W i. = PdV. f = F dl = F dl cosϕ

Tamaño: px
Comenzar la demostración a partir de la página:

Download "W i. = PdV. f = F dl = F dl cosϕ"

Transcripción

1 aletos Introduccón En el capítulo 2.09, se establecó que la expresón matemátca del prmer prncpo no es sólo la expresón del prncpo de conservacón de la energía. Dcho prncpo tene un contendo mucho más amplo y a partr de él pueden deducrse propedades muy mportantes de un gas perecto, como vamos a ver a contnuacón. Supongamos que una masa de un gas perecto, que se encuentra ncalmente en equlbro termodnámco, está contenda en un compartmento A de un recpente de paredes adabátcas, undo a otro compartmento B, en el que se ha hecho el vacío, por medo de una llave de paso debdamente aslada, que, ncalmente, está cerrada, como ndca la gura 1. A A FIG. 1 B B Se anota la lectura del termómetro A del compartmento A, y en un momento dado se abre la llave de paso. El gas expermenta una expansón brusca al pasar parte del msmo al compartmento B. Este tpo de proceso, que tene lugar cuando un gas se expande en el vacío dentro de un recnto aslado térmcamente, recbe el nombre de expansón lbre. S se deja transcurrr un tempo sucente para que el sstema alcance un nuevo estado de equlbro termodnámco, y se mde la temperatura nal A y B en ambos compartmentos, se encuentra que: A = B = A, Es decr, la temperatura nal en ambos compartmentos es gual que la ncal. Analcemos cuáles han sdo las varacones energétcas del gas durante este proceso. El gas no ha ntercambado calor con el medo exteror porque las paredes del recpente son adabátcas. En cuanto al trabajo realzado, no se puede calcular a partr de la expresón: W = PdV porque el proceso no es cuas-estátco ya que la expansón es brusca y, como se recordará, un proceso cuas-estátco debe ser muy lento. De modo que el cálculo del trabajo debe realzarse a partr de: W = F dl = F dl cosϕ Pero F es la uerza que se ejerce sobre el gas durante la expansón y ésta es nula porque al estar ncalmente vacío el compartmento B, no hay nngún agente ísco que se oponga a la expansón del gas. Las paredes del recpente ejercen uerzas sobre el gas pero no realzan trabajo porque al ser rígdas e nmóvles no permten el desplazamento de sus puntos de aplcacón. Por consguente, puesto que el calor ntercambado y el trabajo realzado son nulos, aplcando el prmer prncpo de la termodnámca: se llega a la conclusón de que la varacón de energía nterna es nula, y puesto que la varacón de la temperatura ha sdo gualmente nula, parece haber una estrecha relacón entre estos hechos. Pero antes de analzar más a ondo esta relacón, convene poner especal atencón en el contendo de las armacones anterores. Obsérvese que hemos establecdo que la varacón de la energía nterna y de la temperatura es nula. No hemos armado en modo alguno que la energía nterna y la temperatura hayan permanecdo constantes. Se debe poner especal cudado en no conundr tales asertos ya que el hecho de que las varacones de la energía nterna y de la temperatura sean nulas no mplca que hayan permanecdo constantes. Cualquera de ellas, a partr de su valor ncal, ha poddo dsmnur y luego aumentar en la msma medda, de orma que su valor nal sea gual que el ncal, y por lo tanto no ha permanecdo constante. De hecho, a medda que el gas pasa del compartmento A al B, la temperatura del gas que va quedando en A dsmnuye lgeramente, y la del gas que va pasando a B aumente tambén lgeramente. Al nal, dejando transcurrr tempo sucente, la temperatura en A y en B son guales, e guales a la temperatura ncal en A, A. De cualquer manera, se observa que: ΔU =U U =Q W

2 2 aletos La varacón de energía nterna de un gas perecto es nula cuando es asmsmo nula la varacón de su temperatura absoluta. La experenca descrta anterormente es una dealzacón de una sere de expermentos realzados por Joule, en 1843, para determnar, junto con el equvalente mecánco del calor, la dependenca de la energía nterna de un gas real con la temperatura. Los expermentos con gases reales realzados posterormente por derentes nvestgadores demostraron que la temperatura nal no era gual a la ncal. De modo que La energía nterna de un gas real es uncón, en general, de dos de las tres varables termodnámcas P, V y. No obstante, s la experenca de Joule se lleva a cabo con cantdades de gas cada vez menores, se observa que, A bajas presones, la varacón de la temperatura es práctcamente nula, sendo nula la varacón de la energía nterna al varar el volumen ocupado por el gas. Una vez más, se comprueba que, a bajas presones, el comportamento de un gas real se aproxma al comportamento deal de un gas perecto. Se postula, por tanto, que, para un gas perecto: es decr, du dv = 0 La varacón de la energía nterna de un gas perecto al varar el volumen, s la temperatura permanece constante, es nula. Y, puesto que entre las varables P, V y de un gas perecto exste una relacón de dependenca, expresada por la ecuacón de estado: PV = nr derencando los dos membros, tenendo en cuenta que no varía: de donde, y susttuyendo dv en [2.13-1] de donde, se deduce que: du dv PdV + VdP = 0 dv = V P dp du = V = P du P dp V dp La varacón de la energía nterna de un gas perecto al varar la presón, s la temperatura permanece constante, es nula. Así pues: La energía nterna de un gas perecto es uncón exclusvamente de la temperatura absoluta. Veamos ahora cómo se puede obtener dcha uncón: U = (. La orma derencal del prmer prncpo para un proceso cuas-estátco elemental es: y tenendo en cuenta que susttuyendo, queda dq dw = du dw = PdV dq PdV = du S magnamos que el gas eectúa un proceso a volumen constante, dv = 0, y la expresón anteror queda en la orma dq V = du V [3] donde el subíndce V ndca que esta relacón se cumple s se mantene el volumen constante. Ahora se puede susttur dq por du en la expresón del calor especíco a volumen constante, con lo cual queda: = 0 [1] [2]

3 aletos 3 = 1 dq n d V = 1 du n d y, puesto que la energía nterna es uncón exclusvamente de la temperatura absoluta, sobra la ndcacón de que V permanece constante, pues la dervada du d tendrá el msmo valor tanto s V o P permanecen constantes o no. Por lo tanto: de donde, e ntegrando para un proceso nto, V = 1 du n d V du = n d [5] U U = n ( [6] Se debe tener cudado con la nterpretacón del subíndce V del calor especíco a volumen constante,, que aparece en las expresones [5] y [6] de la energía nterna, porque podría parecer que dchas expresones son solamente váldas para procesos a volumen constante y no es así. anto la expresón en orma derencal como en orma nta son váldas para cualquer proceso. Para comprender esto últmo, supongamos que una masa de n moles de un gas perecto, que se encuentran ncalmente en un estado ncal, evolucona hasta un estado na sguendo un proceso arbtraro, como ndca la gura 2. P P V FIG. 2 a V En el dagrama P-V se han representado las coordenadas de los estados ncal y nal, y se han dbujado las sotermas que corresponden a dchos estados, y. Vamos a comprobar que la varacón de energía nterna durante dcho proceso es: ΔU = U = ncv(. a pesar de que no es un proceso socoro. Puesto que la varacón de energía nterna no depende de la trayectora, U tendrá el msmo valor para todos los procesos que expermente el gas entre los msmos estados ncal y nal. De modo que s hacemos que el gas sga la trayectora a ormada por un proceso socoro desde el estado ncal hasta el estado a, en el que el gas alcanza la temperatura de su estado nal, es decr, hasta encontrar la soterma que pasa por el estado, y a contnuacón, un proceso sotermo desde el estado a hasta el estado nal, la varacón de su energía nterna será la msma que la que expermenta a lo largo del proceso. La varacón de energía nterna durante el proceso a es la suma de las varacones de energía nterna a lo largo de los procesos a y a : U = (U a + (U U a Para calcular, a su vez, las varacones de energía nterna U a y U U a basta aplcar el prmer prncpo: U a = Q a W a y como el proceso a es socoro, V = cte, dv = 0, y por consguente, W a = 0. Por otra parte, despejando dq de la dencón de calor especíco a volumen constante [2.10-4], e ntegrando desde hasta a, y susttuyendo en [7], queda nalmente dq = n d Q a a = n d = n d = n ( [4] [7]

4 4 aletos U a = Q a W a = Q a = n ( a = n ( A su vez, a lo largo del proceso a, como la temperatura permanece constante y la energía nterna de un gas perecto es una uncón exclusva de la temperatura absoluta, será tambén constante, por lo tanto: De modo que la varacón total de energía nterna es: con lo queda justcada la valdez general de [6]. U U a = 0 U = (U a + (U U a = U a = n ( La expresón anteror es válda a pesar de que el proceso no es socoro. El razonamento anteror se puede repetr para cualesquera estados ncal y nal. Es decr, que, sea cual sea la poscón relatva de los puntos y que representan los estados ncal y nal en el dagrama P-V, se puede segur sempre el msmo procedmento: P P V FIG Relacón de Mayer V a A partr del estado ncal se sgue una trayectora socora hasta encontrar la soterma que pasa por el estado nal. El punto de nterseccón de estas dos lneas corresponde al punto a. Y a partr de este punto basta segur la soterma hasta alcanzar el estado nal. Puede ocurrr, según cuál sea la poscón de los puntos y en el dagrama P-V, que al ncar el proceso socoro partendo del punto, haya que bajar en lugar de subr, para encontrar la soterma correspondente al estado nal. S se sgue este procedmento, es evdente que todo lo dcho anterormente sgue sendo váldo sn modcar absolutamente nada, cualquera que sea la poscón relatva de los estados ncal y nal en el dagrama P-V. Con lo cual queda comprobado que la varacón de la energía nterna de un gas perecto durante cualquer proceso se puede calcular sempre por medo de la expresón [2.10-6]: U = n ( Otra propedad mportante de los gases perectos es la relacón que exste entre sus calores especícos a presón constante, y a volumen constante, denomnada relacón de Mayer: = R [8] Veamos cómo se deduce esta relacón. La expresón del prmer prncpo para cualquer proceso cuas-estátco elemental de un gas perecto, du = dq dw se puede escrbr en la orma, n d = dq PdV Por otra parte, en cualquer estado de equlbro se cumple la ecuacón de estado: PV = nr Derencando los dos membros se obtene: PdV + VdP = nrd y despejando PdV: PdV = nrd VdP Susttuyendo en la expresón [2.10-9] del prmer prncpo: n d = dq (nrd VdP y despejando dq: dq = n d+nrd VdP = n( +Rd VdP [9] La expresón anteror, como ya se ha ndcado anterormente es válda para cualquer proceso cuas-estátco elemental de un gas perecto. S se partcularza para un proceso a presón constante, como en ese caso es dp = 0, queda en la orma:

5 aletos 5 dq P = n( +Rd y despejando +R, + R = 1 n dq d y tenendo en cuenta que, por dencón, el calor especíco a presón constante es = 1 n dq d gualando los prmeros membros de las dos gualdades anterores, ya que los segundos son guales, P P [10] [11] +R = de donde, nalmente, se obtene la relacón de Mayer = R que se cumple para cualquer gas perecto Relacón entre los calores especícos, y el índce adabátco El índce adabátco es, por dencón, = [12] Combnando las relacones [8] y [12] se obtenen áclmente = 1 R = 1 1 R [13] [14] Los calores especícos y quedan expresados en las msmas undades que R puesto que el índce adabátco es un número abstracto por ser el cocente de dos magntudes de déntcas dmensones. La teoría cnétca de los gases, cuyo estudo queda uera del alcance de estas págnas, explca que: - La energía nterna de un gas es la suma de las energías cnétcas de traslacón, rotacón y vbracón de los átomos que orman cada molécula. - Cada uno de estos posbles movmentos recbe el nombre de grado de lbertad. El prncpo de equpartcón de la energía establece que: - La energía total de la molécula está repartda por gual entre los dstntos grados de lbertad. - El índce adabátco está relaconado con el número de grados de lbertad, de las moléculas del gas por medo de la expresón: = + 2 Esta relacón es válda solamente para gases monoatómcos y, con una correccón, para gases datómcos. Para gases cuyas moléculas son más complejas deja de ser válda. Gases monoatómcos La teoría cnétca explca que para un gas monoatómco el número de grados de lbertad es = 3 y, por lo tanto, el valor de es: y susttuyendo este valor en [13] y [14], se obtenen = + 2 = = 5 3 [15] [16]

6 6 aletos = 5 2 R [17] = 3 2 R [18] Gases datómcos La teoría cnétca explca que para un gas datómco el número de grados de lbertad es = 5 y, por lo tanto, el valor de es: y susttuyendo este valor en [13] y [14], se obtenen = + 2 = = 7 5 [19] = 7 2 R [20] = 5 2 R [21] Obtencón de las ecuacones de un proceso adabátco de un gas perecto Ahora podemos deducr las ecuacones de un proceso adabátco cuas-estátco de un gas perecto que se admteron sn demostracón en el Capítulo S aplcamos la expresón del prmer prncpo dq PdV = n d a un proceso adabátco cuas-estátco, puesto que dq = 0, queda: PdV = n d Derencando ahora los dos membros de la ecuacón de estado PV = nr, se obtene: con lo cual dsponemos del sstema de ecuacones: PdV +VdP = nrd PdV = ncvd PdV +VdP = nrd Despejando nd de la prmera y susttuyendo en la segunda PdV +VdP + R PdV = 0 Sacando actor común a PdV y tenendo en cuenta la relacón de Mayer la ecuacón [22] queda en la orma Dvdendo los dos membros por PV e ntegrando en orma ndenda 1+ R PdV +VdP = 0 c V 1+ R = 1+ PdV +VdP = 0 dv V + dp P = 0 = 1+ 1 = [22]

7 aletos 7 lnv + ln P = lnc 1 sendo C 1 una constante de ntegracón que depende de las condcones ncales. De la últma expresón se obtene: lnv + ln P = lnc 1 ln PV = lnc 1 PV =C 1 PV =C 1 [23] lo que sgnca que, en cualquer estado del proceso adabátco, el producto de la presón por el volumen elevado al índce adabátco, es constante. Por tanto, dcha constante tendrá el msmo valor en el estado ncal y en el estado nal: C 1 = P V = P V Susttuyendo en la ecuacón anteror, se obtene otra orma de expresar la ecuacón de un proceso adabátco, PV =C 1 = P V = P V [24] Esta es una de las tres ormas de expresar un proceso adabátco cuas-estátco de un gas perecto. Para obtener las otras dos basta elmnar entre esta ecuacón y la ecuacón de estado, la presón o el volumen. Para elmnar la presón basta despejar P de la ecuacón de estado, PV = nr, y susttur en la ecuacón [ ]: Smplcando, nr V V =C 1 de donde, nrv 1 =C 1 V 1 = C 1 nr =C 2 sendo C 2 una nueva constante ya que nr es constante. Lo que sgnca que, en cualquer estado del proceso adabátco, el producto de la temperatura por el volumen elevado al índce adabátco dsmnudo en una undad, es constante. Por tanto, dcha constante tendrá el msmo valor en el estado ncal y en el estado nal: y susttuyendo en la ecuacón anteror C 2 = V 1 = V 1 V 1 =C 2 = V 1 = V 1 [25] que es otra orma de expresar un proceso adabátco cuas-estátco de un gas perecto. Para obtener la ecuacón en uncón de la presón y de la temperatura basta elmnar V entre la ecuacón de estado y la prmera ecuacón obtenda de la adabátca, o ben elmnar entre la ecuacón de estado y la segunda ecuacón de la adabátca. S despejamos V de la ecuacón de estado y susttumos en la ecuacón [ ], Operando y smplcando, P nr =C P 1 de donde, (nr P 1 =C 1 P 1 = C 1 (nr y elevando los dos membros a 1/

8 8 aletos 1 P C = 1 (nr sendo C 3 una nueva constante, ya que ns es constante. Lo que sgnca que, en cualquer estado del proceso adabátco, el producto de la temperatura por la presón elevada a (1 /, es constante. Por tanto, dcha constante tendrá el msmo valor en el estado ncal y en el estado nal: 1 =C 3 y susttuyendo en la ecuacón anteror C 3 = P 1 = P P =C 3 = P = P [26] Las tres ecuacones obtendas son tres ormas derentes de expresar un proceso adabátco. La ecuacón más convenente en cada caso depende de los datos del problema. Dchas ecuacones son váldas úncamente para procesos adabátcos cuas-estátcos de un gas perecto. S se aplca cualquera de las ecuacones anterores a un proceso adabátco no cuas-estátco supone llegar a stuacones paradójcas y contradctoras cuya explcacón va más allá del contendo de estas págnas.

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica TERMODINÁMIA FUNDAMENTAL TEMA 3. Prmer prncpo de la termodnámca 1. alor 1.1. oncepto de calor alor: orma de transerenca de energía entre dos sstemas termodnámcos, o entre un sstema y su entorno, como consecuenca

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

TERMODINÁMICA. descripción de la materia a nivel MACROSCÓPICO. cambios físicos y químicos que sufre. propiedades de un sistema y sus interrelaciones

TERMODINÁMICA. descripción de la materia a nivel MACROSCÓPICO. cambios físicos y químicos que sufre. propiedades de un sistema y sus interrelaciones ERMODINÁMICA descrpcón de la matera a nvel MACROSCÓPICO propedades de un sstema y sus nterrelacones cambos íscos y químcos que sure 25 C Zn CuSO 4 ZnSO 4 Aplcacones prncpos prncpos prncpos E R M O D I

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

1. Actividad y Coeficientes de actividad

1. Actividad y Coeficientes de actividad ermodnámca. ema Dsolucones Reales. Actvdad y Coecentes de actvdad Se dene el coecente de actvdad,, de manera que: ( ( ln Actvdad ( Esta epresón es análoga a la de las dsolucones deales. Sn embargo, es

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Aplicaciones de las leyes de conservación de la energía

Aplicaciones de las leyes de conservación de la energía Aplcacones de las leyes de conservacón de la energía Estratega para resolver problemas El sguente procedmento debe aplcarse cuando se resuelven problemas relaconados con la conservacón de la energía: Dena

Más detalles

Segundo Principio de la Termodinámica 16 de noviembre de 2010

Segundo Principio de la Termodinámica 16 de noviembre de 2010 Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIEO Segundo Prncpo de la ermodnámca 16 de novembre de 2010 Cuestones y problemas: C 3.2, 3, 13, 16, 20, 26, 32, 39 P 1.4, 5, 16, 26, 31 subrayados

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuacones derencales ordnaras Motvacón Las ecuacones que se componen de una uncón desconocda de sus dervadas son llamadas ECUACIONES DIFERENCIALES ales ecuacones desempeñan un papel mportante en ngenería

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

Lección: Disoluciones

Lección: Disoluciones Leccón: Dsolucones TEMA: Introduccón 1 Adolfo Bastda Pascual Unversdad de Murca. España. I. Caracterzacón de las dsolucones.......2 I.A. Composcón de una dsolucón....... 2 I.B. Magntudes molares parcales.........

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Conservación del Momento Lineal y de la Energía

Conservación del Momento Lineal y de la Energía Conservacón del Moento Lneal y de la Energía Conservacón del Moento Lneal y de la Energía Objetvos Coprobar experentalente la conservacón del oento lneal edante choques elástcos e nelástcos. Coprobar la

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

TERMÓMETROS Y ESCALAS DE TEMPERATURA

TERMÓMETROS Y ESCALAS DE TEMPERATURA Ayudantía Académca de Físca B EMPERAURA El concepto de temperatura se basa en las deas cualtatvas de calente (temperatura alta) y río (temperatura baja) basados en el sentdo del tacto. Contacto térmco.-

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD robabldad TEM : ROBBILIDD Índce del tema Índce del tema.. Introduccón 2.2. Defncón de probabldad 3.2.. ropedades nmedatas 3 Ejemplo 7 Ejemplo 2 8 Ejemplo 3 9.3. robabldad condconada 0.3.. Introduccón 0.3.2.

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales TEMA 3. La polítca económca en una economía aberta con movldad perfecta de captales Asgnatura: Macroeconomía II Lcencatura en Admnstracón y Dreccón de Empresas Curso 2007-2008 Prof. Anhoa Herrarte Sánchez

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

9. Movimiento Circular Uniformemente Acelerado

9. Movimiento Circular Uniformemente Acelerado 9. Movmento Crcular Unormemente Acelerado Ete movmento e preenta cuando un móvl con trayectora crcular aumenta o dmnuye en cada undad de tempo u velocdad angular en orma contante, por lo que u aceleracón

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDD NCIONL EXPERIMENTL POLITECNIC NTONIO JOSÉ DE SUCRE VICERRECTORDO RQUISIMETO DEPRTMENTO DE INGENIERÍ QUÍMIC CONTROL DE PROCESOS QUÍMICOS Pro: Ing. (MSc). Juan Enrque Rodríguez C. Octubre, 23

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

CAPÍTULO 7. Cuerpo rígido

CAPÍTULO 7. Cuerpo rígido CAPÍTUO 7. Cuerpo rígdo NTODUCCON En el captulo anteror estudamos el movmento de un sstema de partículas. Un caso especal mportante de estos sstemas es aquel en que la dstanca entre dos partículas cualesquera

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles