Fuerzas sobre superficies sumergidas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fuerzas sobre superficies sumergidas"

Transcripción

1 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. Mecáica de los fluidos máquias fluidodiámicas FUERZS SOBRE SUPERFCES SUMERGDS... ) CONCEPTOS PRELMNRES:... a) Mometo estático de ua secció. Cetroide... b) Mometos de segudo orde de ua secció... Ejercicios...3 ) FUERZS SOBRE SUPERFCES CURVS SUMERGDS...4 3) FUERZS SOBRE SUPERFCES PLNS SUMERGDS...6 Ejercicios...8 Ejemlo de alicació...8 ute: Fuerzas sobre suerficies sumergidas ) Cocetos relimiares: a) Mometo estático de ua secció. Cetroide. Se defie el mometo estático de ua secció co resecto al eje como: S =. d () =k Si ahora se toma el mometo resecto de u eje aralelo al eje, defiido or =k, resulta: ' S = ( k). d =. d k () se observa que es osible elegir u eje a ua distacia k = que cumle: =. d (3) álogamete obteemos u eje aralelo al eje, a ua distacia del mismo, que cumle: =. d (4) utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

2 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. El uto determiado or el ar (, ) se deomia cetroide de la secció. E lo que sigue, o se hará distició etre el cetroide de la secció, el cetro de masas de la secció ( M, M ) el cetro de gravedad de la misma ( G, G ) Preguta: Cual es la diferecia etre el cetroide, el cetro de masas el cetro de gravedad de ua secció? b) Mometos de segudo orde de ua secció Se defie el mometo de segudo orde de ua secció co resecto al eje como: = d (5) Si se cosidera el mometo de segudo orde co resecto a u eje aralelo al eje que ase or el cetroide de la secció se obtiee:. = (6) Dode llamamos al mometo resecto de u eje aralelo al eje que asa or el cetroide. álogamete se defie: uede deducirse que: = d. = (8) Siedo el mometo de segudo orde resecto de u eje aralelo al eje que asa or el cetroide de la secció. Tato como como: so siemre ositivos. Se defie adicioalmete el mometo cruzado de segudo orde co resecto a los ejes e además se demuestra: =. d (). (9) =. (). Mateiedo la omeclatura, es decir, es el mometo cruzado de iercia co resecto a dos ejes, uo aralelo al eje, otro aralelo al eje, que asa or el cetroide de la secció. El mometo cruzado de segudo orde,, uede ser tato ositivo como egativo. Si la secció tiee u eje de simetría, el mometo cruzado es ulo. utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

3 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. Ejercicios: ) Demuestre las ecuacioes (6) () ) Demuestre que e toda secció que tega u eje de simetría es ulo. utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

4 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. ) Fuerzas sobre suerficies curvas sumergidas Figura Suogamos que ecesitamos averiguar la resultate de los esfuerzos de resió sobre ua suerficie curva sumergida cualquiera, tal cual se muestra e la figura. Lo rimero que haremos será idetificar uestro sistema de aálisis costruedo u diagrama del cuero libre. demás or cuestioes rácticas trabajaremos co resioes relativas, el lector odrá itroducir las correccioes ecesarias ara trabajar co resioes absolutas. El la figura 3 observamos dicho sistema, e el cual se ha idetificado las fuerzas eteras al mismo. Observar que ahora que la ormal sobre se ha ivertido, a que e estas circustacias os estamos lateado los esfuerzos actuates sobre uestro sistema. De todas maeras, esto o reseta igua dificultad a que la resultate sobre que la ared le hace al fluido será igual de setido cotrario a la que el fluido le hace a la ared, esto debido al riciio de cció Reacció. Trabajaremos aquí co resioes relativas, que es lo más coveiete e la maoría de los casos, debido a que si trabajamos co resioes absolutas ecesitaríamos icluir seguramete e el balace de fuerzas de la reresa la acció costate de la resió atmosférica e el cotoro seco de la misma. Observar que la iclusió de la resió atmosférica o reseta maores icoveietes, a que es u valor costate. h = γ h = γ h H W F F = γ (H+h) Figura 3 F las roeccioes de sobre laos ormales a los ejes X e Y las hemos deomiado co resectivamete. Si llamamos F a la resultate de resioes que actúa sobre F a la resultate de resioes que actúa sobre, uede escribirse: F - F = 0 ; F = F F + W - F = 0 ; F = F + W utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

5 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. Es imediato recoocer que la resultate de los esfuerzos de resió sobre e la direcció horizotal es igual a la corresodiete sobre la suerficie roectada. Para la comoete vertical de la fuerza sobre se tiee que será igual a la itegral de la resió sobre más el eso W del agua coteida e el volume señalado, lo que da como resultado que la comoete vertical sobre es igual al eso de toda el agua que está or ecima de ella (más el valor de Po. e el caso que trabajemos co resioes absolutas, es más, odríamos haber dicho la comoete vertical sobre es igual al eso de todo el fluido que está or ecima de ella, a que la resió atmosférica rereseta a todo el aire que está or sobre la suerficie libre). E la figura 4 se observa otro volume que ermite arribar a las mismas coclusioes. h = γ h = γ h H = γ (H+h) Figura 4 Wt F F F utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

6 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. 3) Fuerzas sobre suerficies laas sumergidas E el caso que muestra la figura, aguas arriba se ecuetra u líquido de eso esecífico coocido. La laca, co u águlo de icliació θ esta sometida a la acció de la resió del líquido or u lado del otro lado a la resió atmosférica o.. θ d Figura 4 Se debe ecotrar: a) La fuerza que ejerce la resió sobre el área cosiderada. b) El uto de alicació de dicha fuerza. Observació: Se cosidera úicamete las resioes relativas uesto que la resió atmosférica, o actúa a ambos lados de la laca or lo tato el efecto total sobre la misma es ulo. a) Fuerza sobre la laca. Sobre cada elemeto diferecial de área (d) actúa u diferecial de fuerza de modulo: d F =.. d () Siedo la resió relativa el vector ormal e la direcció de acció de la resió. Como se uede observar, todos los difereciales de fuerza tiee la misma direcció setido, or lo cual ara obteer el módulo de la fuerza total basta co cosiderarla como u escalar. tegrado resulta, E =.. d () La ecuació () es siemre válida ideedietemete del sistema de ejes que se utilice. Si e articular se usa el sistema de ejes que se observa e la figura 4 se uede eresar: E = γ. h. d = γ.. seθ. d = γ. seθ. d = γ. seθ.. (3) escribir: Siedo γ el eso esecífico del fluido cosiderado. Es osible reducir aú más la (3) E = G. (4) utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

7 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. Dode G es la resió e el cetroide de la secció. a) Recta de acció de la Fuerza (E) sobre la laca Ua vez hallada la fuerza sobre la laca, se ecesita saber su recta de acció. l teer todas las cotribucioes sobre los elemetos difereciales de área la misma direcció setido, la resultate tiee tambié, evidetemete, esa direcció setido. Se desea etoces saber or qué uto sobre la laca asa dicha fuerza resultate. Para ello se cosidera e rimer térmio el mometo que co resecto al eje (ver figura) realiza las cotribucioes elemetales de las fuerzas e los d se iguala dicho mometo al que roduce la fuerza total. Matemáticamete: E =. de. (5) Desejado: Siedo la distacia desde el eje al uto de alicació de la fuerza resultate. =. de E (6) álogamete, tomado mometos co resecto al eje se obtiee : = E de () Las ecuacioes (6) () so siemre válidas más allá de los ejes coordeados que se elija. E articular, co los ejes coordeados que muestra la figura (básicamete el orige del eje coicidete co la suerficie libre) se obtiee: =. γ.se θ.. d= γ.se θ... (8) Es coveiete referirse al mometo de segudo orde co resecto al cetroide, ie, utilizar la (6) eresar: = (9). + Y e forma similar se deduce: = + (0). Esta últimas dos ecuacioes so de gra utilidad ahorra gra catidad de esfuerzo si se cooce los mometos de iercia resecto del cetroide de la secció cosiderada. Observació: La (6) la () so siemre válidas más allá del uto tomado ara cotabilizar los mometos (es decir, la ubicació de los ejes e ) E cambio, la (9) la (0) so válidas e tato que se cosidere el eje co orige e la suerficie libre. utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

8 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. Ejercicios: Demuestre la ecuació (0) Ejemlo de alicació: ) Calcular el emuje sobre la laca de la figura. El fluido tiee eso esecífico coocido (γ). Las dimesioes está eresadas e metros: 3 a) Primero se realiza el ejercicio or itegració directa: Se toma u eje que comieza e el borde de la laca. La ecuació () uede eresarse: E = 0 ' γ.( 3 + ') dd' = γ.(3 + ')( ') d' E = γ ( 0 0 ' + ' ' ) d' 3 ' ' + ' ' 30 0 E = γ E =, 6γ ) Se ha hecho todos los asos ara comarar co el otro método. Para ecotrar el uto de alicació utilizamos ahora la (9) la (0). ' = ) γ.,6 '. γ.(3 + 0 La cual luego de resolver lleva a: ' = 4, 5... E tato que ara se tiee: ' ') d. d' utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

9 MECNC DE LOS FLUDOS Y MQUNS FLUDODNMCS utores: Dr. g. Satiago. Urquiza, Profesor Titular. Dr. g. Herá J. Desimoe, e alumo. = ). γ.(3 + ') dd' γ..6 0 ' Que resuelta da: = 4, b) Se utiliza ahora las formulas (4), (9) (0). Se utiliza u eje co orige e la suerficie libre. De tablas se etrae: = = 3. 4,) 6 = 3+ = 3. 6,) 3 3. = = 94, 4 ). ) 36 = = 68, 05 Y ahora se alica directamete las fórmulas: ) ) =. = 6,3γ.35 =,6. γ E G ) 94, 4 = + = +, =, , ) ) 5 ) 68, 05 = + = +. =, , ) ) utorizada su reroducció or cualquier medio sólo si se cita la fuete, los autores co su eresa

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Departamento de Ciencias Matemáticas Segundo Examen MATE 3171 Universidad de Puerto Rico Mayagüez 20 de octubre de Número de estudiante:

Departamento de Ciencias Matemáticas Segundo Examen MATE 3171 Universidad de Puerto Rico Mayagüez 20 de octubre de Número de estudiante: Deartameto de Ciecias Matemáticas Segudo Exame MATE 3171 Uiversidad de Puerto Rico Mayagüez 20 de octubre de 2015 Nombre: Número de estudiate: Profesor: Secció: Istruccioes: NO se ermite el uso de calculadoras.

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL INISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIENTAL POLITÉCNICA DE LA FUERZA ARADA NACIONAL UNEFA NUCLEO ERIDA APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 8 CONSERVACIÓN

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES.

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. TEMA 3: DISTRIBUCIOES BIDIMESIOALES. 3.. Cocetos Geerales.... 3.2. Distribucioes bidimesioales de frecuecias... 3.2.. Tablas de correlació y cotigecia.... 3.2.2. Distribucioes margiales y codicioadas....

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti ES Mediterráeo de Málaga Juio Jua Carlos loso Giaoatti UNVERSDD DE CTLUÑ PRUES DE CCESO L UNVERSDD CONVOCTOR DE JUNO Resoda a CNCO de las siguietes seis cuestioes. E las resuestas, elique siere qué quiere

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES Moisés Villea Muñoz Vectores e,,,. DEFINICIÓN. ENFOQUE GEOMÉTRICO. IGUALDAD.4 OPERACIONES Los pares ordeados, que a se ha tratado, so los que llamaremos ectores de. Pero el iterés ahora es ser más geerales.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

1b percusión CÁLCULOS Y DIAGRAMAS 15%

1b percusión CÁLCULOS Y DIAGRAMAS 15% Laboratorio de Vibracioes Mecáicas Departameto de geiería Mecáica Práctica Determiació de mometos de iercia y PARTCPACON 5% 1b localizació del cetro PRESENTACÓN 1% de gravedad y de NVESTGACONES 1% percusió

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas. Sistemas de partículas. Fuerzas iteriores y exteriores.. Cetro de masas. a) Propiedades diámicas del C b) Pricipio de coservació del mometo lieal de u sistema de partículas. 3.

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

5-14 Ecuaciones de diseño importantes

5-14 Ecuaciones de diseño importantes 46 PARTE DOS Preveció de fallas R R R a) Figura 5-33 R b) Formas de las curvas de la gráfica R versus R. E cada caso, el área sombreada es igual a R se obtiee por itegració umérica. a) Curva típica de

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Generadores de onda Práctica # 8

Generadores de onda Práctica # 8 Gruo de iestigació cietífica y microelectróica Geeradores de oda Práctica # 8 Objetios Estudiar alguos circuitos de relajació. Estudiar alicacioes ara geeradores de oda triagular y cuadrada. Equio ecesario

Más detalles

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales.

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales. NUMEROS COMPLEJOS El cojuto de los úmeros complejos fue creado para poder resolver alguos problemas matemáticos que o tiee solució detro del cojuto de los úmeros reales. Por ejemplo x 2 + 1 = 0 o tiee

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Mecánica de Materiales II: Análisis de Esfuerzos

Mecánica de Materiales II: Análisis de Esfuerzos Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Propiedades algebraicas de los úmeros Complejos 5.- Forma Polar y trigoométrica del úmero Complejo

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

CABLES. Introducción:

CABLES. Introducción: CBES Itroducció: UNIVERSIDD DE BUENOS IRES FCUTD DE INGENIERÍ 64. ESTBIIDD I os cables so elemetos estructurales lieales (las dimesioes de su secció so muy pequeñas comparadas co su logitud). Tiee la característica

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Forma Polar y trigoométrica del úmero Complejo 5.- Operacioes e forma Polar 6.- Radicació de úmeros

Más detalles

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE STÁTC Y RSSTNC D LOS TRLS Uidad 8: FLXÓN SPL T 8: FLXÓN SPL RCT - OBLCU DOBL 1. FLXÓN SPL RCT Decimos que ua barra trabaja a fleió simple recta cuado: tiee eje logitudial recto es de secció costate. el

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

Series Infinitas. Una serie es la suma de los términos de una sucesión. Se representa una serie con

Series Infinitas. Una serie es la suma de los términos de una sucesión. Se representa una serie con ISFD Nº 3 "Dr. Julio C. Avaza" Profesor. Norerto Molia Alumas. Gutiérrez Graciela - Gutiérrez Jimea Series Ifiitas Ua serie es la suma de los térmios de ua sucesió. Se represeta ua serie co térmios a como

Más detalles

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR).

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR). 1 EL MODELO DE MERCADO (MODELO DE ÍNDCE ÚNCO, O MODELO DE UN SOLO FACTOR). Disoemos de las tasas de redimieto de u cojuto de activos co riesgo (i = 1,,, ) y disoemos tambié de la tasa de redimieto de u

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 7/09/08 Tema : Series. Itroducció Criterios de Covergecia Sólo podremos calcular la suma de alguas series, e la mayoría os será imposible y os tedremos que coformar co saber si coverge

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Apéndice Números Complejos

Apéndice Números Complejos Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANALÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS 016 18 MÓDULO VECTORES E la matemática modera se ha llegado al cocepto

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Tema I Estudios de los esfuerzos y deformaciones en la región elástica

Tema I Estudios de los esfuerzos y deformaciones en la región elástica Tema I Estudios de los esfueros deformacioes e la regió elástica Mecáica de materiales Esfuero deformació Fueras Iteras Las fueras iteras, se puede cosiderar como fueras de iteracció etre las partículas

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Integral de una función

Integral de una función Itegral de ua fució Itegral de ua fució Los coceptos de primitiva e itegral idefiida La itegració de ua fució es el paso iverso a la derivació de ua fució. Para defiir correctamete la itegral de ua fució,

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

ESPECTRO ELECTROMAGNÉTICO

ESPECTRO ELECTROMAGNÉTICO ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:

Más detalles