CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

Documentos relacionados
Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

VECTORES. A partir de la representación de, como una recta numérica, los elementos

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

4.- Aproximación Funcional e Interpolación

1. Indique para cada una de las afirmaciones siguientes, si es verdadera o falsa, justificando su determinación. r r r r r r

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

Límite y Continuidad de Funciones.

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

Álgebra I Práctica 3 - Números enteros (Parte 1)

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Curso: 3 E.M. ALGEBRA 8

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

[e j N 2 e j N 2 ]...} (22)

Universidad Antonio Nariño Matemáticas Especiales

Coordinación de Matemática II (MAT022)

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Aplicaciones del cálculo integral vectorial a la física

Apellidos y Nombre: Aproximación lineal. dy f x dx

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

CAPÍTULO I. Conceptos Básicos de Estadística

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

Los números complejos

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

4. Sucesiones de números reales

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

METODO DE ITERACION DE NEWTON

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

ANALISIS CONVEXO CAPITULO CONVEXIDAD

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

Preguntas más Frecuentes: Tema 2

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización

3. Volumen de un sólido.

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Importancia de las medidas de tendencia central.

CUADRATURA GAUSSIANA

GUIA DE ESTUDIO Nro 1

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sumatoria, Progresiones y Teorema del Binomio

2.- ESPACIOS VECTORIALES. MATRICES.

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

TRABAJO DE GRUPO Series de potencias

Teoría: Números Complejos. Necesidad de ampliar el conjunto de los números reales

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

2 Conceptos básicos y planteamiento


TALLER DE MATEMÁTICAS DESIGUALDADES

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de:

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Hoja de Problemas Tema 3. (Sucesiones y series)

MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

MINITAB y MODELOS DE REGRESIÓN

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

CLASE SOBRE APLICACIONES LINEALES

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Medidas de Tendencia Central

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Transcripción:

CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06

MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta la superficie plaa que hace parte de las llamadas variedades lieales.. PREIMINARES E térmios geerales se podría decir que ua variedad, e setido geométrico, es u cojuto cotiuo de putos e u espacio euclidiao. Este cojuto de putos puede costituir ua líea (variedad de ua dimesió o primer orde que depede de u parámetro), ua superficie (variedad de dos dimesioes que depede de dos parámetros), u volume (variedad de tres dimesioes que depede de tres parámetros) o ua variedad de dimesió m (depede de m parámetros). Para que ua variedad de m dimesioes se pueda dar se requiere u espacio euclidiao de al meos m dimesioes. Por ejemplo, para teer ua superficie se ecesita míimo u E. U parámetro es ua variable auxiliar que iterviee e la expresió de alguas ecuacioes. U parámetro puede tomar diferetes valores pero, a diferecia de ua variable ormal, o los represeta simultáeamete a todos.

Defiició. Ua variedad e E es lieal de orde o dimesió m ( m ) si vectorialmete se puede escribir como: m 0 i i R R t A i Siedo R el vector de posició de u puto o determiado de la variedad, R 0 el vector de posició de u puto determiado de la variedad, A i so m vectores.i. e E t i so m parámetros. as dos variedades lieales más sobresalietes so la líea recta ( m ) la superficie plaa ( m ). El caso particular de la variedad lieal e la que m se cooce como hiperplao. os hiperplaos e represetarse co ua úica ecuació cartesiaa. E so las úicas variedades lieales que puede Ates de etrar a defiir la líea recta la superficie plaa le daremos u primer vistazo a las líeas superficies e geeral.

Defiició. Ua líea es ua variedad de ua sola dimesió dada e su forma paramétrica por la fució: : E t ( t) f ( t), f ( t),..., f ( t) ( t ) se puede represetar mediate el vector R x, x,..., x siedo x i i,,..., las coordeadas cartesiaas de los putos de la líea, por lo tato R es el vector de posició de los putos de la líea. De ahí se obtiee que R f ( t), f ( t),..., f ( t ) () que se cooce como ecuació vectorial de la líea o forma paramétrica vectorial. De se obtiee el sistema de ecuacioes x f ( t), x f ( t),..., x f ( t ) () Que es la forma paramétrica escalar de la líea. Si () se resuelve para t (se elimia el parámetro) se obtiee u sistema de ecuacioes e las variables x, x,..., x que es la forma implícita de la líea. U puto particular se obtiee al darle u valor específico a t, el cual es el parámetro de la líea. a diferecia etre dos líeas la determia la forma que tega las relacioes x f ( t) que la defie. i i Sólo e el caso de la forma implícita de ua líea está dada por ua sola ecuació cartesiaa. El cojuto de putos que forma la líea so los elemetos del rago de a que los putos de la líea ( x, x,..., x ) está e el rago de.

Ua líea també se llama traectoria o camio. Cuado t se toma e u itervalo fiito, t t, t, se obtiee u tramo o segmeto de la líea. Defiició. Se llama superficie a ua variedad de dos dimesioes dada e forma paramétrica por la fució: S : E ( u, v) ( u, v) f ( u, v), f ( u, v),..., f ( u, v) ( u, v ) so los parámetros de la superficie al darles valores particulares se obtiee u puto determiado de la superficie. Si R es el vector de posició de u puto P( x, x,..., x ) o determiado de la superficie, etoces ( u, v) R R f ( u, v), f ( u, v),..., f ( u, v ) () llamada ecuació vectorial o forma paramétrica vectorial de la superficie. De () se obtiee el sistema de ecuacioes, x f ( t, u), x f ( t, u),..., x f ( t, u) (4) e el cual f i so fucioes de e. El sistema (4) costitue la forma paramétrica escalar de la superficie.

. A ÍNEA RECTA E la geometría euclidiaa el cocepto de recta o se defie. Se llega a él a través de propiedades que aparece formuladas de forma implícita e u cojuto de axiomas. Esta axiomática abstracta relacioa las rectas co elemetos de otros dos cojutos: el de los putos el de los plaos establece por ejemplo, que dos putos determia ua recta que si dos putos de ua recta está e u plao, toda la recta está e el plao. De igual maera se maeja los coceptos de paralelismo, cocurrecia perpedicularidad. E geometría aalítica, la recta e u espacio euclídeo es descrita por relacioes e forma de ecuacioes etre las coordeadas de u puto sobre la recta. Defiició.4 E u espacio euclidiao E, la líea recta es ua variedad cotiua de ua sola dimesió. E forma paramétrica está defiida como: : R E t ( t) R ta El cojuto de putos de la recta es el rago de, 0 ( t) R, siedo R x, x,..., x el vector de posició de cualquier puto P de la recta. Por lo tato: dode R R0 ta () R0 x0, x0,..., x 0 es el vector de posició de u puto determiado de la recta, A a, a,.., a es u vector determiado que defie su direcció t es u parámetro.

El vector A, que es cualquier vector paralelo a la recta, se cooce como vector director. Como se puede ver e (), cada valor particular de t determia u puto diferete de la recta si se toma t e u itervalo t, t se tiee u segmeto. a ecuació (), segú la defiició geeral de líea, se llama ecuació vectorial de la recta o forma paramétrica vectorial. De allí usado el álgebra vectorial se llega a que x x a t 0 x x a t 0 a x x a t 0 b. (). u sistema de ecuacioes e las variables x, x,..., x t. Cada x i es u poliomio lieal e t, razó por la cual la recta es ua variedad lieal. Este sistema de ecuacioes se deomia forma paramétrica escalar de la recta. E () se puede elimiar el parámetro para obteer ecuacioes e las variables x, x,..., x, que es la forma implícita de la recta. Si, por ejemplo, a 0, etoces de la primera ecuació x t x a 0 reemplazado e el resto, la forma implícita será a x x ( x x ) 0 0 a

a x x ( x x ) () 0 0 a a x x ( x x ) 0 0 a De otra forma, al despejar t de cada ecuació, (si ai 0 para todo i,..., ) se obtiee: x x0 x x0 x x0... (4) a a a que es otra forma implícita coocida como forma simétrica de la recta. Es posible tambié expresar la recta al tomar como parámetro cualquiera de las coordeadas de P (puto cualquiera de la recta). Si, por ejemplo x se toma como el parámetro a 0, etoces x x x x a x a x 0 0 a a : (5) a x a x x x 0 0 a a Todas las expresioes ateriores (ecuacioes () a (5)) so diferetes formas de represetar ua líea recta e E. as codicioes que determia la posició relativa de dos rectas e cotiuació: E se da a

Defiició.5 Dadas dos rectas de E R R ua, etoces se dice que: defiidas vectorialmete por R R ta a. b. so paralelas si sólo si A A so paralelos, es decir, si los vectores directores de las dos rectas so.d. so perpediculares si sólo si A A so perpediculares, o sea A A 0 c. El águlo etre A A. tiee la misma medida que el águlo etre Debe quedar claro que el águlo etre dos rectas existe aú cuado las dos rectas o se corte lo que tambié es válido para rectas ortogoales. Teorema. Dadas dos rectas de E, R R ua, etoces a. A A o so paralelos, o sea, so.i. co ecuacioes vectoriales R R ta so secates si se cumple a la vez : b. A, A R R so coplaares, es decir, so.d. Actividad e clase: Ilustrar el teorema aterior co casos particulares. Se sabe desde la geometría que si dos rectas se itersecta, su itersecció es u úico puto; por eso si se verifica el teorema. se puede hallar el puto de corte al resolver el sistema que resulta de R ta R ua

para t u. Es claro que el sistema ( ecuacioes icógitas) solo tedrá solució si so secates. E caso cotrario ( dado que A A so.i.) las rectas so cruzadas (i se corta, i so paralelas). E el siguiete teorema o ha que olvidar que la distacia euclidiaa de u puto a ua recta es la logitud del segmeto perpedicular del puto de la recta. Teorema. Distacia de u puto a ua recta. Dados e E la recta : 0 R R ta P, u puto co vector de posició R, etoces la distacia d desde P hasta es d 0 0 R R A [( R R ) A] A E los siguietes apartados se va a aalizar los casos particulares de esta teoría geeral de la recta cuado que so los más familiares.. A ÍNEA RECTA EN E Para la recta e el espacio es válido todo lo que se dijo de la recta e E, sólo que haciedo precisado alguas cosas. a defició.4 se particulariza así: Defiició.6 Dados u puto particular P 0, co vector de posició R x,, z, u 0 0 0 0

vector A a, b, c, la recta de dada por E que pasa por P 0 e la direcció de A está R R0 ta () siedo R x,, z el vector de posició de u puto arbitrario de la recta t el parámetro. (figura.) Figura.. a recta e E De la ecuació () se observa claramete que R R0 ta, o mejor, que P0 P ta lo que corrobora que A es paralelo a la recta puesto que P 0 P so putos de la recta esto sigifica que el vector P0 P es u vector e la recta. De la ecuació (), x,, z x,, z t a, b, c de lo cual resulta: x x at 0 bt 0 z z ct 0 0 0 0 que so las ecuacioes de la forma paramétrica escalar de la recta Si a, b, c so o ulos, etoces ()

x x0 0 z z0 () a b c es la forma simétrica implícita. Pero si alguo de los compoetes de A es cero, o se puede usar (). Supógase por ejemplo, que a 0 b c diferetes de cero; e tal caso la forma implícita queda x x, z z 0 b c 0 0 (4) E este caso se trata de ua recta paralela al plao YZ por ede perpedicular al eje x (o lo tiee que cortar). El aálisis es similar cuado b 0 o c 0. Si dos de los compoetes de A so cero, dígase a b 0, etoces x x, (5) 0 0 será la forma implícita de la recta, la cual es paralela al eje z perpedicular al plao XY. De las formas (), (4) ó (5), se puede obteer dos ecuacioes idepedietes lo que sigifica que la forma implícita de ua recta e E está dada siempre por u sistema de dos ecuacioes cosideradas a la vez, es decir, que la recta es el cojuto de putos ( x,, z ) que satisface simultáeamete las dos ecuacioes (que más adelate se verá correspode a dos superficies que se corta e la recta). Por otro lado, la defiició.5 que da la posició relativa de dos rectas e aplicable si restriccioes a dos rectas e E es E ; sólo habría que agregar que si A

A so los vectores directores de las dos rectas A A 0 etoces las rectas so paralelas. o mismo se puede decir para dos rectas secates: dos rectas so secates e E si se cumple el teorema. (ver ejemplo ) Esta parte fializa co dos teoremas que da las distacias euclidiaas de u puto a ua recta etre rectas cruzadas e E. Teorema. Distacia de u puto a ua recta. Dados e E ua recta P0 ( x0, 0, z 0) exterior a a es: d co ecuació vectorial R R ta u puto co radar R 0, etoces la distacia euclidiaa de P 0 A( R R ) 0 A Actividad e clase: Demostrar e ilustrar co casos particulares este teorema. Teorema.4 Distacia etre dos rectas. Dadas dos rectas de R R ua ; si E, co ecuació R R ta co ecuació so rectas cruzadas ( se verifica la tesis del teorema.) etoces la distacia euclidiaa etre ellas es ( R R) ( A A ) d A A Actividad para el estudiate: Demostrar e ilustrar este teorema.

Cuado so paralelas, la distacia etre ellas se puede hallar usado el teorema.; la distacia etre las rectas es igual a la distacia de u puto de ua de ellas a la otra..4 Ejemplos. Halle todas las formas de la recta de B(6,,) Solució: U vector paralelo a la recta es el vector AB 7, 6, 4. E que cotiee los putos A(,4,7) Ua ecuació vectorial es etoces R OA tab, siedo O el orige, es decir, R,4,7 t 7, 6, 4 De ahí, x 7 t, 4 6 t, z 7 4t que es la forma paramétrica. Al elimiar el parámetro, Co lo que ésta es ua forma implícita. a forma simétrica será, x t 7 6 4 ( x ), 7 x 4 z 7 7 6 4 4 z 7 ( x ) 7. Verifique si las rectas : x t, t, z t x h h z h so paralelas, secates o cruzadas. :, 4,

Solució: U vector director de es A,, uo de es B,, as rectas so paralelas si A B 0, pero A B,, lo que idica que o lo so. as rectas so secates si se cumple las codicioes del teorema., a saber que A B o so paralelos (a verificado) que A, B PP sea.d siedo P P : P (,,) P (,4,), luego PP,5, 5 PP ( A B ) lo que sigifica que A, B PP so.i ; las rectas o se corta o queda otra opció de so cruzadas.. Halle ua forma implícita de la recta de E que pasa por el puto P 0(,,) corta perpedicularmete a la recta dada por R,5,4 t 6,,. Solució: Para la forma implícita se ecesita u puto particular u vector director de la recta. Sea A a, b, c tal vector, como las rectas so perpediculares 6,, a, b, c 6a b c 0 () Como las rectas se corta, tiee u puto comú, es decir que, por el teorema., 6t ah () 5 t bh ()

(), () (4) e () coduce a 4 t ch (4) 6( 6 t) ( t) 4t 0, 44t 0 0 5 t co este dato el puto de corte será 7 60 7,, 7 60 7 vector paralelo sirve) será A,,,, ó tambié 9,9, Por fi, la forma implícita es 8 8 6 A,, 4. Verifique que las rectas de Solució: x z 9 9 6 u vector A (cualquier : R,,7 t,,4 E, x 4 z : so cruzadas calcule la distacia etre ellas. 5 U vector direcció de es A A o so paralelos, etoces so secates si A, A,,4 uo de es o es paralela a A R R so.d siedo R R 4,,,,7 5,, 4. A,,5 Etoces si (R R) ( A A ) 0 las rectas so secates..como. Por el teorema.

5 4 4 45 5 lo que idica que las rectas so cruzadas. Por el teorema.4, la distacia etre será ( R R) ( A A ) 45 45 d A A 69 69.5 Ejercicios. E cada caso halle todas las formas de la recta que pasa por P 0 es parlela al. Si vector D : i. P0 (,4,6), D,,5 ii. P0 (,,4), D 5, 7, iii. P0 (0,0,0), D,, pasa por A (,,7) B(,, 4) D(,,4), demuestre que ellas.. Ua recta pasa por P (,,) es paralela a A,, Q (,,0) es paralela a A,8, determie el puto de corte. pasa por E(5,7, ) so cruzadas halle la distacia etre, otra recta pasa por. Demuestre que so coplaares 4. Dos de los coseos directores del vector director de ua recta so si la recta pasa por (,,7), halle su ecuació. ;

5. Dadas las rectas x z 5 z x halle la distacia etre ellas la forma simétrica de la recta que pasa por (, 4, 5) e itersecta a la vez a las dos rectas dadas. 6. Halle las diferetes formas de la recta que pasa por (,,5) corta perpedicularmete a la recta x z. 4 7. Halle la ecuació vectorial de la recta que es perpedicular a la vez a las rectas x z x u, u, z u / pasa por (,,). 8. Se da los putos P (4,,), P (,0,b), P (0,0,0) P 4(4,-,) ; halle el valor de b para que la recta por P P corte a la recta por P P 4. 9. Halle el águlo agudo etre las rectas : x 7 t, t, z t : x 5 t, t, z 6t 0. Halle todas las formas de la ecuació de la recta de que pasa por el puto P (,-,) corta e forma perpedicular al eje Z.. Verifique si las rectas : x,, z 0,6,0 t 0,,0 : z x, 0 so coplaares.. Halle todas las formas de la ecuació de la recta de que cotiee al eje X.

.6 A ÍNEA RECTA EN E E el plao, el estudio de la recta se puede empreder por dos camios, uo vectorial otro escalar que, al fial, se juta. El camio vectorial es el mismo que se siguió e E pero co ; el escalar parte de ua defiició alterativa de la recta. a defiició.4 coduce a la siguiete, Defiició.7 Forma vectorial de la recta. Se llama recta e E a todos los putos P( x, ) que cumple la ecuació R R0 ta () e la cual R es el vector de posició de P, A a, b es u vector paralelo a la recta (vector director), R x, es el radar de u puto determiado de la 0 0 0 recta P 0 t es el parámetro (fig..). Figura.. íea recta e el plao De () co los datos de la defiició se tiee que

lo cual equivale a que x, x, t a, b 0 0 x x a t, b t () 0 0 Que so las ecuacioes de la forma paramétrica escalar. Ha varias formas de elimiar el parámetro e () para coseguir ua forma implícita. Si a 0 Si b 0 si a 0 b 0 b ( x x ) () 0 0 a a x x ( ) (4) 0 0 b x x0 0 (5) a b (), (4) (5) so formas implícitas todas equivaletes. De la última se tiee que b x x a 0 0 (6) lo que coduce a la siguiete defiició. Defiició.8 Forma escalar de ua recta. Ua recta e E es el cojuto de todos los putos P( x, ) tales que si P ( x, ) es u puto de la recta diferete de P m es ua costate real etoces: x x 0 0 m x x (7) 0

El úmero m se llama pediete de la recta puede demostrarse que es igual a la tagete del águlo que la recta forma co el lado positivo del eje x. (fig..) Figura.. Pediete de ua recta e E ta( ) x x as ecuacioes (6) (7) permite cocluir que ha ua estrecha relació etre la pediete el vector director de ua recta; ambos idica la icliació respecto b al eje x de ésta m a a ecuació (7) se suele escribir de diferetes formas todas equivaletes. m( x x ) (8) es la forma puto - pediete. 0 0 De ahí mx ( 0 mx0) co 0 mx0 k queda o, mejor mx k (9) llamada pediete - itercepto e Y, puesto que m ta( ) x x x x k etoces (9) se puede escribir como x

( ) x ( x x ) k( x x ) 0 al hacer a, x x b k( x x) c se cosigue : ax b c 0 (0) coocida como forma geeral, la cual es la maera más usual de represetar ua recta e el plao. De (0), a m si b 0 b e caso de que b 0, (0) queda c x () m o existe a () es de la forma x cte, ua recta paralela al eje. Si a 0 (0) se covierte e, c () m 0 b () es de la forma cte, ua recta paralela al eje x. Teorema.5 Posició relativa de dos rectas e Dadas dos rectas de E, E : a x b c 0 co pediete m etoces : ax b c 0 co pediete m a. b. so paralelas si m m so ortogoales si mm c. a medida del águlo etre dado por, si las rectas so secates, está

m m ta( ) m m cuado se mide el águlo desde d. hasta. se itersecta e u puto si m m Actividad para el estudiate: Ecotrar formas vectoriales de (0), () () Actividad e clase: a. Probar e ilustrar el teorema.5. b. Como la forma implícita escalar de ua recta e E so equivaletes, ecotrar la maera de obteer la forma vectorial paramétrica a partir de la escalar. Teorema.6 Distacia de u puto a ua recta. Dados ua recta e e E, ax b c, etoces la distacia euclidiaa de P 0 a 0, u puto P( x0, 0) que o esté ax0 b0 c d a b es Actividad e clase: Probar e ilustrar el teorema.6 Familia de rectas e E Se sabe que para determiar la ecuació de ua recta se ecesita dos codicioes idepedietes. Pero supógase que sólo se cooce ua codició, por ejemplo que la pediete es ; e este caso existe ifiitas rectas que

cumple esa codició. El cojuto de todas las rectas que cumple ua úica codició se llama sistema o familia de rectas. Así, las rectas x, x x so miembros de la familia de rectas de pediete. Todas las rectas de esta familia queda represetadas por la ecuació x k () dode k es ua costate arbitraria. Cuado k toma u valor particular, () se covierte e la ecuació de ua recta particular de la familia. a costate arbitraria k se cooce como el parámetro de la familia represeta la codició faltate (ver ejemplos) a familia de rectas más destacada es la de las rectas que pasa por la itersecció de dos rectas dadas secates. Teorema.7 a familia de rectas que pasa por el puto de itersecció de las rectas a a ax b c 0 ax b c 0, co, b b es ( a ka ) x ( b kb ) ( c kc ) 0 siedo k el parámetro. Actividad e clase: demostrar este teorema. E la ecuació del teorema.7 si k 0 se cosigue la recta es posible lograr la recta dado que es dato., si embargo, o auque esta perteece a la familia. Esto o importa.7 Ejemplos. Halle la forma vectorial, paramétrica, implícita escalar de la recta que pasa por los putos (,4) (,5). Muestre que las formas implícita escalar coicide.

Solució: Ua ecuació vectorial será R,5 t (,5,4 ) o sea x,,5 t,. De ahí, la forma paramétrica es Al resolver este sistema para t, se obtiee la forma implícita x 5 que se puede escribir x 0 Ahora, aplicado la defiició escalar, se logra que operado : 5 x ó : x 0 x t 5 t 5 4 5 ( x ) esta es la forma escalar que es la misma que se cosiguió e la forma implícita.. Dadas las rectas x : R, t,, verifique si so : 5 paralelas o secates. Si so secates halle el puto de secacia el águlo etre ellas. Solució: U vector director de A,. es paralela a es A, 5 u vector director de es si A es paralelo a A, pero o es así, luego so secates (e el plao o ha otra opció). Para hallar el puto de corte se resuelve simultáeamete las ecuacioes escalares de las dos rectas, a saber: 5x 0 x 5 0

de lo cual se llega a que x 7 6 9 9, de dode el puto de secacía es 7 6, 9 9 Para hallar el águlo se tiee e cueta que la pediete de de es m, lo que idica que respecto al eje x. Por el teorema.5: ta( ) es m 5 la tiee u águlo de icliació maor m m 5 9 m 5 m 7 por lo que el águlo desde hasta es 5.. Halle la ecuació escalar de la recta que pasa por el puto de itersecció de las rectas x 7 x 4 por el puto (, 4). Solució: Por el teorema.7, la recta buscada es u miembro de la familia de rectas ( k) x ( k) ( 7 4 k ) 0 Si la recta pasa por (, 4), se cumple: ( k)() ( k)( 4) ( 7 4 k ) 0 al resolver para k se obtiee que k 5 co lo que la recta pedida es 9x 8 0 0

4. Halle las formas escalar vectorial de la recta de E que pasa por (,) tal que la suma de los recíprocos de los iterceptos co los ejes coordeados es igual a. Solució: Refiriédose a la figura, que es sólo ua suposició, se tiee que: a b ab () a b Figura.4. Ejemplo 4 Además, por defiició, la pediete m es: b m a o mejor : b a ab () () e () lleva a que a b b 6a, es decir, a b 5 Esto e () produce a / 5 b a ecuació escalar, a partir de los putos (0, ) (,), es 5x 0 De esta 5x si se reemplaza e R xi j se obtiee la ecuació vectorial: R xi (5x ) j o, de forma equivalete, R j x( i 5 j)

siedo x el parámetro 5. Pruebe que el cojuto de putos de E que equidista de (,7) (4, 5) costitue ua recta. Halle ua forma paramétrica vectorial de ésta. Solució: Supógase que P( x, ) es uo de tales putos, luego se verifica que ( x ) ( 7) ( x 4) ( 5) x 6x 9 4 49 x 8x 6 0 5 que se reduce a x 4 7 0 la cual correspode a la ecuació de ua recta e E. a pediete de esta recta es m / se sabe que si a, b es u vector director de la recta etoces m b / a o sea que b / a /. Ua posibilidad es a b. Falta u puto de la recta: sea 0, así x 7/ Ua ecuació paramétrica vectorial es etoces R t 7, 0,.8 Ejercicios. E los ejercicios siguietes halle e cada caso formas escalar vectorial de la recta de E que cumple las codicioes dadas: a. Pasa por los putos (,) (,4).

b. Pasa por el puto (0,0) forma u águlo de /4 co el eje x. c. Pasa por los putos (4,0) (0, ). d. Pasa por el puto (0,) tiee pediete m. e. Pasa por (,4) es paralela a x 4 8 0. f. Pasa por (, 4) es perpedicular a la recta R 6,4 t,5. g. Pasa por (, 4) la suma de sus iterceptos co los ejes coordeados es igual a. h. Es perpedicular a x 4 triágulo de área igual a 8. forma co los ejes coordeados u i. Tiee pediete su distacia del orige es 4.. Pruebe que ua ecuació de la recta cuos iterceptos co los ejes x coordeados so ( a,0) (0, b ) es. a b. Sea A(,), B(,) C(, ) los vértices de u triágulo Halle: a. as medidas de los tres águlos iteriores. b. a ecuació escalar de la recta que cotiee a cada lado. c. as ecuacioes de las bisectrices de los águlos iteros. d. as ecuacioes de las mediatrices del triágulo. e. as ecuacioes de las mediaas del triágulo. f. as ecuacioes de las alturas del triágulo. g. Probar que el circucetro, el baricetro el ortocetro so colieales.

4. Demuestre que la distacia etre las rectas ax b c 0 ax b c 0 es c c d a b. 5. Halle u puto de la recta x 4 0 equidiste de los putos ( 5,6) (,). 6. Idetifique la familia de rectas 5 k( x ) co parámetro k determiar el valor de k para que la recta esté a uidades del orige. 7. Verifique si la recta x 4 0 es perpedicular a la recta x,, t 4, 6 paralela a la recta x, 0,0 h, 8. Halle todas las formas de la ecuació de la recta de E que es paralela al eje Y corta al eje X e el mismo puto dode lo corta la recta x 0. 9. Halle e E todas las formas de la ecuació de la recta que es perpedicular a la recta x 5t, t que perteece a la familia kx ( k) 0 co parámetro k. 0. E E halle todas las formas de la ecuació de ua de las rectas que, siedo miembro de la familia hx 4h 0, está a ua distacia de uidades del orige.. Halle e E (si es posible) la ecuació de ua recta que pasa por el orige su distacia al puto (, ) es uidades.

. Idetifique la familia de rectas k x ( k ) 0 co parámetro k. Hallar el valor de k que da la recta: i. Paralela a x 0 ii. Perpedicular a 5x 0. E cada caso, halle la ecuació escalar de la recta que pasa por el itercepto de las rectas 4x 0 x 8 0 además: i. Forma co los ejes coordeados e el primer cuadrate u triágulo de área igual a 6. ii. Es paralela a la recta 4x 7 0. iii. Es perpedicular a la recta x 4 8 0. iv. Tiee ua pediete m / 4. v. Es paralela al eje x. vi. Su distacia del puto (,4) es 5..9 A SUPERFICIE PANA Al igual que sucede co el cocepto de recta, el del plao es u cocepto al que se debe llegar, e pricipio, axiomáticamete. E u espacio euclidiao se puede obteer diversas expresioes aalíticas para represetar u plao. Defiició.9 Forma vectorial de u plao. Ua superficie plaa o plao e E es ua variedad cotiua de dos dimesioes de modo que todos sus putos cumple la relació:

R R0 ua vb () e la que R es el vector de posició de u puto P( x, x,..., x) cualquiera del plao, R 0 es el vector de posició de u puto determiado P0 ( x0, x0,..., x 0) del plao, u, v so los parámetros A a, a,..., a, B b, b,..., b so dos vectores.i. etre si paralelos al plao. Que A B so paralelos al plao queda maifiesto e el hecho, a partir de (), de que R R0 ua vb que idica que R R0 (u vector del plao), A B so.d. lo que implica que los tres vectores so coplaares. a ecuació () se cooce como forma o ecuació paramétrica vectorial del plao. De esta ecuació co los datos de la defiició se obtiee las ecuacioes: x x a u b v 0 x x a u b v 0 : () x x a u b v 0 que so la forma paramétrica escalar del plao. Se observa e () u sistema de ecuacioes co variables; cada ecuació es u poliomio lieal lo que justifica que el plao sea ua variedad lieal. Es posible ecotrar ua forma implícita del plao elimiado de () los parámetros u v para obteer u sistema de ecuacioes co variables (trate de hacerlo para diferetes valores de )

Actividades e clase: a. Establecer co que codicioes dos plaos de paralelos o secates u ortogoales. E so coicidetes o b. Aalizar la posibilidad de que e 4 5 6 E, E, E,... halla plaos cruzados (o paralelos i secates) Ejemplo Halle todas las formas del plao de P (,,,5), P (0,6,, ) 4 E que pasa por P (,,7,) Solució: Dos vectores del plao so PP PP, por tato ua forma paramétrica vectorial es: R,,,5 u,9,, 8 v 0,,5, () Si R x,, z, w etoces, x u, 9u v, z u 5 v, w 5 8u v () so las ecuacioes de la forma paramétrica escalar Para elimiar los parámetros (o olvide que ha muchas formas de hacerlo), se obtiee: así, u x () sustituedo () e las ecuacioes para, z w : 6 9x v z x 5v w 8x v

6 9x Ahora v 47 5 al remplazar e z w : z x 4 w x 6 estas dos ecuacioes so ua forma implícita del plao..0 A SUPERFICIE PANA EN E Para cualquiera de osotros la idea de plao e E co puede o ser más que u simple embeleco matemático si igua cofrotació co la realidad destiado a adquirir la habilidad para geeralizar ideas. Más allá de eso, los plaos e E tiee aplicacioes que so verificables e la realidad pero que está fuera del alcace de este texto mostrar dichas aplicacioes. os plaos e E, si embargo, se adapta de forma más atural al mudo que percibimos. Siguiedo el mismo camio que e E. Así, si P0 x0, 0, z0 E se obtiee las formas para u plao e es u puto determiado del plao, A a, a, a B b, b, b so dos vectores.i. paralelos al plao ( u, v ) so parámetros, la ecuació vectorial del plao R R0 ua vb, dode R es el radar de P( x,, z ), u puto o determiado del plao (ua represetació esquemática se preseta e la figura.5), queda: x,, z x,, z ua, a, a vb, b, b () 0 0 0

Figura.5. Superficie plaa De () x x0 au bv 0 au bv () z z0 au bv () es la forma paramétrica. Al elimiar los parámetros de () se logra ua ecuació de la forma (hacerlo) que es la forma implícita. Defiició.0 Forma escalar de u plao. Dado u puto de E, 0 0 0 0 ax b cz d 0 () P ( x,, z ) u vectorn a, b, c, se llama plao, que pasa por P 0 es perpedicular a N, al cojuto de putos P( x,, z ) que cumple que: P P (4) 0 N 0 El vector N se llama vector director del plao (4) ecuació escalar del plao. De allí reemplazado P 0, P N se llega a:

o tambié: siedo d ( ax b c ) 0 0 a( x x ) b( ) c( z z ) 0 0 0 0 ax b cz d 0 (5) Como se puede observar la ecuació (5) es igual a la ecuació () de dode se coclue que e E las formas implícita escalar coicide. El camio se puede seguir e setido cotrario llegar a la ecuació paramétrica vectorial a partir de la escalar así: De (5) supoiedo que a 0 b c d x z a a a Ua forma paramétrica escalar del plao, asumiedo como parámetros z será b c d x z,, z z a a a de ahí, si R es el radar de u puto del plao, b c d R z i j zk será ua forma paramétrica vectorial. Esta a a a forma de parametrizació, dode se usa como parámetros las mismas variables del cojuto, se llama parametrizació trivial. Esta se puede reescribir así: d b c R i i j z i k a a a d b c o tambié: R,0,0,,0 z,0, a a a (6)

que es de la forma: R R0 ua vb Actividad: Comprobar que e la ecuació (6) A B N a siguiete defiició se refiere a la posició relativa que puede teer dos plaos. Defiició. Sea N, etoces dos plaos de E co vectores directores respectivos N a. b. es paralelo a es ortogoal a si N es paralelo a N. si N es ortogoal a N. El águlo etre es el mismo que etre N N. El siguiete teorema muestra cómo ecotrar las formas paramétrica e implícitaescalar de u plao a partir de tres putos o colieales del plao. Teorema.8 Si P, P P so tres putos o colieales de paramétrica vectorial del plao que los cotiee es Siedo O el orige de R OP upp vpp ecuació escalar es PP ( PP PP ) 0 E, etoces ua ecuació E R el radar de cualquier puto P del plao, la El teorema.9 da la distacia etre u puto u plao Teorema.9 Dadas la forma escalar de u plao ax b cz d 0 u puto P0 ( x0, 0, z 0)

exterior al plao, la distacia euclidiaa de P 0 hasta el plao es: ax0 b0 cz0 d d a b c Actividad e clase: Demostrar estos teoremas. Familias de Plaos Para determiar u plao se requiere de tres codicioes idepedietes. U meor úmero de codicioes sigifica que habrá más de u plao que las verifique el cojuto de estos plaos costitue ua familia de plaos. E la ecuació escalar, la codició o codicioes que falta aparece como parámetros. Por ejemplo, la ecuació x kz 0 represeta ua familia de plaos que cotiee la recta x, z 0. a aplicació más importate de las familias de plaos es la de poder determiar la familia que cotiee la recta de itersecció de dos plaos secates dados. Como se aticipó e la secció., el sistema de plaos ax b cz d 0 ax b cz d 0 so la forma implícita de ua recta si los vectores directores a, b, c a, b, c o so paralelos. Es decir, los putos ( x,, z ) que verifica ambas ecuacioes a la vez so los putos de la recta de itersecció de los dos plaos. Si embargo, esta pareja de plaos o so lo úicos que determia dicha recta sio que ha ifiidad de pares de plaos que se corta e la misma recta, esto es, ua familia de plaos.

Cualquier par de plaos de esa familia so ua forma implícita de la recta. Teorema.0 a ecuació de la familia de plaos que cotiee la recta de itersecció de dos plaos secates dados : a x b c z d 0 es : a x b c z d 0 ( a ka ) x ( b kb ) ( c kc ) z ( d kd ) 0 siedo k el parámetro de la familia. Actividad e clase: Demostrar el teorema.0. Ejemplos. Halle, por dos camios, todas las formas del plao de putos P (,, 5), P ( 4,,7) P(,6,) : E que cotiee los Solució: a) Yedo de la vectorial a la escalar. b) Yedo de la escalar a la vectorial. a) Ua forma paramétrica vectorial del plao es es decir, R OP upp vpp x,, z,, 5 u 5,, v,4,8 de ahí : x 5u v () u 4v () z 5 u 8v ()

es la forma paramétrica escalar. Al elimiar los parámetros: De ahí, Es decir Esta es la forma implícita escalar..() + (): x 4 9u.() - (): z 9 0u x 4 z 9 9 0 0x 8 9z 4 0 b) a forma escalar del plao está dada por PP ( PP PP ) 0 o, de maera equivalete, x z 5 5 ( x )( 40) ( )( 6) ( z 5)( 8) 0 4 8 0x 8 9z 4 0 De aquí se puede obteer para ua parametrizació trivial, 0 8 4 z x 9 9 9 sustituedo e R xi j zk, el vector radar de cualquier puto del plao : 0 8 4 R xi j x k 9 9 9 que, co el apoo del álgebra vectorial queda : 4 R 0,0, x 9,0, 0 0,9,8 ua forma vectorial co parámetros x. 9

. Aalice los casos especiales e que el vector director de u plao sea: a) N a, b,0, a, b 0 b) N a,0,0, a 0 Solució: a) E este caso N es paralelo al plao XY por eso perpedicular al eje z, etoces el plao e cuestió es paralelo al eje z. Su ecuació escalar será ax b d 0 b) N es paralelo al eje X lo que sigifica que el plao es perpedicular al eje X paralelo al plao YZ. Su ecuació escalar queda ax d 0 ó x k co k d / a. Si ocurre, además, que d 0, etoces x 0 que es la ecuació del plao YZ.. Halle la ecuació escalar del plao que cotiee a la recta dada por x z 4, 6x z al puto (,0,). Dar la solució por dos métodos. Solució: a) a familia de plaos que cotiee a la recta dada es ( 6 k) x ( k) ( k) z ( 4 k) 0 El plao buscado pasa por (,0,), luego de dode k 5/ ( 6 k) ( k) ( 4 k) 0 este es el valor que debe tomar el parámetro de la familia para obteer el plao pedido. Al reemplazar k e la ecuació de la familia, 4x 8 49z 7 0

b). Al resolver el sistema de ecuacioes de los dos plaos para se logra 8x 7 z (otro plao que tambié cotiee la recta) al resolverlo para x, 4 9 z De estas dos ecuacioes es posible coseguir ua forma simétrica de la recta: x 7 9 8 4 8 4 z De ahí que u vector director de la recta es A u puto,, 8 4 P ( ). 7 9,, 0 8 4 El vector A hallado el vector de (,0,) a P so dos vectores paralelos al plao buscado, este vector es,,. 7 9 8 4 a ecuació escalar del plao es, etoces x z 8 4 0 7 8 9 4 ó mejor 4x 8 49z 7 0 4. Halle la ecuació escalar del plao que pasa por el puto P (,,5), es perpedicular al plao x z 0 paralelo a la recta dada implícitamete por 5x 4 z 7 0, x 4z 0. Solució: Si el plao buscado es perpedicular a x z 0 etoces es paralelo a su vector director N,, si es paralelo a la recta dada tambié es paralelo a su vector director N 5,4,,,4 9,,7 director del plao es N N. El vector

la ecuació escalar es etoces, PP N N 0 es decir : x z 5 0 9 7 59x 4 5z 0 0. Ejercicios. E cada caso halle las diversas formas de la ecuació del plao que pasa por P cuo vector ormal es N : a. P(,6,), N,4, b. P(,0,0), N 0,0, c. P(0,0,0), N,,4. Halle la forma escalar del plao que pasa por los putos A(,,), B(0,,) C (,0,).. Demuestre que la ecuació escalar del plao que pasa por x z ( a,0,0), (0, b,0), (0,0, c ) es. a b c 4. Halle la distacia de (,,) al plao 8x 4 z 8 0. 5. Halle el meor águlo etre los plaos x 5z 4 0 x 5z 8 0. 6. E cada caso, halle las diferetes formas del plao que cumple las codicioes dadas : a. Paralelo al plao x 6z 4 0 dista 5 uidades del orige.

b. Pasa por la recta de corte de los plaos x 5z 7 0 x 6z 0 por el puto (,, 4). c. Pasa por los putos (,,) (,, ) es perpedicular al plao x z 6 0. d. Es perpedicular al eje z pasa por ( 4,,9). e. Biseca perpedicularmete al segmeto AB co A(,, 7) B(5,,9). f. Cotiee el eje pasa por (8,4, 6). g. Cotiee la recta x 5z 0 0, x 0z 6 0 es perpedicular al plao XZ. 7. Halle las formas escalar paramétrica vectorial de la recta que pasa por (6,, ) es perpedicular al plao 4 7z 9 0. 8. Determie el valor de k de modo que el plao x k kz 7 0 sea ortogoal al plao x 6 0. 9. Halle la ecuació escalar de u plao paralelo al plao x z 4 0 tal que la suma de sus iterceptos co los ejes coordeados sea 5. 0. E caso de que sea posible, halle la ecuació del plao de las rectas: x,, z,0, h 0,,, x t,, z t.. Halle la ecuació escalar del plao de cotiee a la recta x t, t, z 5. E que cotega a E que pasa por el puto P0(,8, ). Halle la ecuació de la familia de plaos (co parámetro k ) que cotiee a la recta x,, z,, t 0,5,. Ecotrar el miembro de la familia que pasa por el orige de coordeadas.. Halle la ecuació de la recta de E que es perpedicular al plao z x 9 0 que pasa por el puto dode el eje x corta a dicho plao.

4. Halle la forma implícita o escalar del plao de x,, z t,,0 que pasa por el puto (5,,). 5. Halle e E que cotiee a la recta E la forma paramétrica vectorial de dos rectas que esté coteidas e el plao x z 0. EJERCICIOS DE FINA DE CAPÍTUO.. Pregutas De Repaso. Co cuátas ecuacioes se debe represetar u plao e forma implícita e 5 E?. Cuátos parámetros debe aparecer e la forma paramétrica de ua recta e 7 E?. Cuátas rectas está coteidas e u plao? 4. Cómo se halla el vector director de ua recta dados dos putos de ella? 5. Cuátos parámetros determia ua líea recta e 6. Qué codicioes se requiere para que dos rectas de 7. Bajo qué formas se puede presetar ua recta e E? E? 8. Cómo puede demostrar que tres putos so colídales? 9. Cuátos vectores directores posee ua recta? E sea secates? 0. Qué relació existe etre la pediete de ua recta su vector director, e E?. Cómo se obtiee ua familia de rectas?. Bajo que codicioes, dos plaos e a. Coicidetes? b. Paralelos? E so:

c. Secates? d. Ortogoales?. Cuál es la forma escalar de u plao e E? 4. Si los vectores ormales de dos plaos so.d, cómo so los plaos?.. Pregutas De Falso Y Verdadero Diga si los siguietes euciados so verdaderos o falsos. a recta x, de E, corta al eje e el puto (,).. Ua recta de E que tega por vector director, es paralela a otra que tega pediete.. a ecuació x 0 represeta e 4. E E u plao al plao 0. E la recta x 4 0 E ua recta paralela al eje e es perpedicular a la recta x,, t 4, 6 paralela a la recta x, h,. 5. a recta x,,5 t, pasa por el puto (5, 4). 6. as rectas x,, z,8, t,, x 7 0; z 5x 8 0 so perpediculares. 7. El plao x z 0 cotiee a la recta x 0. 8. E 4 E la ecuació x 5z w 0 represeta la ecuació escalar de u plao cuo vector director es N,,5,.

9. x 0, x 5 0 es ua forma implícita e 0. E. E eje z. E de la recta que cotiee al 7 E la forma implícita de ua recta esta dada por u sistema de 5 ecuacioes. 5 E la forma paramétrica esclar de u plao debe teer tres parámetros.. as rectas x,, z 0,0, t,0, x,, z 0,6,0 u 0,,0 está coteidos e u mismo plao... Ejercicios. Halle los valores de a b para que las rectas de ( a ) x b 5 0 pase por el puto (,). E ax ( b) 0. Ua recta de E se mueve de tal maera que la suma de los recíprocos de los segmetos que determia sobre los ejes coordeados es igual a ua costate k 0. Demuestre que la recta siempre pasa por el puto, k k.. a diferecia de las logitudes de los segmetos que ua recta determia sobre los ejes coordeados es igual a. Halle la ecuació de la recta si pasa por(6,4) (Dos solucioes). 4. Ua recta de E pasa por el puto de itersecció de las rectas x 5 0 x 0 el segmeto que determia sobre el eje x mide el doble de la pediete de la recta. Halle la ecuació implícita. 5. Demostrar que el área del triágulo formado e E por el eje las rectas mx b mx b está dada por ( b b ) A m m m m. si

6. Pruebe que la recta de 6x z. E : x 0, t, z t está coteida e el plao 7. Demuestre que las rectas de E : x z 0 ; x z 0 x 6 z 0 ; x z 5 0 so paralelas halle la ecuació escalar del plao determiado por ellas. 8. Halle la ecuació escalar del plao que pasa por el puto (,5,), es perpedicular al plao x z es paralelo a la recta 4x 5 z 7, x 4z. 9. Se da los putos P (,4, ), P (,6,) P ( a,8,5) la recta R,, t,5,7. Determie el valor de a para que el plao que pasa por P, P P sea paralelo a de dicho plao? 0. Dada la recta de E. Cuál es la ecuació paramétrica vectorial x z, halle la forma simétrica de la recta que 4 5 se obtiee al proectar dicha recta sobre el plao XY.. Halle formas paramétrica vectorial, paramétrica escalar e implícita de la recta de E que está coteida e el plao x 5z 8 0 (,,) es perpedicular a la recta x 5 z., pasa por el puto. U plao que pasa por el puto (5,, ) corta al plao XY e la recta x 0, z 0. Halle su ecuació escalar.. Determie e que plao comú está coteidas las rectas x 4 z. 5 7 x 0 z 4

4. El plao x 9z 6 0 el plao ax b cz d 0 so perpediculares su itersecció es la recta x z, 0. Determie los valores de a, b, c d. 5. a recta de itersecció de los plaos está e el plao XZ. Si está dado por x z 6, hallar la ecuació escalar de. si