3. DINÁMICA DEL SÓLIDO RÍGIDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. DINÁMICA DEL SÓLIDO RÍGIDO"

Transcripción

1 3. DINÁMICA DEL SÓLIDO RÍIDO 3.1. Dnámca la partícula La sguna ly Nwton stablc qu n una partícula masa constant m sobr la qu actúa una furza F s vrfca F p (3.1) on p s l momnto lnal qu s fn como l proucto la masa m por la vloca v p m v (3.) Pusto qu hmos supusto la masa m constant, s vrfca qu mv F m a (3.3) on a s la aclracón la partícula. El orma consrvacón l momnto lnal s uc nmatamnt la cuacón (3.1) y stablc qu cuano la rsultant las furzas qu actúan sobr la partícula s nula, l momnto lnal p s consrva. El momnto angular una partícula alror un punto O, notao como L, s fn como L r p (3.4) on r s l vctor qu va s O hasta la partícula. Prmultplcano vctoralmnt por r a ambos laos la cuacón (3.3), obtnmos mv r F N r (3.5) sno N l momnto la furza F rspcto O. Esta cuacón s pu transformar tnno n cunta la nta vctoral ( ) m v m m m v r v v v+ r r (3.6) on l prmr sumano s, obvamnt, nulo. Por tanto, pomos rscrbr la cuacón (3.5) como N ( r m ) v L (3.7) Esta cuacón prmt tambén stablcr l orma consrvacón l momnto angular, qu stablc qu cuano l momnto las furzas qu actúan sobr una partícula s nulo, l momnto angular L s consrva. Alo Avllo, cnun (Unvrsa Navarra).

2 48 Cap. 3: Dnámca l sólo rígo 3.. Dnámca l sólo rígo Ecuacons Nwton En st apartao consrarmos qu un sólo rígo masa total m stá compusto por un sstma contnuo partículas matrals masa m. Dstngurmos ntr furzas xtrnas, qu actúan sobr las partículas y qu son bas a causas xtrnas al sólo, y furzas ntrnas o furzas ntraccón ntr las partículas, qu mpn su splazamnto rlatvo unas otras. Llamarmos F a la suma total las furzas ntrnas rcas sobr una partícula por las partículas ayacnts y F a la furza xtror qu actúa sobr la partícula. A frnca las furzas ntrnas, qu actúan sobr toas las partículas l sólo, las furzas xtrnas sólo actúan sobr unas cuantas partículas (aquéllas qu llvan ínc ). Pomos scrbr la cuacón l movmnto una partícula sobr la qu no actúa una furza xtror como F a m (3.8) y para una partícula sobr la qu actúa una furza xtror 1 F + F a m (3.9) Suponrmos qu las furzas ntrnas cumpln la trcra ly Nwton (prncpo accón y raccón) y qu, por lo tanto, las furzas qu s rcn mutuamnt os partículas llvan la rccón la rcta qu las un y son guals y sgnos contraros. Sumano las cuacons l movmnto toas las partículas qu componn l sólo llgamos a F + F a m (3.10) El prmr sumano la zqura s cro, ya qu las furzas ntrnas s canclan os a os. El sguno sumano s smplmnt F, rsultant toas las fur- zas xtrors. Por últmo, tnno n cunta qu la masa caa partícula s constant, pomos scrbr r F m rm ( mr) ma (3.11) on r s l vctor qu va l orgn l sstma rfrnca al cntro grava y a s la aclracón l cntro grava. 1 La cuacón (3.9) no s rgurosa matmátcamnt hablano, pus ncluy una furza fnta n una cuacón térmnos nfntsmals. Sn mbargo, la péra rgor matmátco s v compnsaa por una mayor clara n la xposcón. Alo Avllo, cnun (Unvrsa Navarra).

3 3... Ecuacons Eulr ommos momntos n las cuacons (3.8) y (3.9) rspcto al cntro grava, lo qu sguno la notacón utlzaa n la Fgura 3.1 quval a prmultplcarlas vctoralmnt por r ', obtnno F a m (3.1) para las partículas sn furza xtror y F + F a m (3.13) Cap. 3: Dnámca l sólo rígo 49 para las partículas con furza xtror. Summos las cuacons (3.1) y (3.13) corrsponnts a toas las partículas l sólo, lo qu a F + F a m (3.14) Lo msmo qu ants, los momntos corrsponnts a las furzas ntrors s canclan os a os, por lo qu l prmr sumano s nulo. El sguno sumano rprsnta l momnto rsultant las furzas xtrors actuants sobr la partícula, qu nomnarmos N. Por tanto, N a m (3.15) Esta cuacón s pu rscrbr como ' ' m m r N r v v (3.16) Llamano ω a la vloca angular l sólo y tnno n cunta la xprsón l campo vlocas l sólo rígo, la vloca la partícula v s pu scrbr como v v + ω (3.17) S susttumos sta xprsón n la antror y tnmos n cunta qu r r, obtnmos ( r r ) N ( v + ω ) m vm v m + ω m ( v v) vm (3.18) ω m + v vm on la ntgral ( ' m) v m r v 0 (3.19) s cancla por contnr l momnto státco prmr orn rspcto al cntro grava. O r m r Fgura 3.1. r Alo Avllo, cnun (Unvrsa Navarra).

4 50 Cap. 3: Dnámca l sólo rígo Aplcano la fórmula ( ) ( ) ( ) a b c b a c c a b obtnmos N ω m + v vm ω( ) ( ω) m + v vm ( ) ω m ω+ v ( mv) 0 (3.0) on I s la matrz nta 3 3. La ntgral qu aparc n la cuacón (3.0) s, por fncón, l tnsor nrca rfro al cntro grava I. Llamano (x, y, z ) a las componnts l vctor r ', pomos scrbr la xprsón l tnsor nrca como x' x' I [{ x' y' z' } y' y' { x' y' z' }] m z' z' y' z' x' y' x' z' (3.1) + Ix Ixy Ixz x' y' x' + z' y' z' m Iyx Iy Iyz x' z' y' z' x' + y' Izx Izy I z Fnalmnt, la cuacón (3.0) s pu scrbr n la forma N I ω I α+ I ω (3.) Pusto qu las columnas la matrz I son vctors constants cuano stán xprsaos n un sstma rfrnca rígamnt uno al sólo, pomos utlzar la rgla rvacón u ω u con caa columna. Entoncs, la xprsón fnal qu obtnmos s N I α+ω I ω (3.3) Estas trs cuacons s conocn con l nombr cuacons Eulr. Su corrcta utlzacón s uno los tmas funamntals qu s stuan n Mcánca Clásca. Sobr llas s pun hacr las sgunts consracons: Las cuacons Eulr, n la forma xprsaa por la cuacón (3.3), solamnt s pun aplcar al cntro grava. S a al alumno, como rcco, la tara mostrar qu la cuacón (3.3) s pu aplcar tambén a un punto fo O. El tnsor nrca I no s constant, ya qu stá rfro al sstma fo { 0 }. Para qu I sa constant s ncsaro xprsar las cuacons Eulr n l sstma rfrnca l sólo { s }, para lo qu hay qu prmultplcar la cuacón (3.3) por la matrz rotacón s R 0, obtnno s s s s s s N I I ω + ω ω (3.4) La rlacón ntr los tnsors nrca I y s I s uc fáclmnt, y val Alo Avllo, cnun (Unvrsa Navarra).

5 Cap. 3: Dnámca l sólo rígo 51 0 s 0 s s I R I R (3.5) En l caso plano, las cuacons Eulr son spcalmnt smpls. Pomos consrar qu toa la masa stá concntraa n l plano z0, manra qu IxzIyz0. Por tanto, la forma qu aoptan las cuacons s: Ix Ixy 0 0 s s s s s s N I ω+ ω I ω Iyx Iy I z α (3.6) 0 Ix Ixy Iyx Iy ω 0 0 I ω I z z α Como s v, os las trs cuacons son trvals, por lo qu n la práctca sólo s utlza la cuacón scalar N s I z α (3.7) Prncpo D Almbrt En las os Sccons prcnts hmos mostrao qu las lys Nwton conucn rctamnt a las cuacons Nwton-Eulr cuano éstas son aplcaas a un sólo rígo. Dchas cuacons son: F ma (3.8) N I α+ω I ω (3.9) Dfnamos, por convnnca, un sstma furzas fctco qu llamarmos furzas nrca. Prvamnt, rcormos qu para fnr corrctamnt un sstma furzas s ncsaro spcfcar su furza rsultant y su momnto rsultant rspcto un punto cualqura. En nustro caso, fnmos la rsultant las furzas nrca F y l momnto rsultant las furzas nrca rspcto al cntro grava N (tambén llamao a vcs momnto groscópco), como F ma (3.30) N I α ω I ω (3.31) Con sta fncón pomos rscrbr las cuacons Nwton-Eulr como F + F 0 (3.3) N + N 0 (3.33) El prncpo D Almbrt s basa n stas os cuacons, y stablc qu cuano a un curpo qu s muv s l añan como furzas actuants las furzas nrca, l curpo s ncuntra n qulbro státco. amos un mplo qu lustra la aplcacón l prncpo D Almbrt. Alo Avllo, cnun (Unvrsa Navarra).

6 5 Cap. 3: Dnámca l sólo rígo Emplo 1. La Fgura 3. mustra un pénulo compusto por una barra longtu L y masa M, unformmnt strbua, qu stá ncalmnt n rposo a 45º. La barra s a lbr, sn vloca ncal, y ca por fcto la grava. Para calcular la aclracón angular α con la qu comnza su caía, así como las raccons n los apoyos, utlzamos l prncpo D Almbrt. La Fgura 3.3 mustra l agrama sólo lbr la barra, n l qu s han ncluo las furzas nrca. La rsolucón l problma s hac aplcano las cuacons la státca. omano momntos n la artculacón, tnmos L L Izϕ+ Mϕ Mg 0 4 nno n cunta qu Iz 1/1ML, y spano la aclracón angular, rsulta 3g ϕ 4L Y L, M R y 45º Fgura 3.. L R x Mϕ Iz ϕ Mϕ L X Mg Fgura 3.3. Emplo. En l mcansmo bla-manvla la Fgura 3.4, la manvla gra con vloca angular constant ω al sr acconaa por un par motor τ sconoco. Sabno qu la manvla y l acoplaor tnn masa sprcabl y qu la masa la slzara s M, calcular l par motor cuano la manvla forma un ángulo 45º. Fgura 3.4. Mcansmo bla-manvla. En prmr lugar, s ncsaro rsolvr la cnmátca l mcansmo, para lo qu calculamos la vloca l punto B por mo la cuacón vb va + v BA Alo Avllo, cnun (Unvrsa Navarra).

PROBLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA

PROBLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA PROLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA PROEMAS DEL CURSO Una carga q = 2 C y 0,01 g masa, ncalmnt n rposo n un punto A, s aclraa por un campo léctrco horzontal orntao haca la zqura. Al llgar al punto,

Más detalles

Apéndice A ANÁLISIS TENSORIAL

Apéndice A ANÁLISIS TENSORIAL Apéndc A ANÁLISIS TENSORIAL El análss tnsoral s cntra n l studo d nts abstractos llamados tnsors, cuyas propdads son ndpndnts d los sstmas d rfrnca mplados para dtrmnarlos. Un tnsor stá rprsntado n un

Más detalles

Resumen TEMA 6: Momentos de inercia

Resumen TEMA 6: Momentos de inercia EMA 6: Momntos d nrca Mcánca Rsumn EMA 6: Momntos d nrca. Dfncons Sstma matral d puntos matrals d masa m, =, 2,...,. a) Momnto d nrca rspcto d un plano π md (d = dstanca d la masa m al plano π) π =Σ 2

Más detalles

El comportamiento ideal del CN sirve como estándar, contra el cual se compara el comportamiento de cuerpos reales

El comportamiento ideal del CN sirve como estándar, contra el cual se compara el comportamiento de cuerpos reales Propas raatvas curpos opa El comportamnto al l CN srv como stánar contra l cual s compara l comportamnto curpos rals El comportamnto ral s xprsa por una sr propas fnas n rlacón al CN En gnral las propas

Más detalles

Capitulo III. III 2. Métodos analíticos de análisis cinemático. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo III. III 2. Métodos analíticos de análisis cinemático. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca Captulo III III. Métoos analít análss cnmátco 1 Cnmátca y Dnámca Máqunas. III. Métoos analít análss cnmátco. Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca

Más detalles

División 5. Ejemplo de síntesis de un mecanismo articulado de barras

División 5. Ejemplo de síntesis de un mecanismo articulado de barras Vrsón 0 CAITUL MECANISMS vsón 5 Ejmplo d síntss d un mcansmo artculado d barras UTN-F Cátdra: Elmntos d Máqunas. rofsor: r. Ing. Marclo Tulo ovan Vrsón 0. sumn En sta dvsón s dscrbrá l uso d la mtodología

Más detalles

se conoce como el coeficiente de restitución.

se conoce como el coeficiente de restitución. Dtrmnacón l Cocnt Rsttucón (.-Introuccón ) una plota pn-pon Víctor Garro Castro - arro@um.cl El st artículo prsntarmos una orma xprmntal para l cálculo l cocnt rsttucón ( ) una plota pn-pon, s analzará

Más detalles

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong Dtrmnacón l Cocnt Rsttucón () una plota png-pong Víctor Garro C. Unrsa Vña l Mar, A. Agua Santa 755, Campus Rolllo, Vña l Mar, Cl. garro@um.cl, garrostr@gmal.com 3() 4668 Rsumn Est artículo prsnta una

Más detalles

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO Mcroconomía AE Tma 3. LA COMPETENCIA PERFECTA PROBLEMA REUELTO uponga qu cada una d las 144 mprsas qu forman una ndustra prfctamnt compttva tnn una curva d costs totals a corto plazo déntca qu vn dada

Más detalles

Ingeniería de las reacciones químicas

Ingeniería de las reacciones químicas Ingnría d las raccons químcas Ingnría d las raccons químcas. Un componnt dfund a través d un tubo, con ntrada por uno solo d sus xtrmos. Dntro dl tubo hay un componnt j. El componnt, raccona sgún k 0,5

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

Introducción a la técnica de Bond-Graph

Introducción a la técnica de Bond-Graph Capíítullo T1 Introduccón a la técnca d Bond-Graph 1.1 INTRODUCCIÓN En un sstma físco cualqura, la nrgía pud almacnars, dspars o ntrcambars. Cuando postrormnt s unn dos sstmas, aparcn dstntos flujos d

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEMA 5: INTRODUCCIÓN A OS MÉTODOS MATRICIAES DE CÁCUO DE ESTRUCTURAS DRTAMENTO DE INGENIERÍA MECÁNICA - MNIA INGENIERITZA SAIA ESCU TÉCNICA SUERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

UPCGRAU. Mecánica del medio continuo en la ingeniería Teoría y problemas resueltos ENGINYERIES INDUSTRIALS. Xavier Ayneto Gubert

UPCGRAU. Mecánica del medio continuo en la ingeniería Teoría y problemas resueltos ENGINYERIES INDUSTRIALS. Xavier Ayneto Gubert ENGINYERIES INDUSTRIALS UPCGRAU Mcánca dl mdo contnuo n la ngnría Toría y problmas rsultos Xavr Aynto Gubrt Mqul Frrr Ballstr ENGINYERIES INDUSTRIALS UPCGRAU Mcánca dl mdo contnuo n la ngnría Toría y

Más detalles

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO.

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. 8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. La oría conrol ópmo lnal mpo scro s nrsan por su aplcacón n l conrol por compuaor. 8. DESCRIPCION EN VARIABLES DE ESTADO A vcs nrsa obsrvar un ssma n

Más detalles

Densidad = 0.01 gramos por milímetro cúbico. Masa = gramos. Volumen = milímetros cúbicos

Densidad = 0.01 gramos por milímetro cúbico. Masa = gramos. Volumen = milímetros cúbicos Propiedades de masa de CAMPANA 1 Configuración: Predeterminado Sistema de coordenadas: -- predeterminado -- Densidad = 0.01 gramos por milímetro cúbico Masa = 367.37 gramos Volumen = 43219.75 milímetros

Más detalles

ejercicios NkT NkT NkT q de dt NkT q d dt dq dt NkT q N q NkT

ejercicios NkT NkT NkT q de dt NkT q d dt dq dt NkT q N q NkT jrccos E.- uál s la nrgía raconal molar d la molécula d odo a las dos tmpraturas antrors?. Haz srvr las nrgías raconals xprmntals. ln Q, ( ) ln! 5 v,, v 5 v ln c v d ln d d d d d 5 v v 5 v v d d 5 v v

Más detalles

DISEÑO DE EQUIPOS DE TRANSFERENCIA DE CALOR

DISEÑO DE EQUIPOS DE TRANSFERENCIA DE CALOR DISEÑO DE EQUIPOS DE TRNSFERENCI DE CLOR Intrcambaors obl tubo Los ntrcambaors obl tubo son muy populars, sncllos construr y fácls ntnr. Son muy comuns spcalmnt cuano la furza mpulsora s gran y l ára transfrnca

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN Anass d acas y amna 34 ANEJO I A. ELEMENOS DE VIGA DE EULER ERNOULLI LIRES DE ROACIÓN La toría d vgas d Eur-rnou s robabmnt uno d os robmas modo más sms d a formuacón rstrngda d a astcdad na. La rstrccón

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Ciencia Ergo Sum ISSN: Universidad Autónoma del Estado de México México

Ciencia Ergo Sum ISSN: Universidad Autónoma del Estado de México México Cnca rgo Sum ISSN: 45-69 cnca.rgosum@yahoo.com.mx Unvrsa Autónoma l stao Méxco Méxco Gutérrz, César Onas no lnals n l plasma Cnca rgo Sum, vol. 8, núm., novmbr, Unvrsa Autónoma l stao Méxco Toluca, Méxco

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Factor de devanado en máquinas rotativas de C.A.

Factor de devanado en máquinas rotativas de C.A. Factor vanao n máqunas rotatvas C.A. Ramón Gullrmo Borrás Formoso Lcncao n Marna Cvl (Máqunas Navals) Ingnro Técnco Inustral (Elctrca). Ejrcó profsonalmnt como Ofcal Máqunas n vrsos buqus la M.M. y n Ingnría

Más detalles

3.1 OPERADORES DIFERENCIALES a) Gradiente de un c. escalar, U:

3.1 OPERADORES DIFERENCIALES a) Gradiente de un c. escalar, U: Obs.: Dfrncal d na mantd varabl n 3(ó 2) 1) En nral (Análss): S f dpnd d (y 1, y m ), df := y1 f dy 1 + + ym f dy m Lo msmo ocrr s s trata d na mantd vctoral d n componnts, F: df := y1 F dy 1 + + ym F

Más detalles

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores UIVERSI CIOL E MR EL PLT - 017 FCULT E IGEIERÍ - EPRTMETO E FÍSIC CÁTER: Físca d los Smconductors SERIE 4: vl d Frm- Smconductors 1.- Calcular la nrgía d Frm para l oro a T=0K..- a) Calcular la nrgía d

Más detalles

Teoría cuántica de Schroedinger

Teoría cuántica de Schroedinger Caíulo 5 Toría cuánca Schrongr Dfcncas la oría Bohr. La oría Bohr roujo una lcacón lausbl l áoo H, ro no uo lcar o Las frncas nr las nnsas las línas scrals o La ullca algunas línas o La foracón agrgaos

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

GENERADORES DE BARRIDO DE TENSIÓN

GENERADORES DE BARRIDO DE TENSIÓN GENERADORES DE BARRDO DE TENSÓN RUTO DE BARRDO TRANSSTORZADO ON ORRENTE ONSTANTE El funconamnto d t crcuto dfn como, la carga un condnador lnalmnt a partr d una funt d corrnt contant. Excpto para valor

Más detalles

Sección compuesta E 2. Fase I

Sección compuesta E 2. Fase I ACULTAD DE NENERÍA HORMÓN 74.05 Sccón compusta E 2 as as E as Ι = La vga prtnsada soporta su pso propo, l pso dl ncofrado, l pso dl hormgón frsco d la losa y las sobrcargas d hormgonado. as ΙΙ = La sccón

Más detalles

GENERADORS DE CORRENT CONTINU DINAMOS

GENERADORS DE CORRENT CONTINU DINAMOS GENERADORS DE CORRENT CONTIN DINAMOS Gnradors d corrnt contnu Estructura ntrna dls gnradors d corrnt contnu Estructura dl gnrador d c.c. ça polar bobna d xctacó Rotor dl gnrador rncp d funconamnt Tot gnrador

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Typeset by GMNI & FoilTEX

Typeset by GMNI & FoilTEX Typst by GMNI & FoilTEX CÁLCULO MATRICIAL DE ESTRUCTURAS DE BARRAS (Articuladas 2D-3D) F. Navarrina, I. Colominas, M. Castliro, H. Gómz, J. París GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

EJERCICIOS RESUELTOS DE TRANSFORMADA DIRECTA DE LAPLACE

EJERCICIOS RESUELTOS DE TRANSFORMADA DIRECTA DE LAPLACE Univrsidad Nacional Exprimntal dl Táchira. Dpartamnto d Ingniría Elctrónica. Núclo d Instrumntación y Control. Profsor: Tito Gonzálz. San Cristóbal, Juvs 15 d Octubr dl 009. EJERCICIOS RESUETOS DE TRANSFORMADA

Más detalles

Electrotecnia General

Electrotecnia General Dpartamnto d Ingnría Eléctrca Unvrsdad Naconal d Mar dl Plata Ára Elctrotcna Elctrotcna Gnral (para la Carrra Ingnría Industral) METODOS DE ANALISIS DE CIRCUITOS ELECTRICOS EN C.C. Y C.A. Profsor Adjunto:

Más detalles

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

Tema 2. Termodinámica Estadística. Problemas

Tema 2. Termodinámica Estadística. Problemas ma. rmodnámca Estadístca Problmas jrccos. La apromacón d trlng (ln! ln - ) prmt valuar l logartmo d factorals d númros grands con un rror puño. Calcula y rprsnta l rror rlatvo (n %) obtndo al utlzar la

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

Control inversores trifásicos

Control inversores trifásicos Conrol nvror rfáco Tranformaa Conrol nvror rfáco Tranformaa αβ Spac cor Moulaon SPWM Conrolaor baao n SPWM E rfrnca roaoro Tranformaa Park Inrpracón l conrolaor PI obr roaoro Obncón la ranformaa αβ a b

Más detalles

ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS

ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS Sbastán Toro *, Vctoro Sonzogn, Carlos Numan * GIMNI, Unvrsdad Tcnológca Naconal, F.R. Santa F. Lavas

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

4) Aplicación del Método de Hamilton-Jacobi para la integración. Partiendo de la Acción S:

4) Aplicación del Método de Hamilton-Jacobi para la integración. Partiendo de la Acción S: 4) Alcacón dl Método d Hamlton-Jacob ara la ntgracón. Partndo d la Accón S: S S S + H( q,, qn,,,, t) =, (E.H.J) t q q n ara H (, q,) t n lugar d n-cuacons dfrncals d las cuacons d Hamlton, s tndrá una

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Universo de Einstein. k=1 curvatura positiva k=0 universo plano k=-1 curvatura negativa

Universo de Einstein. k=1 curvatura positiva k=0 universo plano k=-1 curvatura negativa 3 ( & % 8 ( % E & #! * G) & # ' $ 3 ' $ Para l caso rlativista, la cuación s, l Univrso. Notar qu k lgimos las unias Univrso Einstin La nrgía n l campo grava Nwton s, 3 ( & % 8 ( % kc " c & #! * G) & #!

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. ampo léctrco y conductors 5. Enrgía a lctrostátca tca n sstmas con conductors Gabrl ano Gómz, G 9/ Dpto. Físca F Aplcada III (. Svlla ampos Elctromagnétcos tcos Ingnro d Tlcomuncacón III. ampo léctrco

Más detalles

CONTROL PREDICTIVO DE TANQUES ACOPLADOS

CONTROL PREDICTIVO DE TANQUES ACOPLADOS CONTROL PREDICTIVO DE TANQUES ACOPLADOS J.R. Llata, J. P. Ora, E.G. Saraba, J. Arc, A. Robls Dpartamnto d Tcnología Elctrónca Ingnría d Sstmas Automátca E.T. S. Ingnros Industrals Tlcomuncacón. Unvrsdad

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA CAPÍTULO 1: RÉGIMEN ESTACIONARIO

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA CAPÍTULO 1: RÉGIMEN ESTACIONARIO TOÍA D LOS CICUITOS I CAPÍTULO V. 9..08 S. NIQU PULIAFITO UNIVSIDAD TCNOLÓGICA NACIONAL FACULTAD GIONAL MNDOZA APUNTS D CÁTDA D TOÍA D LOS CICUITOS I Prof. Dr. Ing. S. nrqu Pulafto -mal pulafto@frm.utn.du.ar

Más detalles

Dinámica macroeconómica con metas de inflación y déficit fiscal.

Dinámica macroeconómica con metas de inflación y déficit fiscal. Dinámica macroconómica con mtas d inflación y déficit fiscal. Waldo Mndoza Bllido Dpartamnto d Economía-PUCP XXVII Encuntro d Economistas BCRP Lima, 13 d novimbr d 2009 Contnido. 1. Antcdnts y objtivos.

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son :

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son : RDICTIVIDD El Carbono 4, 4 C, s un misor β - con un priodo d smidsintgración d 576 años. S pid: a) Dscribir todas las formas d dsintgración radiactiva d los núclos xplicando los cambios n los mismos y

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong Dtrmnacón dl Cocnt d Rsttucón () d una plota d pn-pon Rsumn Víctor Garrdo Castro Unrsdad d Vña dl Mar arrdo@um.cl ; arrdostr@mal.com 3() 4668 El prsnt artículo prsnta una orma xprmntal para l cálculo dl

Más detalles

EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE 1 APELLIDOS, NOMBRE:

EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE 1 APELLIDOS, NOMBRE: DEPARTAMENTO DE INGENIERÍA AUDIOVISUAL Y COMUNICACIONES ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE MADRID EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2.

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2. Tara. Rsulta 1. Una art d un instrumnto lctrónico incluy un disositivo qu db sr caaz d roorcionar una corrint léctrica d 10 - A or mdio d fcto fotoléctrico. Si la funt d radiación usada tin una λ =.5 10-7

Más detalles

Carga térmica : todo aquello que modifique la temperatura seca y humedad relativa del aire interior

Carga térmica : todo aquello que modifique la temperatura seca y humedad relativa del aire interior Carga térmca t calfaccón Carga térmca : todo aqullo qu modfqu la tmpratura sca y humdad rlatva dl ar ntror T s φ T s W S ntrcamba calor (s modfca T s S ntrcamba vapor d agua (s modfca W Carga snsbl : Potnca

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA SCULA ÉCNCA SUPROR D NGNROS D LCOMUNCACÓN UNRSDAD POLÉCNCA D ALNCA ANNAS 7-no-3 PROBLMA Una antna conocia po los aioaficionaos como W8JK, consta n su configuación más simpl os ipolos mu póimos longitu

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema). Problema 1: Una bola se deja caer desde una altura h sobre el rellano de una escalera y desciende

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

CAPÍTULO I ESTÁTICA DE PARTÍCULAS

CAPÍTULO I ESTÁTICA DE PARTÍCULAS Resstenca e Materales. Capítulo I. Estátca e partículas. CAPÍTULO I ESTÁTICA DE PARTÍCULAS. Prncpos funamentales Los prncpos funamentales e la estátca e partículas se basan en los tres prncpos e Newton.

Más detalles

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión Rgrsón Smpl y Múltpl Part II Profsor Oscar Mllons Borrador, Octubr 1, 8 Supustos n l modlo d rgrsón 1.- Para cada valor d X, xst un grupo d valors d Y qu tnn una dstrbucón normal. (grafcar sta da).- Las

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

i R R 2 Denominamos solución de R, a los valores de las corrientes y voltajes de las componentes dentro de R.

i R R 2 Denominamos solución de R, a los valores de las corrientes y voltajes de las componentes dentro de R. Capítulo 5 1 EDES EQUIVALENTES En aradas stuacons no ntrsa conocr todos los alors d los oltajs y corrnts d una rd, sno sólo un pquño conjunto d llos. Pudn logrars smplfcacons mportants, n l cálculo d una

Más detalles

6. Elementos tipo viga

6. Elementos tipo viga Univrsidad Simón Bolívar. Elmntos tipo viga En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una viga d scción transvrsal variabl A, módulo d lasticidad E, momnto d inrcia

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles

Reguladores de compensación

Reguladores de compensación Rgulaors compnsación Dfinimos la salia saa para l sistma m D N La función transfrncia gnraliaa pos un rtaro ao por m. n n n q q q q A a a a b b b b G 0 0 Conicions: 0 q b, timpo murto la planta, G tin

Más detalles

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx Elaborao or: Jonn Coquuanca Lizarraga. Rsolvr: 5 5 4 3 Solución: la solución la ED sta aa or, g Para allar la solución omogéna s acn la siguints consiracions: 0, ED orn surior Alicacions Q D m 5 : D D

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

Sistemas Trifásicos. Índice Definiciones y diagramas vectoriales

Sistemas Trifásicos. Índice Definiciones y diagramas vectoriales Fundamntos d cnología Eléctrica (2º M) ma istmas riásicos Damián Laloux, 200 Índic Dinicions y diagramas vctorials istma triásico quilibrado cuncia d ass Conxión n strlla nsions d as o simpls, corrints

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Tema 2: TEOREMAS ENERGÉTICOS

Tema 2: TEOREMAS ENERGÉTICOS ema : EORES ENERGÉICOS Supongamos que las cargas aplcadas al sóldo crecen, progresvamente, desde cero hasta su valor fnal de una manera contnua. En ese caso, el trabajo W realzado por todas las cargas

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

TEMA IV - PRIMER PRINCIPIO DE LA TERMODINÁMICA

TEMA IV - PRIMER PRINCIPIO DE LA TERMODINÁMICA ro. Arturo F. Abrhard - ro. María R. Abrhard TEMA IV - RIMER RINCIIO DE LA TERMODINÁMICA El rncpo d Consracón d la Enrgía y rmr rncpo d la Trmodnámca Dsd mucho tmpo atrás, los cntícos han acptado la da

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles