UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR log. a a. log. log. log. 1 log ) b 1; b > 0, b 1. Sandovalich, Hugo Alexis 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR log. a a. log. log. log. 1 log ) b 1; b > 0, b 1. Sandovalich, Hugo Alexis 1"

Transcripción

1 CEPREUNF CICLO REGULAR Sen 9 CURSO: MATEMÀTICA TEMA: LOGARITMOS-INECUACIONES- VALOR ABSOLUTO-RELACIONES Y FUNCIONES A. Definición: Es un núero, que represent l eponente de l se de un potencición que perite deterinr un potenci predeterind l que se denoin ntirito. Es decir: N N Donde: : Es el rito de N en se, R : Es l se del rito; R N: Es el ntirito Ejeplo : B. Propieddes de los ritos: ) ; > 0, ) 0 3) Logrito de un producto:. n n 4) Logrito de un cociente: n 5) Logrito de un Potenci: n n n n 6) 7) Regl de l Cden: 8).. ; n N N,, 0 N CASO PARTICULAR: C. Cio de se: De l se l se Sndovlich, Hugo Aleis D. Corito y Antirito : N Corito de un núero: Se define coo el rito negtivo de un núero N en se. Co N N Antirito de un núero: Anti TEMA : INECUACIONES A. Definición de desiguldd: Es l relción que eiste entre dos epresiones reles de diferente vlor. Los signos que se utilizn en est relción son: : Myor que < : Menor que : Myor o igul que : Menor o igul que B. Clses de desigulddes: ) Desiguldd Asolut: SE crcteriz porque ntiene el sentido de su signo de relción pr culquier siste de vlores reles triuidos sus vriles. Ejeplo : 0; R ( -) y 3 0;, yr ) Desiguldd Reltiv: Es quell que ntiene el sentido de su signo de relción sólo pr vlores reles prticulres triuídos su vrile. Ejeplo : 5 4 Not: Coúnente l desiguldd reltiv se le conoce con el nore de Inecución

2 CEPREUNF CICLO REGULAR C. Conjunto solución de un Inecución: Es un intervlo que represent l conjunto de núeros reles (suconjunto de l rect nuéric), que stisfcen l inecución. D. Clses de Intervlos:, I. Cerrdo: etreos y. I. Aierto:,, se ton los vlores, no se ton ninguno de los vlores etreos y., I. Sei ierto:, solo se to uno de los vlores etreos, que en este cso serí. I. Infinitos :, y -,, en os csos se to el vlor etreo, teniendo en cuent que los infinitos positivo y negtivo siepre son iertos. E. Alguns propieddes de ls desigulddes: ) Si ) Si 0 0 3) Si 4) Si y c c 5)Si c 0 y.c.c F. Método de los puntos críticos pr resolver un Inecución: Descripción del étodo : ) Se hlln ls ríces o puntos críticos del polinoio edinte fctorizción, fórul generl o copletndo cudrdos. ) Se colocn ls ríces en l rect nuéric. 3) se trzn los intervlos utilizndo curvs, desde el, hcí cd ríz, epezndo de derech izquierd. 4) Se signn signos (+) y ( - ) lterndente, epezndo de derech izquierd. 5) Tener en cuent: * Si el sentido de l desiguldd es, el Conjunto solución será l unión de ls curvs (+). ó * Si el sentido de l desiguldd es ó, el Conjunto solución será l unión de ls curvs ( - ). G. Inecuciones con rdicles: i) i) TEMA 3: VALOR ABSOLUTO c 0 y.c 6) Si.c 7) Si ) Si Not: Resolver un inecución, signific hllr su conjunto solución plicndo étodos, operciones lgerics y l sioí decud. A. Definición: Se define coo quel núero rel no negtivo que se denot por tl que: si 0 - si 0 Not: El vlor soluto de un epresión teátic, siepre nos drá un epresión positiv. Sndovlich, Hugo Aleis

3 CEPREUNF CICLO REGULAR B. Ecuciones con Vlor Asoluto: i) 0 i) C. Inecuciones con vlor soluto: Sen, 0 R i) i) 0 3i) 4i) Proles propuestos. Indic ls proposiciones verdders: I. Log 7 ( 7 ) = II. Log = 6 = 8 III. 5 + = 6 IV. 5 5 ) I y IV ) Tods eno I c) Solo II d) III y IV e) II y IV. Indicr ls proposiciones flss I. 3 3 II. + = III. = IV. 3 = 3 V. 3 4 = 4 3 ) Tods )Tods enos II c) I, IV y V d) I, II, III e) II y III 3. Resolver ( 4) + ( + 4) = 3 ) 6 ) 0 c) 5 d) 5 e) 5 4. Clculr Co nti c. d. 3 c d ) c ) c) 3 d) e) 3 5. Resolver.5 7 ) c) 3 d) 4 e) 5 6. Si vrí entre 4 y 40 y entre 5 y, entonces / vrí entre: ) y 3 ), 4 y 0 c) 3 y 8 8 d) 3 y 8 e) 0, 8 y Resolver ) <, > ) < 8, > c) <, > c) <, > e) <, > 8. Resolver: + 35 > 0 ) <, 5 > ) < 7, 5 > c) < 0, 00 > d) <, 8 > e) < 7, 5 > 9. Resolver : ) <, > 0,] [3, + ) [, 0 [3, + c) [, 0] 0,] [3, + 0,3 d) e) [, 0] [3, + {} 0. Resolver: 9 0 Hllr el copleento del C. S. ) [3, [3, + ), 3,3 c) 3, 3 {} d), 3], 3] e) 3, ] 3, +. Hllr l su de tods ls ríces de : 3 = 3 ) ) -3 c) 4 d) 6 e) 0 Sndovlich, Hugo Aleis 3

4 CEPREUNF CICLO REGULAR Resolver 3 < + ), 3 ) 4, 3 c) [ 4, 3] d) [ 5, 3] e) 5, 3 3. Clculr el núero de eleentos de: A N / ) 4 ) c) d) 0 e) 3 4. Resolver ), 3] ) , d) e) R RELACIONES EN LOS NÚMEROS REALES Pr Ordendo c) [, + Ddos dos conjuntos A y B, dos eleentos A y y B, y un ner de identificr l eleento coo prier coponente y el eleento y coo segund coponente, definen un pr ordendo que se denot por (, y) Si (, y) = (, ) =. y =. DEFINICIÓN DE RELACIÓN: El.producto crtesino de A B de dos conjuntos A y B es el conjunto fordo por todos los pres ordendos (, y) tl que A y B. siólicente: A B = {(, y)/ A y B} Si A = B =, entonces el producto de, denotdo por, es el conjunto. = { (, y)/ y } RELACIÓN BINARIA Sen A y B dos conjuntos direos que R es un relción inri A en B y escriireos: R: A B, si R es suconjunto de A B. Luego: R es relción de A en B R A B. ) El conjunto A recie el nore de conjunto de prtid de R, y B es el conjunto de llegd. ) Si A = B direos que R es un relción en A. DOMINIO Y RANGO DE UNA RELACIÓN ) Se ll DOMINIO o conjunto de prtid o conjunto de l relción R, l conjunto de los eleentos de A que son, ls priers coponentes de los pres ordendos de R, siólicente se escrie: Do (R) = { A/ y B, (, y) R} ) Se ll RANGO o conjunto de llegd o conjunto de vlores de l relción R, l conjunto de los eleentos de B que son ls segunds coponentes de los pres ordendos de R, siólicente se escrie: Rn(R) = {y B/ A, (, y) R} RELACIÓN INVERSA Se R es un relción de A en B. se ll relción invers de R l relción de B en A, denotd por R -, y definid. R - = {(, y ) B A/ (y, ) R} ) Do (R) = Rn (R - ) ) Rn (R) = Don (R - ) CLASES DE RELACIÓN Se R un relción en A ) Relción refleiv Si A, entonces {(, ) R} ) Relción siétric Si {(, ) R} entonces {(, ) R} Sndovlich, Hugo Aleis 4

5 CEPREUNF CICLO REGULAR c) Relción trnsitiv Si {(, ) R} {(, c) R} entonces {(, c) R} d) Relción equivlente Tod R es equivlente si R es refleiv, R es siétric y R es trnsitiv l vez. e) Relción ntisiétric ) El RANGO de f; denotdo por R(f), es el conjunto R(f) = {y B/ A, y = f() } FUNCIONES ELEMENTALES... FUNCIÓN CONSTANTE y = f() = K. donde: f = {(, y) / y = k} Tod R es ntisiétric cundo R no es siétric. f) Relción de orden k y = k Tod R es de orden, si R es refleiv. R es ntisiétric y R es trnsitiv.. FUNCIONES Ddos dos conjuntos A y B no vcíos, un función de A en B es tod relción f A B que cuple l siguiente condición: Pr todo eleento de A le corresponde de lgún odo un único eleento y de B tl que (, y) f o equivlenteente cuple. L condición: f es un conjunto de pres ordendos donde no se tiene dos pres distintos con el iso prier eleento. Un función se denot por: f : A B y se lee f es l función de A en B en donde A es el doinio o conjunto de prtid y B es el rngo o conjunto de llegd.... FUNCIÓN IDENTIDAD y = f() = donde: f = {() / y = }..3. FUNCIÓN LINEAL y = f() = + y = k y = + DOMINIO Y RANGO DE UNA FUNCIÓN ) El DOMINIO de f denotdo por D(f), es el conjunto D(f) = { A/ y B: y = f()}..4. FUNCIÓN CUADRÁTICA y = f() = k y = Sndovlich, Hugo Aleis 5

6 CEPREUNF CICLO REGULAR EJERCICIOS PROPUESTOS..5. FUNCIÓN RAÍZ CUADRADA y = f () = donde: f = {(, y) / y =..6. FUNCIÓN VALOR ABSOLUTO }, si es > 0 y = f () = = 0, si = 0 -, si < FUNCIÓN INYECTIVA Se f: A B un función, Se dice que es inyectiv o univlente: A f ( ) f ( Si, se verific )..8. FUNCIÓN INVERSA Dd l función f: A B Inyectiv definid por: y = y = f (, y)/ y f ( ), A, y B se define l función invers f, denotd por:. Sen A = {, 3, 5,7, 9} y B = {, 4, 6, 8} Si R = {(, y) A B / y = } Hllr l su de ls coponentes de los eleentos de R. ) 4 ) 7 c) 8 d) 0 e). Se A = {,, 3, 4} y R = {(, y) A / < y] R = { (, y) A / + y = 5} Hllr el núero de eleentos de R R. ) 3 ) 7 c) 6 d) 8 e) 0 3. Ddos los conjuntos A = {3, 4, 5, 6} y B = {4, 6, 8} y R = {(, y) A B/ + y } Cuántos pres ordendos tiene l relción R? ) 5 ) 6 c) 7 d) 8 e) 9 4. Se B = {,, 3, 9} y R = {(, y) B / y = 5}. Si P es l su de los eleentos del doinio y Q es l su de los eleentos del rngo. Hllr P.Q. ) ) 5 c) 44 d) 65 e) Sen A = {, 3, 8, 9} y B = {4, 6, 7} R = {(, y) A B/ y = } R = { (, y) B A/ < y } Hllr Rn (R ) Do(R ) ) {, 3, 8} ) {3, 8, 9} c) {4, 6, 7} d) {6, 7, 8} e) {7, 8, 9} 6. Dds ls funciones: F() = G() = + 5 Hllr cundo F() = G() )7/3 )4/3 c)4/5 d)3/4 e)5/4 7. Se F={(,6), (, ) (,4),(, + ), (3, 4)}R Hllr. Si F es función. ) ) c) d) 3 e) 4 8. Se f un función tl que f( 3) = 3.Hllr el vlor de, si f(3) = 5 4 f coo: f ( y, )/ f ( y); A, y B ) /3 ) c) 3/ d) 3/ e) 3/4 9. Hllr el doinio de l función: F = {(, y) / y } Sndovlich, Hugo Aleis 6

7 CEPREUNF CICLO REGULAR ) [ -, > ) [, > c) [-, -> d) <-, ] e) [-, > 0. Clculr el doinio de l función: F = {(, y) / y } 4 ) < -, 4] ) <-, 4> c) <-, 0] d) <-, - 4> e) <-, - 4]. El doinio de l función f() = + es el intervlo [-3, 3]. Cuál es el rngo? ) [-5, 7] ) [-5, 6] c) [-4, 7] d) [-3,6] e) [-, 5]. Sen f y g funciones reles tl que f() = + + y g() = + 5. Si f (g ( - ) ) = Hllr el vlor de ) 3 ) c) d) 3 e) 3. Dd l función cudrátic. f = {(, y) / y = } Hllr el rngo. ) [-, ] ) < -, > c) [-, > d) [-, 3> e) [, > 4. Hllr el doinio de: R = {(, y) / y 6y = 0} ) [-, 0] ) [-, > c) [0, > d) [, > e) [, > 5. Hllr el rngo de R = {(, y) /9y 4 = 36} ) < -, > ) <-, - ] c) d) <-, ] [, +> e)<-, -][, +> 6. Hllr el doinio de: f() ) [0, ] ) - < -, 0> c) > d) - < -, > e) - <0, 7. Hllr el doinio de l función f() 3 ) [-, 5] ) - [-, 5> c) - <-, 5 > d) - <-, 5] e) [-, - 5 ] Proles propuestos Sndovlich, Hugo Aleis 7

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales Indicdores NÚMEROS REALES Identific ls propieddes de los números reles, determinndo el vlor de verdd de proposiciones. Clcul el vlor de epresiones lgebrics usndo ls propieddes del vlor bsoluto. Evlú y

Más detalles

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades Proyecto Alinz de Mtemátics y Ciencis del Turo (AMCT) INECUACIONES: solución y representción Prte 1: Desigulddes y sus propieddes Mrlio Predes, Ph.D. 14 de noviemre de 2009 Año cdémico, 2009-2010 Este

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

UNIDAD III INECUACIONES

UNIDAD III INECUACIONES Licencitur en Administrción Mención Gerenci y Mercdeo UNIDAD III INECUACIONES Elordo por: Ing. Ronny Altuve Rg, Esp. Ciudd Ojed, mrzo de 2017 Universidd Alonso de Ojed s reles Los números que están ordendos

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estido luno: Aquí encontrrás ls clves de corrección, ls hbiliddes y los procediientos de resolución socidos cd pregunt, no obstnte, pr reforzr tu prendizje es fundentl que sists l corrección edid por

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal.

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal. Te 3 Sistes de ecuciones lineles. 3. Sistes lineles notciones triciles y vectoriles. 3. Teore de Rouché-Froenius. Sistes lineles hoogéneos. 3.3 Resolución de sistes de ecuciones. 3.4 Discusión de sistes

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Tema 8: Teorema de Rouché-Frobenius

Tema 8: Teorema de Rouché-Frobenius www.selectividd-cgrnd.co Te : Teore de Rouché-Froenius Se lln ecuciones lineles ls ecuciones en ls que ls incógnits precen tods con grdo ; no están elevds ningun potenci ni jo ningún rdicl ni ultiplicds

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

EXPONENCIACIÓN Y LOGARITMACIÓN

EXPONENCIACIÓN Y LOGARITMACIÓN EXPONENCIACIÓN Y LOGARITMACIÓN Se presentn dos funciones de grn importnci en l mtemátic, como son: l función eponencil y l función rítmic. Función eponencil Definición: Se un número rel positivo. L función

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos TEMA : INTERVALOS L rect rel: el conjunto de números reles se puede representr medinte los puntos de un rect horizontl, que se denomin rect rel, donde cd punto le corresponde un único número rel. Al número

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Radicación Operaciones con irracionales Racionalización de denominadores

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Radicación Operaciones con irracionales Racionalización de denominadores Escuel Ncionl Adolfo Pérez Esquivel UNCPBA º ño Rdicción Oerciones con irrcionles Rcionlizción de denoindores Recordndo RADICACIÓN Ddo un núero rel un núero entero ositivo n, se ll ríz enési de otro núero

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Te. Sistes conservtivos Prier prte: Dináic de l prtícul en un rect studios el oviiento de un prtícul puntul de s lo lrgo de un rect bjo l cción del potencil V (. L fuerz que ctú sobre l prtícul es F =

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemátic Trjo Práctico N : Tercer Año Números Reles Ddos los siguientes números clsificrlos en nturles, enteros, rcionles, irrcionles, reles o no reles. 9 7 ;, ; - ; e- ; + ; - ; ; 0,7 ;

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

NÚMEROS REALES 1º Bachillerato CC. SS.

NÚMEROS REALES 1º Bachillerato CC. SS. Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles

Más detalles

SELECTIVIDAD: SISTEMAS DE ECUACIONES

SELECTIVIDAD: SISTEMAS DE ECUACIONES SELECTIVIDAD: SISTEMAS DE ECUACIONES EJERCICIO. El siste es coptible deterindo. ) Si se suprie un de ls ecuciones Cóo es el siste resultnte? Depende l respuest de l ecución supriid? b) Qué ecución h que

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?.

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?. Ejercicios del Tem de Integrles Cálculo Diferencil e Integrl II ) Sen A y B dos conjuntos no vcíos de números reles, tles que B A y A está cotdo superiormente Demostrr que B está cotdo superiormente y

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

Unidad 2 CONCEPTOS FUNDAMENTALES DEL ALGEBRA

Unidad 2 CONCEPTOS FUNDAMENTALES DEL ALGEBRA Mteátic I. Ciclo técnico profesionl. ITSA Atlántico Profesor: Bls Torres Suárez. Versión.0 Unidd CONCEPTOS FUNDAMENTALES DEL ALGEBRA Copetencis desrrollr: Descriir situciones del lenguje coún, edinte el

Más detalles

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El

Más detalles

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INTEGRACIÓN.-INTEGRAL INDEFINIDA. PROPIEDADES El Cálculo Integrl o integrción consiste en hllr l función f() cundo se conoce su derivd f

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

INSTITUCION EDUCATIVA LA DESPENSA. Área de Matemáticas

INSTITUCION EDUCATIVA LA DESPENSA. Área de Matemáticas INSTITUCION EDUCATIVA LA DESPENSA MARCO FIDEL SUÁREZ CIUDAD VERDE Áre de Mtemátics CALCULO Eloró: Ing. Luis Ernesto Gómez Vrgs Lic. en Mtemátics y Computción.016 Nomre: Clculo 1 016.doc - 1 UNIDAD I.

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso.

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso. TEMA : NÚMEROS REALES. Clsificció de los úeros reles.. Itervlos y seirrects.. Vlor bsoluto de u úero rel.. Potecis y rdicles. Propieddes.. Clsificció de los úeros reles. No olvideos: ) Los úeros rcioles

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL NO. TITULO DE LA PRACTICA: Multiplicción división de onoios polinoios. ASIGNATURA: Mteátics I HOJA: 1 DE: 7 UNIDAD TEMATICA: FECHA DE REALIZACIÓN: Mo de 007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Ejercicios sobre Exponentes

Ejercicios sobre Exponentes EJERCICIOS SOBRE EXPONENTES. LEYES DE LOS EXPONENTES. Eftizr e l defiició de l -ési poteci de. = = (-) = ( ) (-) (-) (-) (-) Oserve que =.. veces LEYES DE EXPONENTES: Si, si, so úeros reles tles que ls

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

Capitulo II. Números Reales

Capitulo II. Números Reales Cpitulo II. Números Reles Ojetivo. El lumno plicrá ls propieddes de los números reles y sus suconjuntos, pr demostrr lguns proposiciones por medio del método de inducción mtemátic y pr resolver inecuciones.

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

GUIA Nº 3 ÁLGEBRA BÁSICA

GUIA Nº 3 ÁLGEBRA BÁSICA RECUERDA QUE: GUIA Nº ÁLGEBRA BÁSICA Un epresión lgeric es un cominción de números, vriles signos de operción. Dos o más términos son semejntes si difieren únicmente en su coeficiente. Sólo se puede dicionr

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Operación Matemática Conceptos y definiciones básicas Operaciones binarias

Operación Matemática Conceptos y definiciones básicas Operaciones binarias ... onceptos y definiciones ásics... onjunto Llmremos conjunto, o clse culquier colección de ojetos llmdos elementos. Si es un elemento que pertenece l conjunto, se denot por. Si x no pertenece l conjunto,

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles