E.T.S.I.I. Departamento. Física Aplicada. Ingeniería. Industrial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "E.T.S.I.I. Departamento. Física Aplicada. Ingeniería. Industrial"

Transcripción

1 55 Mecánic ech Exmen: Nº Mtrícul: er pellido: º pellido: Nombre: juste su respuest l espcio disponible y escrib el resultdo en el recudro. Se consirrán corrects únicmente ls respuests en ls que lo sen l solución y los cálculos indicdos pr su obtención prtir los dtos l enuncido. Primer Prte (6 minutos) ) El disco l figur rued sin slizr respecto los rectángulos y. Dichos rectángulos solo puen trsldrse horizontlmente con velocids v y v respectivmente. Se pi hllr el vector rotción l disco y l velocidd v supuesto conocidos v y l velocidd v vi l centro l disco. Dtos: dio l disco, v y v. v y x v ) Un circunferenci rdio contenid en el plno xy fijo rued sin slizr lo lrgo l eje fijo x modo que l posición su centro viene dd por l función r() t ( vt t ) i j don v y son constntes conocids. Se pi terminr, en función, v y : L celerción l centro en el instnte t. L celerción l punto l circunferenci que ocup l posición dimetrlmente opuest l punto contcto ést con el eje fijo x, en el instnte t. modo que O coinci siempre con O. En un instnte ddo t se verific: i ( j k)/, j i, k ( j k)/ Se pi terminr los tres ángulos Euler expresndo los resultdos en grdos sexgesimles ) Un triedro móvil S O, i, j, k se mueve respecto otro fijo S O, i, j, k ) L brr rígid l figur se mueve modo que su extremo sliz con velocidd uniforme sobre un líne prlel l eje x y su extremo sliz sobre el eje y. Sbiendo que, en un instnte ddo, l velocidd es v i, que ls coornds l extremo son (-,) y ls l extremo son (,+), se pi terminr: El vector velocidd Deprtmento l extremo. El vector velocidd l punto situdo en el centro l brr. y x ísic plicd y 5) El mecnismo plno l figur está formdo por dos levs. L lev gir libremente lredor l punto. L lev lo hce lredor l punto. mbs levs encuentrn siempre en contcto. Sbiendo que en el L l instnte Ingenierí consirdo k, se pi terminr l posición l figur l velocidd ngulr con l que rot l lev y el módulo v d l velocidd slizmiento entre ls levs y. Dtos: y. L 5º x Industril Est primer prte represent el 5% l not l exmen No se permite el uso clculdor

2 6) El motor l figur posee un curv pr dd por l ecución Mn ( ) c( n/ nmx ). El motor se utiliz pr que un ms m conocid sciend con un velocidd v y un celerción, mbs conocids en un instnte ddo t. Pr ello, el cble l cul está suspendid l ms m se rroll un pole rdio r. Supuesto conocidos cn, mx, r y l celerción l grvedd g, termine en el instnte t : L posición l celerdor u pr que l ms sciend con velocidd v y celerción. L potenci srrolld por el motor Not: el momento inerci l rotor y l pole se consirn sprecibles. m 7) Un rotor ms m conocid está poydo en un cojinete (rdil y xil) y en un cojinete (solmente rdil) seprdos por un I I distnci h conocid. Se sbe que el centro mss se encuentr sobre el eje giro un distnci c conocid l cojinete. Ls I I I componentes l mtriz inerci l rotor respecto l cojinete y expresd en unos ejes xyz,, vinculdos l rotor son ls que indicn l rech, don los prámetros I y (dimensionl, positivo y muy inferior l unidd) son conocidos. Se h supuesto I I I que el eje z es coincinte con el eje giro. El rotor se hce girr un velocidd rotción constnte y conocid n. Se pi terminr: L energí T cinétic l rotor El vector momento cinético L expresdo en los ejes móviles xyz,, Not: spréciese culquier fuerz plicd sobre el rotor como pudier ser el peso. 8) ontinundo con el ejercicio nterior, termine ls recciones y que ejercen los cojinetes y sobre el rotor, expresándols en los ejes móviles xyz,, y L L M 9) El mecnismo plno l figur está formdo por dos piezs móviles: levs y. L lev gir libremente lredor l punto y l lev lo hce lredor l punto. mbs levs se encuentrn siempre en contcto y no existiendo rozmiento entre ells. Sbiendo que sobre l lev se plic un pr M conocido M y que el pso l cudrícul es tmbién conocido, se pi terminr: El pr M que hy que plicr sobre l piez pr que el sistem se mnteng en equilibrio x L rección norml N que prece en el contcto entre ls levs y. Deprtmento ísic plicd ) L estructur reticuld l figur está formd por brrs igul longitud conocid. Sobre los nodos indicdos ctún un fuerz verticl l y otr horizontl Ingenierí mbs módulo conocido., se pi terminr ls tensiones en ls brrs, y. Industril Est primer prte represent el 5% l not l exmen No se permite el uso clculdor

3 esolución propuest: ) El disco l figur rued sin slizr respecto los rectángulos y. Dichos rectángulos solo puen trsldrse horizontlmente con velocids v y v respectivmente. Se pi hllr el vector rotción l disco y l velocidd v supuesto conocidos v y l velocidd v vi l centro l disco. Dtos: dio l disco, v y v. v v vi i j k v v y v vi vi vi x v v v i j k v v vi vi v v vv ) Un circunferenci rdio contenid en el plno xy fijo rued sin slizr lo lrgo l eje fijo x modo que l posición su centro viene dd por l función r() t ( vt t ) i j don v y son constntes conocids. Se pi terminr, en función, v y : L celerción l centro en el instnte t. L celerción l punto l circunferenci que ocup l posición dimetrlmente opuest l punto contcto ést con el eje fijo x, en el instnte t. r () t ( vt t ) i j v () t r () t ( vt) i () t r () t i i j k v() t () t I () t () t i v t () t () t v() t r () t ( vt) i ( vt) ( vt) () t () t ( ) i i j i j modo que O coinci siempre con O. En un instnte ddo t se verific: i ( j k)/, j i, k ( j k)/ Se pi terminr los tres ángulos Euler expresndo los resultdos en grdos sexgesimles ) Un triedro móvil S O, i, j, k se mueve respecto otro fijo S O, i, j, k i j k cosni i 8º k k sin nj / / cos kk / 6º k k cosni n i 7º k k sin nj ) L brr rígid l figur se mueve modo que su extremo sliz con velocidd uniforme sobre un líne prlel l eje x y y su extremo sliz sobre el eje y. Sbiendo que, en un instnte ddo, l velocidd es v i, que ls coornds l extremo son (-,) y ls l extremo son (,+), se pi terminr: El vector velocidd Deprtmento l extremo. El vector velocidd l punto situdo en el centro l brr. x cos v v ( vi) ( Lcosi Lsin j) ( vj) ( Lcosi Lsin j) vlcos vlsin v v j ísic plicd sin v cos v ( v v) i j sin 5) El mecnismo plno l figur está formdo por dos levs. L lev gir libremente lredor l punto. L lev lo hce lredor l punto. mbs levs encuentrn siempre en contcto. Sbiendo l que en el instnte Ingenierí consirdo k, se pi terminr l posición l figur l velocidd ngulr con l que rot l lev y el módulo v d velocidd slizmiento entre ls levs y. Dtos: y. y v/ n v/ n 7 n L L Industril vd v/ v/ ( 5i 5j) vd 5 5º x Est primer prte represent el 5% l not l exmen No se permite el uso clculdor

4 6) El motor l figur posee un curv pr dd por l ecución Mn ( ) c( n/ nmx ). El motor se utiliz pr que un ms m conocid sciend con un velocidd v y un celerción, mbs conocids en un instnte ddo t. Pr ello, el cble l cul está suspendid l ms m se rroll un pole rdio r. Supuesto conocidos cn, mx, r y l celerción l grvedd g, termine en el instnte t : L posición l celerdor u pr que l ms sciend con velocidd v y celerción. L potenci srrolld por el motor Not: el momento inerci l rotor y l pole se consirn sprecibles. L ms scenrá modo que su cot se z z() t. En el instnte t consirdo z v y z L energí mecánic totl l sistem será E T U mz mgz L potenci que tiene que suministrr el motor y por tnto srrolld por éste será P E mzz mgz mv mgv mv( g ) m L potenci máxim suministrble por el motor es W M( n) n cn( n/ nmx ) Pero, n v/ r. Por tnto, W cv/ r[ v/( rnmx )] mv( g ) m( g ) r L posición l celerdor será u P / W cv / r [ v /( rn mx )] c [ v /( rn mx )] Método lterntivo resolución: L dinámic verticl l ms m permitirí escribir T mg m, don T es l tensión l cble. Por tnto, T m( g ) Ddo que el momento inerci l rotor es sprecible y que no existen rozmientos en el sistem, tod l energí proporciond por el motor se invierte en el scenso l ms m. Por tnto, l potenci srrolld por el motor W será W Tv m( g ) v L ecución l dinámic l rotor, teniendo en cuent que éste posee un momento inerci sprecible serí N rt, don N es el pr srrolldo por el motor. N rt rm( g ) Por tnto, l posición l celerdor será: u Mn ( ) Mn ( ) c [ v/( rn )] 7) Un rotor ms m conocid está poydo en un cojinete (rdil y xil) y en un cojinete (solmente rdil) seprdos por un I I distnci h conocid. Se sbe que el centro mss se encuentr sobre el eje giro un distnci c conocid l cojinete. Ls I I I componentes l mtriz inerci l rotor respecto l cojinete y expresd en unos ejes xyz,, vinculdos l rotor son ls que indicn l rech, don los prámetros I y (dimensionl, positivo y muy inferior l unidd) son conocidos. Se h supuesto I I I que el eje z es coincinte con el eje giro. El rotor se hce girr un velocidd rotción constnte y conocid n. Se pi terminr: L energí T cinétic l rotor El vector momento cinético L expresdo en los ejes móviles xyz,, Not: spréciese culquier fuerz plicd sobre el rotor como pudier ser el peso. I I I I In T I [ n] I I In L I L I I In xyz I I I n I I I n In L In ( ijk ) 8) ontinundo con el ejercicio nterior, termine ls recciones y que ejercen los cojinetes y sobre el rotor, expresándols en los ejes móviles xyz,, dl dl In M hk L n kl h ( k) k n ( kl) k ( i j) dt dt h proyxy proyxyl In ( ij) In m ( i j ) Deprtmento h 9) El mecnismo plno l figur está formdo por dos piezs móviles: levs y. L lev gir libremente lredor l punto y l lev lo hce lredor l punto. mbs levs se encuentrn siempre en contcto y no existiendo rozmiento entre ells. Sbiendo que sobre l lev se plic un pr M conocido y que el pso l cudrícul es tmbién conocido, se pi terminr: ísic plicd El pr M que hy que plicr sobre l piez pr que el sistem se mnteng en equilibrio L rección norml N que prece en el contcto entre ls levs y. Estbleciendo el equilibrio l lev y tomndo momentos respecto l punto : y N i j k M l Ingenierí Mk N Mk M N( sin cos ) N L ( sin cos ) L M N cos N sin M x M M N Industril ( / / ) 6 Estbleciendo el equilibrio l lev y tomndo momentos respecto l punto : i j k sincos / / M Mk ( N) Mk M N( sin cos ) M M M sincos / / N cos N sin mx Est primer prte represent el 5% l not l exmen No se permite el uso clculdor

5 ) L estructur reticuld l figur está formd por brrs igul longitud conocid. Sobre los nodos indicdos ctún un fuerz verticl y otr horizontl mbs módulo conocido., se pi terminr ls tensiones en ls brrs, y. Estbleciendo el equilibrio tod l estructur y tomndo momentos respecto : sin 6º X Y ortndo por ls brrs, y, quedándonos con l estructur l rech y estbleciendo su equilibrio (tomndo momentos respecto l punto don se unen ls brrs y ): Tsin 6º / T ( / )/( / ) / T sin 6º T /( / ) / T T cos 6º T T / T T T Deprtmento ísic plicd l Ingenierí Industril Est primer prte represent el 5% l not l exmen No se permite el uso clculdor

E.T.S.I.I. Departamento. a la Ingeniería Industrial

E.T.S.I.I. Departamento. a la Ingeniería Industrial ublicción de Nots: --9 ech de xmen: -- 5 Mecánic - rimer pellido: Mtrícul: Segundo pellido: Nombre: NOT: en el enuncido ls mgnitudes ectoriles se escriben en negrit (V), unque en l solución Vd. Debe representrls

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002 Fundmentos Físicos de l Ingenierí º Emen Prcil / 9 de enero de 00. Un muchcho que está 4 m de un pred erticl lnz contr ell un pelot según indic l igur. L pelot sle de su mno m por encim del suelo con un

Más detalles

PROBLEMAS DE ESTÁTICA

PROBLEMAS DE ESTÁTICA UCM PEMS DE ESÁIC undmentos ísicos de l Ingenierí. Deprtmento ísic plicd UCM Equipo docente: ntonio J rbero lfonso Cler Mrino Hernández. ES grónomos lbcete Pblo Muñiz Grcí José. de oro Sáncez EU. I.. grícol

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

Apuntes de frenos y embragues

Apuntes de frenos y embragues Apuntes de frenos y embrgues FREOS DE ZAPATA EXTERO Cundo el ángulo de contcto del mteril de fricción con el tmbor es pequeño se puede considerr que l fuerz de rozmiento es tngente en el centro del ngulo

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO ROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO 013-14 1.1.- Hllr ls recciones de los enlces y dibujr los digrms de esfuerzos de ls brrs siguientes: 3 L 3 q 4q 3q 1..- L estructur pln

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

de 0.6 T. Si la bobina gira hasta formar un ángulo de 60º con ese campo, Cómo cambiará el flujo?

de 0.6 T. Si la bobina gira hasta formar un ángulo de 60º con ese campo, Cómo cambiará el flujo? letos Físic pr Ciencis e ngenierí AGET CA AGÉTC 1 Contcto: letos@telefonic.net 5-01 -01 Un corriente de intensidd circul por un circuito en form de cudrdo, cuyo ldo mide L. Clcúlese el cmpo mgnético en

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

INTRODUCCIÓN A LA FÍSICA

INTRODUCCIÓN A LA FÍSICA INTRODUCCIÓN A LA FÍSICA TRIGONOMETRÍA: CATETO CATETO ADYACENTE OPUESTO RAZONES TRIGONOMÉTRICAS: EJERCICIOS: SENO: COSENO: TANGENTE: cteto opuesto sen = hipotenus cteto dycente cos = hipotenus tg = cteto

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO ROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 1: INTRODUCCIÓN CURSO 013-14 1.1.- Hllr ls recciones de los enlces y dibujr los digrms de esfuerzos de ls brrs siguientes: 3 L 3 q 4q 3q 1..- L estructur pln

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NCIONL DE FRONTER CEPREUNF CICLO REGULR 017-018 CURSO: FISIC Elementos básicos de un vector: SEMN TEM: NÁLISIS VECTORIL Origen Módulo Dirección CLSIFICCION DE LS MGNITUDES FÍSICS POR SU NTURLEZ

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 2

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 2 REAL SOCIEDAD ESPAÑOLA DE FÍSICA Proble eórico Proble. El experiento de Cvendish. Henry Cvendish (1731 181) fue un notble físico y quíico británico. rbjó en prácticente tods ls áres de l físic de su tiepo,

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

TALLER 2 SEGUNDA LEY DE NEWTON

TALLER 2 SEGUNDA LEY DE NEWTON TALLER SEGUNDA LEY DE NEWTON A. En un experienci de lbortorio se hló un crro dináico, con un fuerz F ejercid por un bnd de cucho estird ciert longitud. Luego se duplicó l fuerz, después se triplicó y finlente

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2 ROES DE ESTIIDD Y RESISTENI DE TERIES omplementrios 2 1. r el estdo de tensiones definido en l figur, se pide: 200 ) Vlores de ls tensiones priciples. b) Representción del círculo de ohr tridimensionl,

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones.

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones. 6 esistenci de mteriles. roblems resueltos roblem. Tenemos un brr rígid que está suspendid por dos cbles de igul diámetro 4 mm, y cuyos módulos de elsticidd son: =. 0 M y =0.7 0 M. longitud de l brr es

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

F r Q ( que se puede escribir como. En otras palabras:

F r Q ( que se puede escribir como. En otras palabras: 57 V i R + ε V ue se puede escribir como i R + ε 0. (8.6) En otrs plbrs: L sum lgebric de los cmbios en el potencil eléctrico ue se encuentren en un circuito completo debe ser cero. Est firmción se conoce

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

Curso 2017/18, PEC 3 Fecha: 25/10/2017

Curso 2017/18, PEC 3 Fecha: 25/10/2017 E.T.S.I. Industriles Amplición de Resistenci de Mteriles Curso 2017/18, PEC 3 Fech: 25/10/2017 Nombre y pellidos: N o de mtrícul: 1 L estructur de l figur está formd por tres brrs rticulds de sección A,

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Integrales de Superficie y sus Aplicaciones

Integrales de Superficie y sus Aplicaciones iclo Básico Deprtmento de Mtemátic Aplicd álculo Vectoril (054) Junio 01 UNIVERIDAD ENTRAL DE VENEZUELA FAULTAD DE INGENIERÍA Integrles de uperficie y sus Aplicciones José Luis Quintero 1. Encuentre un

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Máquina de Atwood. En la figura se representa un esquema de la máquina. M M

Máquina de Atwood. En la figura se representa un esquema de la máquina. M M Máquin de Atwood Fundmento L máquin de Atwood es un dispositivo mecánico que se utilizó pr medir l celerción de l grvedd. El dispositivo consiste en un pole que teng muy poco rozmiento y un momento de

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 014 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.c Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I semestre

Más detalles

RESISTENCIA DE MATERIALES I CURSO EXAMEN DE JUNIO

RESISTENCIA DE MATERIALES I CURSO EXAMEN DE JUNIO RESISTENI DE MTERILES I URSO 007-08 EXMEN DE JUNIO 6-6-008.- (3 puntos) L plc de l figur (E = 0 G, ν = 0,3) tiene 0 mm de espesor está sometid un estdo tensionl plno homogéneo bjo l solicitción indicd

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidd y Mgnetismo - FIS1533 Interrogción 1 Mrtes 10 de Abril de 2012 Profesores: Mrí Cristin Depssier, Mx Bñdos y Sebstián A Reyes - Instrucciones -Tiene dos hors pr resolver los siguientes problems

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x UNIVERSIDAD NACIONA DE INGENIRIA FACUTAD DE INGENIERIA INDUSTRIA Y DE SISTEAS Curso: FISICA I CB 3U 1I Profesor: ic. JOAQUIN SACEDO jslcedo@uni.edu.pe Tem: Cdens Un cuerd de lonitud y ms, se desliz sin

Más detalles

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS PROBLEMAS PROPUESTOS 1: Se hce girr un superficie pln con un áre de 3,2 cm 2 en un cmpo eléctrico uniforme cuy mgnitud es de 6,2 10 5 N/C. ( ) Determine el flujo eléctrico

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012 . Sistems de referenci inercil y no inercil. Explicr en que consisten y l diferencis que existen entre ellos. . Un disco de rdio r está girndo lrededor de su eje de simetr con velocidd ngulr ω y celerción

Más detalles

DINÁMICA DE LAS PARTÍCULAS.

DINÁMICA DE LAS PARTÍCULAS. DIÁMICA DE LAS PARTÍCULAS. Dinámic es l prte de l mecánic que estudi ls cuss del movimiento. 1.- Primer Ley de ewton o Ley de l Inerci: Si l fuerz net que ctú sobre un cuerpo es igul cero el cuerpo permnece

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

FIS120: FÍSICA GENERAL II GUÍA#8: Inducción Electromagnética.

FIS120: FÍSICA GENERAL II GUÍA#8: Inducción Electromagnética. FIS120: FÍSICA GENEA II GUÍA#8: Inducción Electromgnétic. Objetivos de prendije. Est guí es un herrmient que usted debe usr pr logrr los siguientes objetivos: Anlir el fenómeno de inducción mgnétic. Determinr

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Técnic Superior de Ingenierí Ingenierí de Telecomunicción Cmpos Electromgnéticos Cmpos Electromgnéticos. Boletín. Diciembre de 00.. Un esfer metálic de rdio se encuentr

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Estabilidad I A 4 agosto Análisis cinemático 2. Diagramas de característica. Alumno: 5 e. a= b= c= d= e=

Estabilidad I A 4 agosto Análisis cinemático 2. Diagramas de característica. Alumno: 5 e. a= b= c= d= e= 1. Análisis cinemático 2. Digrms de crcterístic Estbilidd I A 4 gosto 2009 Alumno: V4 q1 1 2 H2 3 4 5 q2 e H7 H6 6 V6 7 V7 b c d = b= c= d= e= V4= V6= V7= H2= H6= H7= q1= q2= 1. Análisis cinemático. 2.

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones L limpid mtemátic Espñol (oncurso Finl) Enuncidos y Soluciones 1. Es posible disponer sobre un circunferenci los números 0, 1, 2,..., 9 de tl mner que l sum de tres números sucesivos culesquier se, como

Más detalles

A partir de la relación dada entre la aceleración y velocidad angulares, escribimos la ecuación diferencial del movimiento:

A partir de la relación dada entre la aceleración y velocidad angulares, escribimos la ecuación diferencial del movimiento: Fundmentos Físicos de l ngenierí Exmen extr / 1 de diciembre de 1 1. El rotor de un generdor eléctrico está girndo r..m. cundo el motor se g. Debido efectos de fricción, l celerción ngulr del rotor, en

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

OPTIMIZACION = 5. Para comprobar que se trata de un mínimo acudimos al citerior de la segunda derivada

OPTIMIZACION = 5. Para comprobar que se trata de un mínimo acudimos al citerior de la segunda derivada 0 OPTIMIZACION En un eperimento en un lbortorio se hn relizdo medids del mismo objeto, que hn ddo los resultdos siguientes: m 0.9; m 0.9; m 0.9; m 0.90; m 0.9. Se tomrá como resultdo el vlor de tl que

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

@t1cre: Construcción y Rotura de Estructuras

@t1cre: Construcción y Rotura de Estructuras @t1cre: Construcción y Rotur de Estructurs Deprtmento de Estructurs y Físic de l Edificción Escuel Técnic Superior de Arquitectur de Mdrid Qué sbemos? R E S O L U C I Ó N AA 17/18 7 1 2018 Hoj informtiv

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Físic Químic º Bch. I.E.S. Elviñ Problems Recuperción del tercer trimestre 8/06/0 Nombre: Tipo A Tipo B. Un muchcho intent hcer psr un pelot sobre un muro situdo 4,0 m de distnci lnzándol con un velocidd

Más detalles

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) =

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) = I) De nición de derivd ) Use l de nición de derivd Universidd del Norte División de Ciencis Básics Deprtmento de Mtemátics y Estdístic Tller de Clculo I Preprción pr el Tercer Prcil 0-0 f 0 () = lim h!0

Más detalles

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número DETERMINNTES CPR. JORGE JUN Xuvi-Nrón Se mtriz cudrd de orden, n. Formdos todos los productos posibles de, n elementos, tomdos entre los, n 2 elementos, de l mtriz,, de modo que en cd producto hy un fctor

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles