls siguiees rices: b c 9 d e f g h i

Más detalles

Sistemas, matrices y determinantes

Sistemas, matrices y determinantes Sisems, mrices y deermies Uidd docee de Memáics.- Dd l mriz, hllr ls mrices ) ( )( ) I ( I B, b) ) (I C..- Comprobr que culquier mriz cudrd se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos Álger: Mrices wwwmemicsjmmmcom José Mrí Mríez Medio MTEMÁTIS II TEM Mrices: Prolems propuesos Opercioes co mrices Dds 7, 9 y, hll dos úmeros y pr que se verifique que Dds ls mrices y, hll ors dos mrices

Más detalles

1. MATRICES. OPERACIONES CON MATRICES... 3

1. MATRICES. OPERACIONES CON MATRICES... 3 TE.- ÁGER. Iroducció l emáic Ecoómico-Empresril. TRICES. OPERCIONES CON TRICES... CONCEPTOS PREVIOS... Defiició de mriz.... Defiició de orde de u mriz.... Represeció lgeric de u mriz.... TRICES ESPECIES....

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics CCSSII º Bchillerto TEMA ÁLGEBRA DE MATRICES NOMENCLATURA Y DEINICIONES - DEINICIÓN Ls mtrices so tls umérics rectgulres ª colum ª fil m m m m ( ij ) Est es u mtriz de

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

Tema 6: Matrices m n

Tema 6: Matrices m n www.seleividd-grd.om Tem : Mries.. Mries. Defiiió primeros ejemplos Se llm mriz rel de dimesió mx l ojuo de m úmeros reles ordedos e m fils (horizoles) olums (veriles). L form más geerl de represer u mriz

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

HOJA 1: CÁLCULO DE RANGOS

HOJA 1: CÁLCULO DE RANGOS el blog de e de id CSII: ejercicios de rices y deeries pág. HOJ : CÁLCULO DE RNGOS.- Clcul el rgo de ls siguiees rices: 9 b c d e ; b ; c ; d.- Clcul el rgo de ls siguiees rices: b c 9 d e f g h i ; b

Más detalles

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño

MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño MTRIES: INVERS GENERLIZD DE MOORE-PENROSE Jorge Edurdo Ortiz Triviño jeortizt@uleduco http:/wwwdocetesuleduco Mtrices Elemeto: ij Tmño: m Mtriz cudrd: orde ) Elemetos de l digol: m m m Vector colum mtriz

Más detalles

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej:

Sistema lineal heterogéneo: es aquel en el que no todos los términos independientes son nulos. Ej: BLOQUE II: Núeros Álger Te : Sises de ecucioes lieles Pági de.- CLSIFICICIÓN DE LOS SISTEMS DE ECUCIONES. Sise liel heerogéeo: es quel e el que o odos los érios idepediees so ulos. Ej: Sise liel hoogéeo:

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES Uiversidd Poifii Bolivri Ciei Bási Tller Álger Liel CPITULO I: MTRICES. Dds ls mries:, B C Efeur ls siguiees operioes, si es posile. E so e o ser posile, eplique por qué. -B T -B T B T d T C e B - f C

Más detalles

Apuntes de Álgebra y Cálculo matricial Curso 2017/2018 Esther Madera Lastra

Apuntes de Álgebra y Cálculo matricial Curso 2017/2018 Esther Madera Lastra putes de Álger Cálculo mtricil Curso / Esther Mder Lstr LOQUE DE ÁLGER Y CÁLCULO MRICIL. DEFINICIÓN DE MRIZ U mtri es u tl de úmeros colocdos e fils colums. Ls represetmos icluedo los dtos etre uos prétesis

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

La multiplicación de dos armónicos de diferente frecuencia, [ ] [ ]

La multiplicación de dos armónicos de diferente frecuencia, [ ] [ ] Muliplicció y Divisió de Fucioes Aróics. Frcisco Prr Rodríguez. Docor Ecooí UNED Muliplicció de fucioes róics L uliplicció de dos rói de diferee frecueci, [ ] [ ] ( ( k k j j d lugr l siguiee su: ( ( (

Más detalles

TEMA 8: SISTEMAS DE ECUACIONES LINEALES. Veamos cómo discutir y resolver cualquier sistema de ecuaciones lineales.

TEMA 8: SISTEMAS DE ECUACIONES LINEALES. Veamos cómo discutir y resolver cualquier sistema de ecuaciones lineales. loso Feráde Gliá TM : SISTMS D CUCIONS LINLS Veos cóo discuir resolver culquier sise de ecucioes lieles.. DFINICIONS Culquier sise de ecucioes lieles co ecucioes icógis puede escriirse de l siguiee for:

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

MATRICES. Las matrices se nombran con letras mayúsculas A, B, C, y sus elementos con minúsculas con dos subíndices ij

MATRICES. Las matrices se nombran con letras mayúsculas A, B, C, y sus elementos con minúsculas con dos subíndices ij Profesor: Jime H. Rmírez Rios Pági TRIES Defiició de mriz: U mriz es u rreglo recgulr de elemeos dispuesos e regloes y colums ecerrdos ere préesis. U mriz es de l siguiee form, dode cd ij es u úmero rel

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

= 9 3 x (fig. 2.9.), se nota que para obligar a (9

= 9 3 x (fig. 2.9.), se nota que para obligar a (9 .. EJERCICIOS RESUELTOS... Sobre límies de ucioes:. Usdo l deiició de límie de u ució, pruébese que: (9 6 Solució: Se u úmero poivo culquier ddo. Se debe llr u δ > l que: 5 δ 9 6 ( ( ( Pr ello codérese

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Universidad de Ciencias de la Informática. Escuela de Ingeniería. Profesores: José Daniel Munar Andrade Aurora Jerez Alvial

Universidad de Ciencias de la Informática. Escuela de Ingeniería. Profesores: José Daniel Munar Andrade Aurora Jerez Alvial Uiersidd de iecis de l Iormáic Escuel de Igeierí Proesores: José Diel Mur drde uror Jerez lil UIN Uiersidd de iecis de l Iormáic Escuel de Igeierí rrer de Ig de Ejecució e Iormáic Proesores: Diel Mur drde

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls

Más detalles

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. SISTEMAS DE ECUACIONES. TEORÍA.

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. SISTEMAS DE ECUACIONES. TEORÍA. GYNÁZIU UDĚJOVIKÁ. TÁTIS. SISTS D UIONS. TORÍ. ÍNDI:. Sisems de ecucioes. Termiologí. Sisems equivlees.. Sisems de ecucioes lieles... Discusió.... icógis: omprció de coeficiees.... ó más icógis: Teorem

Más detalles

5 ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN N

5 ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN N DINÁMI Y ONTROL DE PROESOS 5 EUIONES DIFERENILES ORDINRIS DE ORDEN N Si ier err e u efoque memáico del em, recordemos que muchos de uesros sisems (y priculrmee odos los que vrí e el iempo) se epresrá como

Más detalles

MATEMÁTICAS II - P.A.E.U. ÁLGEBRA LINEAL CUESTIONES

MATEMÁTICAS II - P.A.E.U. ÁLGEBRA LINEAL CUESTIONES IES Diego de Siloé - PU Álger Liel - Meáis II Pág MTEMÁTICS II - PEU ÁLGER LINEL CUESTIONES Eorr u ri X que verifique XC siedo: C (J9) Sol: X Deerir ls ries siedo: (S9) Sol: 8 Hllr l poei -ési de l ri

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

2.5 REGLA DE CRAMER (OPCIONAL)

2.5 REGLA DE CRAMER (OPCIONAL) CAPÍTULO etermites i. Cree u mesje pr su profesor. Utilizdo úmeros e lugr de letrs, tl y como se describió e el problem 9 de MATLAB.8, escrib el mesje e form mtricil pr que pued multiplicrlo por l derech

Más detalles

Unidad 1. Matrices MATRICES.

Unidad 1. Matrices MATRICES. Uidd. Mries MTRICES. Defiiió de Mries ipos de Mries. Operioes o Mries.. Iguldd de Mries.. Sum de Mries.. Produo de u Mri por u úmero (eslr). Produo de Mries. Trsposiió de Mries. Mries siméris isiméris.

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee señl f ( e,, mosrd e l figur. SOLUCION. L señl es f ( e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Unidad 8. Matrices TEMA 8. MATRICES. José Luis Lorente Aragón 43

Unidad 8. Matrices TEMA 8. MATRICES. José Luis Lorente Aragón 43 Uidd. Mries TEM. MTRICES.. Defiiió de Mries ipos de Mries. Operioes o Mries.. Iguldd de Mries.. Sum de Mries.. Produo de u Mri por u úmero (eslr). Produo de Mries. Trsposiió de Mries. Mries siméris isiméris.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Álgebra Lineal. Matrices y Sistemas de ecuaciones lineales

Álgebra Lineal. Matrices y Sistemas de ecuaciones lineales UNIVERSIDD DIEGO PORTLES FCULTD DE INGENIERÍ INSTITUTO DE CIENCIS BSICS Álger Liel Ejeriios Mries Sisems de euioes lieles Mries Sisems de euioes lieles L guiee figur muesr ls rus de u líe ére ieriol que

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto TEMA SISTEMAS DE ECUACIONES LINEALES. ECUACIÓN LINEAL.. DEINICIÓN: U ecució liel es u ecució polióic de grdo uo co u o vris icógits:.. coeficietes

Más detalles

x que deben ser calculados

x que deben ser calculados UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Unidad 8. Matrices TEMA 8. MATRICES.

Unidad 8. Matrices TEMA 8. MATRICES. Uidd. Mries TEM. MTRICES.. Defiiió de Mries ipos de Mries. Operioes o Mries.. Iguldd de Mries.. Sum de Mries.. Produo de u Mri por u úmero (eslr). Produo de Mries. Trsposiió de Mries. Mries siméris isiméris.

Más detalles

a se llama la n-ésima potencia de a, siendo a la base y n el

a se llama la n-ésima potencia de a, siendo a la base y n el Guí de estudio Expoetes rdicles Uidd A: Clse Cmilo Eresto Restrepo Estrd, Li Mrí Grjles Vegs Sergio Ivá Restrepo Ocho.. Expoetes rdicles. Este trjo está pesdo pr repsr el álger elemetl estudid e el chillerto.

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

CAPÍTULO 2: DETERMINANTES 1. CONCEPTO DE DETERMINANTE 1.1. Definición

CAPÍTULO 2: DETERMINANTES 1. CONCEPTO DE DETERMINANTE 1.1. Definición 8 CPÍTULO : DETERMINNTES. CONCEPTO DE DETERMINNTE.. Defiiió...... Dd u mriz udrd de orde,............... represe por... se llm deermie de l mriz se... u úmero rel que es igul :............... i... de S

Más detalles

Unidad 2: NÚMEROS COMPLEJOS

Unidad 2: NÚMEROS COMPLEJOS Resúmees de Mtemátics pr Bchillerto Uidd : NÚMEROS COMPLEJOS.- CONSTRUCCIÓN A los pres de úmeros reles xy, los llmremos úmeros complejos, cudo e estemos cosiderdo ls siguietes opercioes: x, y x', y' xx',

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = Estudios J.Coch ( fuddo e ) ESO, BACHILLERATO y UNIVERSIDAD Deprteto Bchillerto MATEMATICAS º BACHILLERATO Profesores Jvier Coch y Riro roilá TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto

Más detalles

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ...

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ... Mtrices Mtrices INTRODUCCIÓN E el te terior heos usdo l tri plid de u siste, pr ejr, co ás coodidd, los úeros que iterviee e u siste liel E otros uchos proles es útil dispoer ejr u cojuto de úeros dispuestos

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

; para i=1, 2,,m y j=1, 2,,n

; para i=1, 2,,m y j=1, 2,,n Mtrices y deterites MRICES U triz de x c eleets e se defie c u rregl de l fr dde,,, y, Iguldd de Mtrices Ávil Núñez Mrí del Rcí Rdríguez Chávez Rslb b b b b b b b b b Se M y M b ds trices del is rde, pdes

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág el blog de mte de id. Mtemátics Aplicds ls Ciecis Sociles I. Sistems de ecucioes. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,..., es u cojuto de "m" igulddes

Más detalles

A, donde n es un número natural arbitrario.

A, donde n es un número natural arbitrario. Clulr siedo MTRCES Y DETERMNNTES Dds ls ries les que: ij iee uro fils u olu el úio eleeo disio de es iee u fil uro olus el úio eleeo disio de es Clulr ij Dds ls ries lulr Por qué los resuldos o so idéios?

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

Escribe en forma de intervalo y representa en la recta real los siguientes conjuntos de números: ( ) < ( )

Escribe en forma de intervalo y representa en la recta real los siguientes conjuntos de números: ( ) < ( ) Aritmétic y álgebr. Curso 0/5 Ejercicio. Escribe e form de itervlo y represet e l rect rel los siguietes cojutos de úmeros: Solució: ) x + < b) x 5 + < ( ) < ( ) ( ) < ( ) x x x (,) ) x x l distci etre"

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el log de mte de id. Mtemátics plicds ls ciecis sociles I: NÚMEROS REALES pág. INTERVALOS Y SEMIRRECTAS. L ordeció de úmeros permite defiir lguos cojutos de úmeros que tiee u represetció geométric e l

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

Fotografía Aérea Inclinada. Propiedades y Teoremas

Fotografía Aérea Inclinada. Propiedades y Teoremas Foogrí ére Iclid. Propieddes y Teorems Propieddes eseciles de ls igurs perspecivs pls: - 2 igurs pls esá e posició perspeciv si: ) se correspode puo puo (homólogos) b) l rec que ue dos puos h. ps por u

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

UNIDAD 8.- Determinantes (tema 2 del libro)

UNIDAD 8.- Determinantes (tema 2 del libro) UNIDD 8.- Determinntes (tem del libro). DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) Definición: Pr un mtriz cudrd de orden, not por det( ) ó,

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores Capíulo Iroducció a la Elecróica de oecia. Iroducció a la Elecróica de oecia. Clasificació de los Coeridores Como su ombre lo idica su fució es coerir ua fuee de ua esió y frecuecia dada a ora de diferees

Más detalles

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador.

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador. Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

Seminario de problemas. Curso Soluciones hoja 6

Seminario de problemas. Curso Soluciones hoja 6 Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles