Instituto Tecnológico Autónomo de México Maestría en Economía Microeconomía Aplicada II, 2015 Dominancia estocástica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Instituto Tecnológico Autónomo de México Maestría en Economía Microeconomía Aplicada II, 2015 Dominancia estocástica"

Transcripción

1 Instituto Tecnológico Autónomo e México Maestría en Economía Microeconomía Aplicaa II, 215 Dominancia estocástica Ricar Torres Ínice general 1 Introucción: ominación estao a estao 1 2 Dominancia estocástica e primer oren 2 3 Dominancia estocástica e seguno oren 4 1 Introucción: ominación estao a estao El objetivo e la ominancia estocástica es la introucción e criterios e clasificación e variables aleatorias (que, recoremos, representan, por ejemplo, activos financieros). En general, la iea es poer afirmar que, para una eterminaa clase e iniviuos, una variable aleatoria es preferia a otra. Según como efinamos esas clases e iniviuos obtenremos uno u otro criterio (ominancia e primer o e seguno oren). Supongamos inicialmente que estamos consierano variables aleatorias efinias en un espacio e estaos ao Ω, con función e probabilia P. Fijemos os variables aleatorias X : Ω R e Y : Ω R. En primer lugar consieraremos una orenación que sólamente tiene en cuenta el nivel e renimiento e las variables aleatorias, y más tare introuciremos otro criterio que aemás tiene en cuenta el riesgo. De acuero al criterio exclusivamente basao en el renimiento, una forma e orenación natural consiste en exigir que X omine a Y si se cumple que, para too estao ω Ω, la primera a siempre renimientos superiores: X(ω) Y (ω), para too ω Ω. Este criterio se enomina ominación estao a estao (en inglés, statewise ominance). En principio no hay ningún problema con el mismo, salvo que, al ser tan exigente, sólamente va a permitir clasificar un número extremaamente reucio e variables aleatorias. Una vez tenemos esta efinición, nos interesa poer ientificar aquella clase e iniviuos para los que el hecho que X omine a Y estao a estao implica que X es preferia a Y. Por iniviuos entenemos preferencias sobre variables aleatorias que son representables meiante el valor esperao e una eterminaa función e utilia e Bernoulli. Por tanto, son las propieaes e la función e utilia e Bernoulli las que permiten istinguir istintos tipos e preferencias. En el caso e la ominación estao a estao, cualquier función e utilia e Bernoulli que sea ébilmente creciente con respecto a la riqueza implicará que X es preferia a Y, es ecir, que se cumple: E{u(X)} E{u(Y )}. Iealmente, esearíamos que la implicación opuesta fuera también cierta, es ecir, que si el valor esperao e cualquier función e utilia e Bernoulli que sea ébilmente creciente es mayor para X que para Y, 1

2 entonces ebe haber ominación estao a estao. Sin embargo, esto está lejos e ser cierto, y el motivo es muy simple: la utilia esperaa e una variable aleatoria epene el valor que ésta toma en istintos estaos sólamente en la meia en que eso altere la istribución inucia por icha variable aleatoria sobre niveles e riqueza. En otras palabras, os variables aleatorias que inuzcan la misma istribución sobre niveles e riqueza tienen la misma utilia esperaa, sin importar ni tan siquiera si están efinias sobre el mismo conjunto e estaos e la naturaleza. Demos un simple ejemplo para ilustrar este extremo. Supongamos que Ω = (, 1] y P la istribución uniforme. Las variables aleatorias están efinias por: 2, si ω 1/2; 1, si ω 1/2; X(ω) = Y (ω) =, si ω > 1/2., si ω > 1/2. Entonces X(ω) Y (ω) para too ω (, 1]: hay ominación estao a estao entre ambas variables. Consieremos ahora la variable aleatoria Z efinia por:, si ω 1/2; Z(ω) = 2, si ω > 1/2. Notemos que, si ω 1/2, se cumple Z(ω) < Y (ω), mientras que la esiguala opuesta es cierta para ω > 1/2. Por tanto, no hay ominación estao a estao entre ambas variables aleatorias. Sin embargo, tanto X como Z inucen la misma istribución sobre niveles e riqueza: toman los valores (, 2) con probabiliaes respectivas (1/2, 1/2). Por ello, su utilia esperaa es exactamente igual: E[u(X)] = 1 2 u(2) u() = 1 2 u() + 1 u(2) = E[u(Z)]. 2 Por este motivo, el hecho que E[u(X)] E[u(Y )] para toa u( ) creciente implica que E[u(Z)] E[u(Y )] para las mismas utiliaes, y por tanto cualquier iniviuo con una u( ) creciente prefiere también Z a Y, a pesar e no haber ominación estao a estao. Esto motiva extener la efinición e ominación estao a estao a toas aquellas variables aleatorias que tengan una utilia esperaa superior para funciones e utilia creciente. Éste es precisamente el concepto e ominancia estocástica e primer oren. 2 Dominancia estocástica e primer oren Definición 1. Decimos que X omina a Y en el sentio e ominancia estocástica e primer oren, escrito X 1 Y, si, para cualquier función e utilia e Bernoulli u : R R que sea ébilmente creciente, se cumple que la utilia esperaa e X es superior a la e Y : E[u(X)] E[u(Y )]. La ominación es estricta si hay alguna función e utilia para la que la anterior esiguala es estricta. Si quisiéramos ser formales, eberíamos especificar en la efinición anterior que la esiguala entre utiliaes esperaas se ebe cumplir siempre que ambas utiliaes esperaas estén bien efinias (ya que, en general, la esperanza es una integral que está efinia como un límite que en algunos casos puee no existir). Como la utilia esperaa epene sólamente e la istribución inucia sobre niveles e riqueza, cualesquiera os variables aleatorias que tengan la misma istribución tenrán la misma orenación (en particular, serán iniferentes entre sí). Esta efinición es ahora tan general, que parece ifícil e usar como criterio para comprobar si hay ominación. Por este motivo, resulta útil encontrar caracterizaciones equivalentes que sean más sencillas e verificar. 2

3 Supongamos que X 1 Y. Dao un número z R, sea u z ( ) la función e utilia e Bernoulli ébilmente creciente efinia por:, si x z; u z (x) = 1, si x > z. Entonces E[u z (X)] = P(X > z) = 1 F X (z). Análogamente, E[u z (Y )] = P(Y > z) = 1 F Y (z). Recoremos que la función e istribución e X es efinia como F X (z) = P(X z), y el hecho que P(X z) + P(X > z) = 1 eucimos que P(X > z) = 1 P(X z) = 1 F X (z). Por tanto, se ebe cumplir que 1 F X (z) 1 F Y (z), es ecir, F X (z) F Y (z). Repitieno el mismo ejercicio para too z R, vemos que X 1 Y implica que, para cualquier z R, se cumple F X (z) F Y (z). Supongamos ahora que X e Y son os variables aleatorias con soporte finito que satisfacen: para cualquier z R, se cumple F X (z) F Y (z). Hay un conjunto finito e números reales, S = {x 1, x 2,..., x n }, para el que se cumple P(X S) = P(Y S) = 1; suponremos, aicionalmente, que x 1 > x 2 > > x n 1 > x n. Definamos las probabiliaes que las variables aleatorias ponen en los puntos e S como: p i = P(X = x i ) y q i = P(Y = x i ), para 1 i n. La esiguala e las funciones e istribución implica las esigualaes en caena: p 1 q 1 ; p 1 + p 2 q 1 + q 2 ; p 2 + p p n q 2 + q q n p 1 + p p n 1 q 1 + q q n ; p 3 + p p n q 3 + q q n p n q n Fijemos una función e utilia ébilmente creciente u : R R. Definamos u i = u(x i ), para 1 i n. Entonces tenemos: E{u(X)} = u 1 p 1 + u 2 p u n p n = u 1 p 1 + ( u 2 p 1 + u 2 p 1 ) + u 2 p u n p n = (u 1 u 2 ) p 1 + u 2 (p 1 + p 2 ) + u 3 p u n p n = (u 1 u 2 ) p 1 + (u 2 u 3 ) (p 1 + p 2 ) + u 3 (p 1 + p 2 + p 3 ) + u 4 p u n p n = (u 1 u 2 ) p 1 + (u 2 u 3 ) (p 1 + p 2 ) + (u 3 u 4 ) (p 1 + p 2 + p 3 ) + + (u n 1 u n ) (p 1 + p p n 1 ) + u n (p 1 + p p n ) (u 1 u 2 ) q 1 + (u 2 u 3 ) (q 1 + q 2 ) + (u 3 u 4 ) (q 1 + q 2 + q 3 ) + = E{u(Y )}. + (u n 1 u n ) (q 1 + q q n 1 ) + u n (q 1 + q q n ) Done el hecho que u( ) es creciente implica que u k u k+1 para too k n 1, y por tanto las esigualaes en caena anteriores implican que hay esiguala término a término. El esarrollo anterior muestra que, para cualquier par e variables aleatorias con soporte finito, la esiguala entre las funciones e istribución implica ominancia estocástica e primer oren. Meiante un paso al límite, este argumento se extiene para cualquier par e variables aleatorias cuyas utiliaes esperaas están bien efinias, aunque su soporte no sea finito. Proposición 1. X 1 Y si, y sólo si, se cumple F X (z) F Y (z) para toa z R. En particular, poemos ver que, si se cumple X 1 Y y también Y 1 X, entonces F X (z) = F Y (z) para too x R. 3

4 Corolario 1. Se cumplen simultáneamente tanto X 1 Y como Y 1 X si, y sólo si, las os variables aleatorias inucen la misma istribución sobre niveles e riqueza. Mostramos sin pruebas otra equivalencia que puee ser también útil. Recoremos que la notación X X significa que ambas variables aleatorias inucen la misma istribución sobre niveles e riqueza. Proposición 2. X 1 Y si, y sólo si, existen variables aleatorias X X, Y Y y M, efinias sobre un mismo espacio e estaos, tales que M toma sólamente valores no positivos y se cumple Y = X + M. Daa una variable aleatoria X con función e istribución F X, recoremos que la inversa generalizaa (transformación e cuantiles) e la istribución es efinia como: Se cumple entonces que: Q X (t) = min {z R : t F X (z)}, para < t < 1. t F X (z) Q X (t) z. Esto implica inmeiatamente que, efinia en el espacio e estaos Ω = (, 1) con istribución uniforme, la variable aleatoria Q X tiene la misma istribución que X. Sabemos, pues, que aas X 1 Y, se ebe cumplir Q X 1 Q Y. Pero en realia se cumple mucho más. La esiguala e más arriba implica que, aas t (, 1) y z R, Q X (t) z implica t F X (z) F Y (z), lo que a su vez implica Q Y (t) z; como esto se cumple para toa z R, ello es equivalente al hecho que Q X (t) Q Y (t). Es ecir, entre ambas inversas no sólamente hay ominancia estocástica, sino ominación estao a estao. Proposición 3. X 1 Y si, y sólo si, sus inversas generalizaas cumplen Q X (t) Q Y (t) para too t (, 1). Corolario 2. X 1 Y si, y sólo si, existen variables aleatorias X X e Y mismo espacio e estaos Ω, que cumplen X (ω) Y (ω) para too ω Ω. Y, efinias sobre un 3 Dominancia estocástica e seguno oren La ominancia estocástica e seguno oren tiene en cuenta no sólamente el renimiento, sino también el riesgo: la clase e funciones e utilia e Bernoulli usaa es la e funciones crecientes con respecto a la riqueza y con aversión al riesgo. Definición 2. Decimos que X omina a Y en el sentio e ominancia estocástica e seguno oren, escrito X 2 Y, si, para cualquier función e utilia e Bernoulli u : R R que sea ébilmente creciente y ébilmente cóncava, se cumple que la utilia esperaa e X es superior a la e Y : E[u(X)] E[u(Y )]. La ominación es estricta si hay alguna función e utilia para la que la anterior esiguala es estricta. En este caso, hay equivalencias paralelas a las e ominancia e primer oren. Para simplificar la exposición, suponremos a partir e este momento que toas las variables aleatorias toman sólamente valores no negativos. Proposición 4 (Rothschil-Stiglitz). X 2 Y si, y sólo si, para toa z R se cumple: z F X (x) x z F Y (x) x. 4

5 Proposición 5. X 2 Y si, y sólo si, existen variables aleatorias X X, Y Y, Z y M, efinias sobre un mismo espacio e estaos, tales que M toma sólamente valores no positivos, E{Z X } =, y se cumple Y = X + Z + M. Una variable Z como la e arriba se enomina ifusión que preserva la meia (en inglés, meanpreserving sprea). El significao intuitivo es que, al sumar Z a X, hay un incremento el riesgo sin que ello venga compensao con un incremento en el renimiento, ya que éste último se mantiene exactamente igual en meia. Finalmente, recurrieno e nuevo a las transformaciones e cuantiles, poemos expresar una nueva equivalencia. La transformación e cuantiles orena la variable aleatoria e acuero al nivel e renimiento: estaos inferiores corresponen a renimientos más bajos. Vimos también que Q X (t) = z significa que la probabilia e obtener un renimiento igual o inferior a z es mayor o igual a t. Cuano hay un mean preserving sprea, los renimientos agregaos corresponientes al porcentaje t e estaos con menores renimientos pueen haber isminuio, pero nunca aumentao. Eso es lo que afirma el siguiente resultao. Proposición 6. X 2 Y si, y sólo si, sus respectivas inversas generalizaas Q X y Q Y, efinias sobre el espacio e estaos Ω = (, 1) con istribución uniforme, cumplen, para too t (, 1): t Q X (s) s t Q Y (s) s. 5

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

I. PRIMERA PARTE. Introducción a los métodos de clasificación. Programa PRESTA Eduardo CRIVISQUI Tr. N 1

I. PRIMERA PARTE. Introducción a los métodos de clasificación. Programa PRESTA Eduardo CRIVISQUI Tr. N 1 I. PRIMERA PARTE Introucción a los métoos e clasificación Programa PRESTA - 1999 - Euaro CRIVISQUI Tr. N 1 1. QUÉ SIGNIFICA CLASIFICAR UN CONJUNTO DE UNIDADES DE OBSERVACIÓN? Aplicar un métoo e clasificación

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

d) Si tiene la siguiente función para la oferta de trabajo:

d) Si tiene la siguiente función para la oferta de trabajo: Capítulo MERCADO DE TRABAJO, FUNCIÓN DE RODUCCIÓN Y OFERTA AGREGADA DE ARGO AZO. Sea la función e proucción: Y = A0( f 0 f ) Done las uniaes en las que se expresa la cantia e trabajaores a emplear son

Más detalles

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana Soluciones al eamen e Estaística Aplicaa a las Ciencias Sociales Junio 009 ª Semana Ejercicio. Una agente e iguala está interesaa en conocer las iferencias salariales en España entre hombres y mujeres

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Tablas de mortalidad Metodología

Tablas de mortalidad Metodología Tablas e mortalia Metoología INSTITUTO NACIONA DE ESTADÍSTICA Mayo e 016 Ínice 1 Introucción 5 Tablas e mortalia e España 8 3 Tablas e mortalia e comuniaes autónomas y provincias 11 4 1 Introucción a

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Aversión al riesgo, equivalente cierto y precios de reserva

Aversión al riesgo, equivalente cierto y precios de reserva Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Décimo-quinta clase. Respuesta al impulso. Implementación e sistemas LTI. Ecuaciones e iferencia y iferenciales

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

Electrónica Analógica

Electrónica Analógica Electrónica Analógica Conferencia #2 Moelos y parámetros e la unión P-N. iferentes moelos el ioo. Resistencia inámica e la unión P-N. Efectos capacitivos. iempos e conmutación. Bibliografía: Microelectrónica.

Más detalles

Ejercicio Práctico 1 Enunciado

Ejercicio Práctico 1 Enunciado Funamentos e Programación Grupo 5 Samuel Martín Ejercicio Práctico Enunciao Instrucciones generales El alumno eberá presentar los ejercicios planteaos en este ocumento. Aicionalmente, se han facilitao

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

Sucesiones de Variables Aleatorias

Sucesiones de Variables Aleatorias Capítulo 1 Sucesiones e Variables leatorias 1.1. Introucción La introucción e los conceptos e meia e integral nos va a permitir consierar nuevos moos e convergencia para sucesiones e funciones. Vamos a

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

La matriz k-exponencial y soluciones de algunos sistemas de ecuaciones diferenciales

La matriz k-exponencial y soluciones de algunos sistemas de ecuaciones diferenciales La matriz k-exponencial y soluciones e algunos sistemas e ecuaciones iferenciales Jorge Bernaro Ramirez Zarta Yefrén Hernánez Cuenca ESCUELA DE CIENCIAS Y HUMANIDADES DEPARTAMENTO DE CIENCIAS BÁSICAS MAESTRÍA

Más detalles

Capítulo 4 Simulación de Algoritmos de Ruteo

Capítulo 4 Simulación de Algoritmos de Ruteo Capítulo 4: Simulación e Algoritmos e Ruteo 41 Capítulo 4 Simulación e Algoritmos e Ruteo En este capítulo se muestran ejemplos e topologías simulaas con el Simulaor e Algoritmos Dijkstra y Bellman-For.

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Preguntas Más Frecuentes Tema 3

Preguntas Más Frecuentes Tema 3 Preguntas Más Frecuentes Tema 3 Contenio P.3.1: Los terminales e los circuitos están efinios claramente como entraas y salias o se pueen usar e forma iniferente?... 2 P.3.2: Las entraas e las señales e

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA /4/8 ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan En general una Ecuación Diofántica es una ecuación polinomial en una o más variables para la que buscamos soluciones en los números enteros,

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE. MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario

PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE. MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario Una moalia e financiamiento el éficit público es la emisión e inero (en el sentio usual que consiste

Más detalles

TEMA 4: Transformaciones 3D

TEMA 4: Transformaciones 3D TEMA 4: Transformaciones D Ínice. Sistemas e Coorenaas. Transformaciones Básicas. Traslación. Escalao. Rotación lana 4. Afilamiento 5. Deformaciones. Composición e Transformaciones 4. Rotación General

Más detalles

Derivación bajo la integral

Derivación bajo la integral Derivación bajo la integral José Alfreo Cañizo Rincón e julio, 2004. ntroucción Estas notas contienen una presentación e los teoremas usuales e erivación bajo la integral y la regla e Leibniz. El objetivo

Más detalles

Derivación e vectorial

Derivación e vectorial 1. Vectores variables Derivación e vectorial Los vectores porán ser constantes o variables. Ahora bien, esa característica se verificará tanto en las componentes como en la base. Esto quiere ecir que cuano

Más detalles

Introducción y Contextualización

Introducción y Contextualización ema 1 Introucción y Contextualización 11 Introucción La asignatura e Econometría avanza en el estuio e la materia profunizano en tópicos como: la relajación e las hipótesis básicas sobre la perturbación,

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones Capitulo IV IV. Síntesis imensional e mecanismos. Generación e funciones Cinemática y Dinámica e Máquinas. IV. Síntesis imensional e mecanismos. Generación e funciones Capítulo IV Síntesis imensional e

Más detalles

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado Grafos Sea V un conjunto finito no vacío, y E V V. El par ( V, E) es un grafo sobre V, one V es el conjunto e vértices y E el conjunto e aristas. Lo anotaremos G ( V, E). Vértice(s) repetio(s) Arista(s)

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

6. MODELOS KT-KD DIARIOS, CÁCERES

6. MODELOS KT-KD DIARIOS, CÁCERES 6. MODELOS KT-KD DIARIOS, CÁCERES Una vez realizao el control e calia e los atos registraos en la estación e Cáceres se escartan, para el esarrollo el moelo e escomposición iaria, aquellos ías que no hayan

Más detalles

Preparación para los Tutoriales Herramientas Astronómicas

Preparación para los Tutoriales Herramientas Astronómicas Preparación para los Tutoriales Herramientas Astronómicas Proyecto Ventana Interactiva al Universo Departamento e Ingeniería Eléctrica, Universia e Chile c Primavera 2005 Resumen En el presente tutorial

Más detalles

INTERFERENCIA DE PELICULA DELGADA

INTERFERENCIA DE PELICULA DELGADA ITERFERECIA DE PELICULA DELGADA Analizaremos qué sucee cuano una ona electromagnética incie sobre una película elgaa e un material (#) que está entre otros os materiales (# y #). La película posee espesor,

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

1 Conjuntos de medidas. Histogramas

1 Conjuntos de medidas. Histogramas Curso 06-07 Tema.5 Análisis estaístico e errores aleatorios: Histogramas. La istribución normal. Dóne estuiar el tema.5: Capítulo 5 (ecepto apto. 5.8). J.R. Taylor, Error Analysis. Univ. Science Books,

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

1. Función exponencial y funciones definidas mediante la exponencial

1. Función exponencial y funciones definidas mediante la exponencial TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

LOS MÉTODOS PROBABILISTAS DE SEGURIDAD ESTRUCTURAL EN EL CÓDIGO TÉCNICO DE LA EDIFICACIÓN

LOS MÉTODOS PROBABILISTAS DE SEGURIDAD ESTRUCTURAL EN EL CÓDIGO TÉCNICO DE LA EDIFICACIÓN LOS MÉTODOS PROBABILISTAS DE SEGURIDAD ESTRUCTURAL EN EL CÓDIGO TÉCNICO DE LA EDIFICACIÓN Luis Celorrio Barragué Departamento e Ingeniería Mecánica. Universia e La Rioja PROBABILISTIC METHODS OF STRUCTURAL

Más detalles

b) El número de líneas de campo eléctrico atravesando el cubo es el mismo que el número de líneas de campo

b) El número de líneas de campo eléctrico atravesando el cubo es el mismo que el número de líneas de campo CUETIONE TEOREMA DE GAU G1.- Una carga eléctrica puntual está situaa entro e un cubo que a su vez está roeao por una esfera e mayor tamaño. Explicar razonaamente si las siguientes afirmaciones son ciertas

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

Tercera clase. Definición de sistema

Tercera clase. Definición de sistema Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Tercera clase. Definición e sistema Veíamos que una señal es una cantia física que varía en el tiempo, en el

Más detalles

Sucesiones de Variables Aleatorias

Sucesiones de Variables Aleatorias Capítulo 5 Sucesiones e Variables Aleatorias 5.1. Introucción La introucción e los conceptos e meia e integral nos va a permitir consierar nuevos moos e convergencia para sucesiones e funciones. Vamos

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

Estabilidad Robusta de Sistemas Integrales con Retardos

Estabilidad Robusta de Sistemas Integrales con Retardos Estabilia Robusta e Sistemas Integrales con Retaros M. Zuñiga-Velázquez D.Melchor-Aguilar ys.monié Departamento e Control Automático CINVESTAV-IPN México D. F. {mzuniga;smonie}@ctrl.cinvestav.mx División

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Comprobar si un perfil IPE300 en acero S75 sería una sección aecuaa para la viga continua con os vanos e 6m cargaa vinculaa como se muestra en la figura. Suponremos

Más detalles

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s)

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s) TEORÍA DEL ONTROL. SEGUNDO EXAMEN PARIAL MODELO DE SOLUIÓN. M. EN. RUBÉN VELÁZQUEZ UEVAS Problema 6. onsiere le sistema e la figura. Diseñe un compensaor e aelanto tal que los polos ominantes e lazo cerrao

Más detalles

Control Eléctrico y Accionamientos Teoría de Circuitos I Unidad 7: Resonancia

Control Eléctrico y Accionamientos Teoría de Circuitos I Unidad 7: Resonancia ontrol Eléctrico y Accionamientos Teoría e ircuitos nia 7: esonancia Ínice e temas e la nia 7 7-...- oncepto e resonancia 7-...- esonancia en circuitos serie 7-...- esonancia serie por variación e inuctancia

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introucción a la Teoría Analítica e Números Pablo De Nápoli clase. Introucción La teoría analítica e números es una rama e la matemática one se utilizan los métoos el análisis, tales como el análisis e

Más detalles

PERIODO DE SEMIDESINTEGRACION RADIACTIVA

PERIODO DE SEMIDESINTEGRACION RADIACTIVA Universia acional Autónoma e Honuras UAH-VS Experimento o. 4 PERIODO DE SEMIDESITEGRACIO RADIACTIVA OBJETIVOS Manejar un contaor Geiger-Muller como instrumento para meir raio activia. Meir la raiación

Más detalles

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS aletos 1 6.04-1 Conceptos funamentales Un conjunto e superficies que separan meios e istinto ínice e refracción constituyen un sistema óptico. Si, como caso particular, estas superficies son esféricas

Más detalles

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017 EXAME EXTRAORDIARIO DE FÍSICA I. CUESTIOES 30/0/07.- a) Defina el momento angular e una partícula. Demostrar que si la partícula se mueve en un plano, la irección el momento angular permanece constante.

Más detalles

Principio de incertidumbre de Heisenberg

Principio de incertidumbre de Heisenberg Principio e incertiumbre e Heisenberg n un átomo e irógeno, nos se pueen meir simultáneamente la cantia e movimiento mv y la posición e su electrón. a cantia e movimiento e una partícula se enomina momento,

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento e Física Aplicaa III Escuela Técnica Superior e Ingenieros Camino e los Descubrimientos s/n 4109 Sevilla Examen e Campos Electromagnéticos (1 a convocatoria). o e Inustriales. Febrero-011

Más detalles

Cálculo matricial de pórticos biempotrados a dos aguas

Cálculo matricial de pórticos biempotrados a dos aguas Desplazamientos y solicitaciones e una barra Cálculo matricial e pórticos biempotraos a os aguas. Hipótesis e cálculo. e verifica la ley e Hooke, lo que significa que en las estructuras los esplazamientos

Más detalles

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Solución lista de ejercicios 9

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Solución lista de ejercicios 9 Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Solución lista de ejercicios 9 Ricard Torres 1 Consideremos una economía de intercambio puro con dos

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO CONDUCCIÓN TÉRMICA Objetivos Determinar la conuctivia

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

EL ENFOQUE PROMETHEE: UN PROBLEMA DE SELECCIÓN DE PERSONAL

EL ENFOQUE PROMETHEE: UN PROBLEMA DE SELECCIÓN DE PERSONAL EL ENFOQUE PROMETHEE: UN PROBLEMA DE SELECCIÓN DE PERSONAL Laura Plazola Zamora. Introucción. La selección e personal es un proceso complejo que implica equiparar las cualiaes y conocimientos e los solicitantes.

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles

XIX CONGRESO INTERNACIONAL DE INVESTIGACIÓN EN CIENCIAS ADMINISTRATIVAS

XIX CONGRESO INTERNACIONAL DE INVESTIGACIÓN EN CIENCIAS ADMINISTRATIVAS XIX CONGRESO INTERNACIONAL DE INVESTIGACIÓN EN CIENCIAS ADMINISTRATIVAS Gestión e las Organizaciones rumbo al 3er milenio De la Regionalización a la Globalización. Capítulo 1.- Aministración e Operaciones

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas Funciones Inversas UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Castillo Repaso e propieaes e funciones inversas Sea f : A B una función biectiva sea f : B A su función inversa

Más detalles

SITUACIONES ENDÉMICAS EN ENFERMEDADES TRANSMISIBLES

SITUACIONES ENDÉMICAS EN ENFERMEDADES TRANSMISIBLES SITUACIONES ENDÉMICAS EN ENFERMEDADES TRANSMISIBLES F. Morilla Dept. e Informática y Automática, ETSI Informática, UNED, C/. Juan el Rosal 16, 28040 Mari, fmorilla@ia.une.es J. Donao-Campos Centro Nacional

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

Cuál es el resto? Números en columnas. Con la planilla de cálculo: b) Se escriben los números

Cuál es el resto? Números en columnas. Con la planilla de cálculo: b) Se escriben los números Números en columnas a) Se escriben los números en tres columnas: Encuentra en qué columna se ubican los números: 24; 141; 814; 1721; 10001. b) Se escriben los números en cinco colum- 0 1 2 3 4 5 6 7 8

Más detalles

Nombre:...Curso:... CAMPO ELECTRICO

Nombre:...Curso:... CAMPO ELECTRICO Nombre:...Curso:... CAMPO ELECTRICO El concepto e campo es un importante meio para la escripción e algunos fenómenos físicos, un ejemplo e esto es el caso e la Tierra, ya que cualquier objeto e masa m

Más detalles

XII. OTROS ESQUEMAS DE CONTROL

XII. OTROS ESQUEMAS DE CONTROL XII. OTROS ESQUEMAS DE CONTROL Para mejorar el control e un proceso puee ser necesario incluir iferentes tipos e esquemas e control, los cuales logran efectos iferentes, sobre las variables a controlar,

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

DESCOMPOSICÓN DE LA LUZ EN DETERMINADAS LONGITUDES DE ONDA MEDIANTE LA RED DE DIFRACCIÓN.

DESCOMPOSICÓN DE LA LUZ EN DETERMINADAS LONGITUDES DE ONDA MEDIANTE LA RED DE DIFRACCIÓN. ESPECTROS DE EMISIÓN DE LUZ EN LOS GASES: DESCOMPOSICÓN DE LA LUZ EN DETERMINADAS LONGITUDES DE ONDA MEDIANTE LA RED DE DIFRACCIÓN. (Práctica nº 14: Espectroscopía) CARLOS HUERTAS BARRA FERNANDO HUESO

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

SISTEMAS ELECTRÓNICOS DE CONTROL

SISTEMAS ELECTRÓNICOS DE CONTROL SISTEMAS ELECTÓNICOS DE CONTOL EL AMPLIFICADO OPEACIONAL:. Introucción. Características generales. Configuraciones básicas el amplificaor operacional. El comparaor 6 B ELECTÓNICA 0 E.E.T Nº 60 GUILLEMO

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles