Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4."

Transcripción

1 CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓNN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES LÍMITES INFINITOS: ASÍNTOTAS VERTICALES LÍMITES EN EL INFINITO: ASÍNTOTAS HORIZONTALES LÍMITES INFINITOS EN EL INFINITO: ASÍNTOTAS OBLICUOAS ALGUNOS LÍMITES A TENER EN CUENTAA RESOLUCIÓN DE INDETERMINACIONES MÁS SOBRE ASÍNTOTAS ASÍN 0.. ASÍN 0.. ASÍN.- CONTINUIDAD..... CON.. CON.. CLA.. TEO NTOTAS VERTI NTOTAS HORIZONTALES... NTOTAS OBLIC NCEPTO DE FUNCIÓN CONTIN NTINUIDAD DE LAS FUNCIONES ELEMENTA ASIFICACIÓN DE LAS DISCONTINUIDADES.. REMAS IMPOR ICALES CUAS... 0 NUA... ALES RTANTES... 7 Objetivos udametales Coocer el cocepto de límite de ua ució e u puto saber calcular límites secillos mediate ua tabla de valores. Saber calcular límites de ua ució, resolviedo las correspodietess idetermiacioes cuado éstas se presete. Determiarr las asítotas de ua ució. Saber estudiar la cotiuidad de ua ució, tato e u puto como e u itervalo: a partir de su gráica aalíticame te. Clasiicar las discotiuidades dee ua ució. Relacioar la cotiuidad, e u itervalo cerrado, co sus etremos absolutos.

2 Bloque III: Aálisis Matemático.- MAPA CONCEPTUAL DE LA UNIDAD a a Límites b Resolució de idetermiacioes Uidad Cotiuidad Clasiicació de las discotiuidades a a.- CONCEPTO DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO EJERCICIO:. Observado la gráica de la ució a) b) c) l 0 d) l 0, calcula el valor de los siguietes límites: e) ) g) h) Matemáticas Aplicadas a las Ciecias Sociales II

3 Deiició ituitiva: Sea : D cuado a Departameto de Matemáticas ua ució, a D' L. Diremos que el límite de L, sii para valores de cada vez más a próimos a a (distitos de a), los valores de las imágees es L, escribiremos está cada vez más próimas a L. EJERCICIO:. Dádole a valores próimos a, tato maores como meores que él, calcula hacia que valor tiede las siguietes ucioes: a) d) b) e) c) ).- LÍMITES LATERALES: CARACTERIZACIÓN El límite por la izquierda es el valor al que tiede la ució a a siedo meor que a. Se deota por: ó a a a El límite por la derecha es el valor al que tiede la ució a siedo maor que a. Se deota por: ó a a a Esto da lugar a la siguiete caracterizació:, a a a a a E cuo caso a a a cuado la variable se aproima cuado la variable se aproima a EJERCICIO:. Calcula los límites laterales el límite, cuado eista, de las siguietes ucioes e los putos que se idica: si a) e si si b) e si.- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES Se tiee las siguietes propiedades de los límites: ) k k a Cipri Límites Cotiuidad

4 Bloque III: Aálisis Matemático ) g g a a a ) g g a a a a ) siempre que a g g g a a 0 g ) a siempre que EJERCICIO: a a g. Sabiedo que las ucioes tiede a, calcula el valor de los siguietes límites: 0 a g tiee por límite 5, respectivamete, cuado a) 5 g b) g c) 7 g 5.- LÍMITES INFINITOS: ASÍNTOTAS VERTICALES Decir que sigiica que cuado tiede a a, co a toma valores maores a que cualquier úmero real k: Aálogamete, decir que a sigiica que cuado tiede a a, co a, toma valores cada vez más pequeños:, Llamamos asítotas de ua ució a las rectas que se aproima la ució e el iiito. La recta = a es ua asítota vertical de a a sii eiste alguo de los siguietes límites a a a a a 6.- LÍMITES EN EL INFINITO: ASÍNTOTAS HORIZONTALES Decir que b sigiica que cuado se hace ta grade como queramos, la ució toma valores mu próimos u úmero ijo b: Matemáticas Aplicadas a las Ciecias Sociales II

5 Departameto de Matemáticas La recta = k es ua asítota horizotal de ó k k sii eiste alguo de los siguietes límites: b b b b 7.- LÍMITES INFINITOS EN EL INFINITO: ASÍNTOTAS OBLICUOAS Tambié puede suceder que, lo que sigiica que grades a la vez. Por tato: k para todo p, siedo k p úmeros arbitrariamete grades. La recta = m +, m 0, es ua asítota oblicua de m. límites: m 0 e cuo caso m m 0 se hace iiitamete sii eiste alguo de los siguietes m 8.- ALGUNOS LÍMITES A TENER EN CUENTA Ates de meteros de lleo e la resolució de idetermiacioes, vamos a estudiar alguos límites mu secillos, pero que aparece mucho que por tato es ecesario teerlos siempre presetes: () Cipri Límites Cotiuidad 5

6 Bloque III: Aálisis Matemático g () () h () i Matemáticas Aplicadas a las Ciecias Sociales II 6

7 Departameto de Matemáticas (5) E geeral: Para impar: Para par: U par de cosideracioes a teer e cueta al calcular límites: a) Si P a... a a 0 es u poliomio, etoces P el resultado sólo depede del moomio a. b) Para límites e el iiito de ucioes racioales se tiee la siguiete regla práctica, dode P a... a a 0 P b m m... b b 0.: P Q si grado(p) gradoq a si grado(p) gradoq b 0 si grado(p) grado Q 9.- RESOLUCIÓN DE INDETERMINACIONES Cuado al calcular el límite de ua suma, u producto, u cociete o ua potecia de ucioes o se puede aplicar las propiedades de los límites, es decir, ha que hacer u estudio particular de cada caso, suele decirse que estos límites so ua idetermiació. k INDETERMINACIÓN DEL TIPO CON k 0 0 Se calcula los límites laterales:, a a- Si eiste ambos límites coicide su valor, etoces: a a a Si o eiste alguo de los límites laterales o o coicide su valor, etoces, o eiste. a INDETERMINACIÓN DEL TIPO 0 0 a) Para ucioes racioales Cipri Límites Cotiuidad 7

8 Bloque III: Aálisis Matemático Se descompoe umerador deomiador e actores se simpliica. b) Para ucioes irracioales Si se trata de ua ució co raíces cuadradas e el umerador (o e el deomiador), multiplicamos umerador deomiador por la epresió cojugada del umerador (o del deomiador). INDETERMINACIÓN DEL TIPO Se divide umerador deomiador por la maor potecia de que aparezca e la ució (basta co dividir por la maor potecia de del deomiador). INDETERMINACIÓN DEL TIPO a) La ució es dierecia de dos ucioes racioales Se eectúa dicha operació. b) La ució es dierecia de ucioes irracioales Multiplicamos dividimos por la epresió cojugada de la ució. INDETERMINACIÓN DEL TIPO 0 Trasormar esta idetermiació e ua de las ateriores, geeralmete eectuado las operacioes. INDETERMINACIÓN DEL TIPO Se resuelve empleado la siguiete igualdad: g g a e dode a sabemos que a e EJERCICIOS: 5. Calcula los siguietes límites, resolviedo las idetermiacioes que aparezca: k a) Idetermiació del tipo co k b) Idetermiació del tipo 0 0 c) Idetermiació del tipo d) Idetermiació del tipo Matemáticas Aplicadas a las Ciecias Sociales II 8

9 Departameto de Matemáticas e) Idetermiació del tipo 0 6 ) Idetermiació del tipo Calcula el valor de los siguietes límites: ) ) ) 5) 5 7) 8) 5 0 0) ) ) ) 6) 7 8) 9 ) 6) 9) e e ) 5) 7) ) 7 0) ) 5 ) ) 5 ) 6) 5 5 5) 7) MÁS SOBRE ASÍNTOTAS 0.. Asítotas verticales La recta = a es ua asítota vertical de a a sii eiste alguo de los siguietes límites Observacioes: () Ua ució puede teer iiitas asítotas verticales. a Cipri Límites Cotiuidad 9

10 Bloque III: Aálisis Matemático () E las ucioes racioales las asítotas verticales se halla e los valores que aula al deomiador. () La gráica ele la ució o puede cortar a las asítotas verticales. 0.. Asítotas horizotales La recta = k es ua asítota horizotal de k sii eiste alguo de los siguietes límites: Observacioes: () Ua ució tiee como máimo dos asítotas horizotales. k () La gráica de la ució puede cortar a las asítotas horizotales. () Si e ua ució racioal el grado del umerador es meor que el grado del deomiador la recta = 0 (el eje OX) es ua asítota horizotal. () Si e ua ució racioal el grado del umerador el del deomiador so iguales la recta = ) será ua asítota horizotal (b idica el cociete etre los coeicietes líderes del umerador del deomiador). (5) Si e ua ruició racioal el grado del umerador es ua uidad maor que el del deomiador la ució preseta ua asítota oblicua o ha asítotas horizotales. (6) Si e ua ució racioal el grado del umerador es dos o más uidades maor que el del deomiador ha asítota horizotal. 0.. Asítotas oblicuas La recta = m +, m 0, es ua asítota oblicua de sii eiste alguo de los siguietes límites: m 0 m 0 e cuo caso m m Observacioes: () Ua ució puede teer como máimo dos asítotas oblicuas. () Si ua ució tiee asítota oblicua o tiee asítota horizotal recíprocamete. () Si e ua ució racioal el grado del umerador es dos o más uidades maor que el del deomiador, o ha asítota oblicua. () La gráica de la ució puede cortar a las asítotas oblicuas e uo o varios putos. EJERCICIOS: 7. Averigua las asítotas horizotales verticales de las siguietes ucioes, cuado eista: a) 6 d) b) 7 e) Matemáticas Aplicadas a las Ciecias Sociales II 0

11 Departameto de Matemáticas c) 6 ) 8. Estudia las asítotas de las siguietes ucioes. ) ) 9 ) ) 5) 6) 7) 8) 9) 0) ) ) ) ) 5) 5 9 6) 7) 8) 5 9. Dadas las siguietes ucioes calcula sus asítotas horizotales, verticales oblicuas, si eiste: a) ( ) b) j ( ) c) g ( ) d) k ( ) e) h ( ).- CONTINUIDAD.. Cocepto de ució cotiua Ua ució : D es cotiua e el puto a Dom cuado a a () Aclaracioes: Para que ua ució sea cotiua e u puto, dicho puto ha de perteecer a su domiio de deiició. E otro caso, o tiee setido hablar de cotiuidad. Cipri Límites Cotiuidad

12 a, a a a a Bloque III: Aálisis Matemático No tiee setido decir que la ució o es cotiua e 0, por que dicho puto o perteece a su domiio. La codició () de cotiuidad implica: o a o o Dichos valores coicida: a a Ua ució es cotiua cuado lo es e todos los putos de su domiio de deiició. Si ua ució o es cotiua e u puto se dice que es discotiua e dicho puto. Ua ució es cotiua por la derecha e u puto si eiste límite por la derecha e él coicide co el valor que toma la ució e ese puto: cotiua e a por la derecha a Ua ució es cotiua por la izquierda e u puto si eiste límite por la izquierda e él coicide co el valor que toma la ució e ese puto: cotiua e a por la izquierda a Caracterizació: Ua ució es cotiua e u puto cuado es cotiua por la izquierda por la derecha e ese puto: cotiua e a cotiua por la derecha por la izquierda e a Ua ució es cotiua e ab, cuado: () Sea cotiua e el itervalo abierto ab, () Sea cotiua por la derecha e a () Sea cotiua por la izquierda e b.. Cotiuidad de las ucioes elemetales Las ucioes poliómicas, a a... a a0, so cotiuas e todos los putos. P Las ucioes racioales,, so cotiuas e su domiio. Q La ució epoecial, a a e, es cotiua siempre que lo sea. La ució logarítmica, log, es cotiua e todo puto, tal que 0 sea cotiua. Las ucioes trigoométricas, se e cos, so siempre cotiuas. La ució tg es cotiua e su domiio: k co k. Matemáticas Aplicadas a las Ciecias Sociales II

13 Departameto de Matemáticas Las ucioes deiidas a trozos será cotiuas si lo so e sus itervalos respectivos e los putos de uió. E estos putos habrá que ver que la ució esté deiida que los límites laterales eista sea iguales. EJERCICIOS: 0. Estudia la cotiuidad de la siguiete ució deiida a trozos: si 9 si 6 0 si. Dada la ució t si t si 8 si determia el valor de t para que la ució sea cotiua e todo su domiio.. Dada la ució. Determiar a 5 si 5 5, estudiar su cotiuidad. 0 si 5 b para que la siguiete ució sea cotiua: si 0 ab si 0 5 si. Halla los valores de los parámetros que aparece para que la siguiete ució sea cotiua: k 5 si h si 5. Hallar el valor de k para que cada ua de las siguietes ucioes sea cotiua: k si k si a) b) kk si k si 6. Estudia la cotiuidad de las siguietes ucioes: si a) a si si b) h h si d) e) k si k si 6 si k si Cipri Límites Cotiuidad

14 Bloque III: Aálisis Matemático k c) si 0 si 0 ) k5 si k si 7. Po u ejemplo de ua ució dode alle sólo ua de las tres codicioes ecesarias para que sea cotiua e u puto. 8. Dada la ució: calcula el valor de b para que b 8 9. Estudia la cotiuidad de las siguietes ucioes: si, 8 06 a) k si si si b) g k si 0 c) h sea cotiua e. Es cotiua e? 0. Calcula a b para que sea cotiua la siguiete ució: a b. Estudia la cotiuidad de la ució.. Se ha ivestigado el tiempo (T, e miutos) que se tarda e realizar cierta prueba de atletismo e ució del tiempo de etreamieto de los deportistas (, e días), obteiédose que Matemáticas Aplicadas a las Ciecias Sociales II

15 Departameto de Matemáticas s 00 si 0 0 T,5 si a) Justiicar que la ució T es cotiua. b) Se puede airmar que cuato más se etree u deportista, meor será el tiempo empleado e realizar la prueba?. La caliicació obteida por u estudiate e u eame depedee de las horas de preparació a través de la ució si si 5 0,, a) Tiee setido airmarr que a maor tiempo de preparació correspode maor caliicació? b) Es dicha ució cotiua?. Dada la ució a si si l si a) Calcular a para que la ució sea cotiua e. b) Represeta la ució para a... Clasiicació de las discotiuidades ) Si L L a etoces se dice que tiee ua discotiuidad evitablee a e el puto a. El valor que deberíamos darle a la ució e dicho d putoo para que uera cotiua e él se llama valor verdadero de la ució e a, es: a : EJERCICIO: 5. Estudia la cotiuidad de la siguiete ució, clasiicado suu discotiuidad: a Cipri Límites Cotiuidad 5

16 Bloque III: Aálisis Matemático si si ) Si L, L' L L' se dice que preseta ua a a discotiuidad de salto o de primera especie e a. E este caso, el valor a a se llama salto de la ució e a, puede ser iito o iiito. a, a a a EJERCICIO: 6. Estudia la cotiuidad de la siguiete ució, clasiicado su discotiuidad: si si a ) Las discotiuidades que o sea i evitables i de primera especie se deomia discotiuidades de seguda especie, es decir, cuado al meos uo de los límites laterales o eista. a a L a, a EJERCICIOS: 7. Estudia la cotiuidad de la siguiete ució, clasiicado su discotiuidad: si 0 si 0 Matemáticas Aplicadas a las Ciecias Sociales II 6

17 Departameto de Matemáticas 8. Estudia la cotiuidad de las siguietes ucioes, clasiicado sus discotiuidades: si 9 si a) c) si si si si b) d) si si.. Teoremas importates U par de resultados que es importate coocer memorizar: Teorema de Weierstrass: Toda ució cotiua e u itervalo de la orma ab, tiee máimo míimo absolutos. Este teorema es de eistecia, es decir, os dice que ha máimo míimo absolutos, pero o cuáles so. Para determiarlos, osotros represetaremos la ució. Bajo la hipótesis adicioal de que la ució sea iectiva, el máimo el míimo (absolutos) se alcaza e los etremos del itervalo. Lo úico que ecesitamos coocer sobre las ucioes iectivas es la siguiete iterpretació geométrica: Ua ució es iectiva, e u itervalo, si cualquier recta paralela al eje OX sólo corta a la gráica de la ució e u úico puto (e dicho puto). ució iectiva e ab, ució o iectiva e ab, g a b a b Cipri Límites Cotiuidad 7

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

Límite de una función en un punto

Límite de una función en un punto Límite de ua ució e u puto Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c ( tiede a c por la izquierda ): toma valores cada vez más cercaos a c, pero meores

Más detalles

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual Tema I : Fucioes reales de variable real. Límites y cotiuidad 1. La recta real : itervalos y etoros. 2. Fucioes reales de variable real. 3. Fucioes elemetales y sus gráficas. 4. Límites de fucioes reales

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA Proesora: María José Sáchez Quevedo FUNCIÓN DERIVADA. DERIVADA DE UNA FUNCIÓN EN UN PUNTO ( Siiicado eométrico). ECUACIÓN DE LA RECTA TANGENTE Y DE LA NORMAL A UNA CURVA EN UN PUNTO. FUNCIÓN DERIVADA 4.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

TEMA 25 (Oposiciones de Matemáticas)

TEMA 25 (Oposiciones de Matemáticas) TEMA 25 (Oposicioes de Matemáticas) LÍMITES DE FUNCIONES. CONTINUIDAD Y DISCONTINUIDAD. TEOREMA DE BOLZANO.. Itroducció. 2. Límites de fucioes. 2.. Límite de ua fució e u puto. 2.2. Límites laterales.

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

10 Introducción al concepto de límite

10 Introducción al concepto de límite Itroducció al cocepto de límite PIENSA Y CONTESTA Segú Zeó de Elea, quié gaará la carrera: Aquiles o la tortuga? Segú Zeó de Elea la carrera la gaará la tortuga. Por qué o es correcto el razoamieto de

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

Objetivo: Concepto de Límite

Objetivo: Concepto de Límite --0 Sesió Coteidos: Cocepto ituitivo de límite. > Coceptos básicos propiedades de alguos límites. > Cálculo de límite de alguas fucioes. Objetivo: Determia límite de fucioes, sólo por reemplazo. Determia

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad : Números Complejos. Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Tema. ALICACIONES DE LAS DERIVADAS: RERESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos de crecimieto

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Números racionales. Caracterización.

Números racionales. Caracterización. Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen: CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Competencia Matemática E. Paenza. Sexta Realización 1991

Competencia Matemática E. Paenza. Sexta Realización 1991 Competecia Matemática E. Paeza Seta Realizació 99 Resolució de los problemas Participate N : Problema. Sea C u cuadrilátero coveo. Si el área del cada uo de los cuatro triágulos determiados por las dos

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Preposición 1: Si s es cota superior de A y además s pertenece a A, implica que s es Máximo y Supremo de A.

Preposición 1: Si s es cota superior de A y además s pertenece a A, implica que s es Máximo y Supremo de A. Igacio Domigo Trujillo Silva itrujill@ig.uchile.cl Supremos e Íimos Preposició : Si s es cota superior de A y además s perteece a A, implica que s es Máximo y Supremo de A. Preposició : Si s es cota ierior

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

DEF Llamaremos número exacto a la cifra que representa el valor íntegro o completo de la cantidad.

DEF Llamaremos número exacto a la cifra que representa el valor íntegro o completo de la cantidad. . Itroducció. 2. Error Absoluto. 3. Cifras Exactas. 4. Error Relativo. 5. Problema directo e iverso. 5.. Problema directo. 5.2. Problema iverso. 6. Operacioes co úmeros aproximados. 6.. Suma de úmeros

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

Propiedades generales de los radicales

Propiedades generales de los radicales Propiedades geerales de los radicales Cosiderarque,mykso úmeros aturales, además e y soúmerosrealespositivos. ( ) Propiedad : y y y y Propiedad : Matemáticas I Propiedades geerales de los radicales Propiedad

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E. LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles