Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001"

Transcripción

1 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar (Donde desarrole sus horas No Presenciales PEV) APRENDIZAJES ESPERADOS: Resolver problemas de fenómenos modelados con funciones Aprendizaje 1 cuadráticas en contextos de educación superior, cotidianos o simulaciones de situaciones laborales OPTIMIZACIÓN DE UNA FUNCIÓN CUADRATICA Recordemos que una función cuadrática está definida por: coeficientes reales, a 0 y f ( x) ax bx c con a, b y c Concavidad: El coeficiente a de la función cuadrática es de gran importancia ya que, su signo nos indicará hacia dónde se abre la parábola, es decir, nos muestra la concavidad de la parábola. Tenemos dos casos: si a>0 (positivo), entonces la parábola abre hacia arriba. si a<0 (negativo), entonces la parábola abre hacia abajo. Coordenadas del Vértice: Recordemos que las coordenadas del vértice corresponden a un punto V= ( x, y) perteneciente a la parábola. Se puede determinar con la siguiente expresión: Donde x = - b a e y = f æ - b ö ç è aø b V ; f a b a A partir del coeficiente a podemos ver si la función cuadrática (parábola) tiene un máximo o un mínimo. Para conocer este valor, las coordenadas del vértice nos ayudarán a determinarlo. Agosto 014 / Programa de Matemática. 1

2 Gráficamente, se puede observar lo anterior: Otra manera de calcular el vértice es la siguiente: Si la función cuadrática es f ( x) ax bx c Entonces x b a e 4ac b y 4a Ejemplo: Las temperaturas registradas durante un día en el norte de Chile, se ajustan a la función T x x 4x, donde T es la temperatura en grados Celsius (ºC) y x es la hora del 106 día en que se registró esta temperatura. a) A qué hora se registró la máxima temperatura? b) Cuál fue la temperatura máxima? Desarrollo: a) La función T x x 4x 106, tiene como coeficiente a=-1, lo que indica que la parábola abre hacia abajo, por lo tanto, tendríamos que el vértice corresponde al máximo. Para determinar el máximo utilizaremos las coordenadas del vertice b V ; f a b a Primero debemos calcular en qué momento ocurrió este máximo, por lo que encontraremos el valor de x para este caso: b x a 4 ( 1) 1 Respuesta: A las 1:00 hrs se registró la máxima temperatura. Agosto 014 / Programa de Matemática.

3 b) Como se tiene la hora en que la temperatura fue máxima, podemos determinar cuál fue la temperatura máxima con original: b y T a y T T, es decir, reemplazamos x=1 en la función 1 4(1) 106 Respuesta: La temperatura máxima a las 1 del día fue de 38ºC I) Optimice los siguientes Ejercicios 1. En una empresa agrícola, la utilidad (en miles de dólares) al vender x repuestos para tractores agrícolas está dada por la función, U( x ) = 6x 13x. a) Determine la cantidad de repuestos que se deben vender para obtener la máxima utilidad. b) Cuál es el valor de la máxima utilidad?. La distancia en kilómetros que una moto puede recorrer por litro de bencina a una velocidad v (km/h), está dada por la función, K( v ) = v 0,8v. 50 a) Cuál es la velocidad que maximiza el rendimiento de la moto? b) Cuál es la distancia máxima que se puede recorrer con un litro de bencina? 3. En la casa de la construcción, el costo de la madera a utilizar (en cientos de pesos) por unidad al producir x casas prefabricadas está dado por la función, C( x )= x 180x a) Cuál es la cantidad de casas prefabricadas que minimizan el costo en madera por unidad? b) Cuánto es el costo mínimo de madera a utilizar? 4. Un contador, estima que los ingresos mensuales de un microempresario están dados por la función I(c)= c c pesos, donde c es la cantidad de artículos que vende en el mes. a) Cuál es la cantidad de artículos que debe vender el microempresario mensualmente para obtener el mayor ingreso? b) Cuál será el ingreso máximo? Agosto 014 / Programa de Matemática. 3

4 INTERSECCIÓN DE FUNCIONES Intersección entre una función cuadrática y una función lineal. Sean la función cuadrática de estas se puede apreciar en la siguiente gráfica: f ( x) ax bx c y la función lineal f(x) = mx+ n. La intersección Donde los puntos A y B se obtienen igualando las funciones y resolviendo la ecuación resultante: ax ax bx c mx n bx c mx n 0 Que corresponde a una ecuación de segundo grado px + qx + r =0, que hay que resolver a través de la formula general: x q q p 4 p r Por qué es importante encontrar la intersección entre estas funciones? Porque se puede encontrar un valor de x en el dominio, para el cual su imagen es la misma en ambas funciones. Agosto 014 / Programa de Matemática. 4

5 Ejemplo Una tienda de neumáticos realizará una liquidación. El gerente determinó una función de oferta O y la función demanda D( x) 500 x dada por ( x) x 9x 470, para saber la cantidad de neumáticos que debe liquidar, donde x es el precio, en miles de pesos, de un neumático. Tenemos que O y D representan el número de neumáticos ofrecidos y demandados. Determine el precio que debe pedir por cada neumático, para que la cantidad de neumáticos ofrecidos y demandados sea la misma, es decir O( p) D( p) Desarrollo: Se pide que O(p) = D(p), por lo tanto se igualan las funciones y se resuelve la ecuación cuadrática resultante: x x x 9x x 9x x 0 7x 30 0 Al resolver la ecuación cuadrática con a=1 b=-7 c =-30, se tiene que: x x x x ( 7) ( 7) ( 30) x 1 y x 3 Así 10 En este caso, la respuesta sería 10, pues no se puede vender un neumático a -3 mil pesos. Respuesta: El precio de cada neumático debe ser de $ para tener la misma cantidad de neumáticos ofrecidos y demandados. Agosto 014 / Programa de Matemática. 5

6 II) Resuelva los siguientes Ejercicios. 5. En una empresa, Recursos Humanos determinó que el bono de Navidad para este año 013 dependerá de los años de antigüedad y además del cargo que desempeñan. Para los administrativos su bono se calculará según la fórmula cargos superiores según ( t) 6 t 16 B Sup B Adm ( t) 4t 3t y para los donde t son los años de antigüedad y B(t) el bono en miles de pesos. a) Habrá algún año de antigüedad tal que el valor de ambos bonos sea el mismo? b) A los 15 años de antigüedad, quiénes obtienen un mejor bono de Navidad y cuál es el valor? 6. Un grupo de trabajadores de una empresa logran fabricar P1 ( t) t t artículos de aseo en t días y otro grupo de igual número de trabajadores fabrica P ( t) 4t 16 artículos en t días. a) Habrá alguna cantidad de días para que la producción sea la misma? b) Cuál es esa producción? 7. Dos tasadores utilizan distintas fórmulas para la depreciación (perdida de valor) de una maquinaria pesada. El primero utiliza la función cuadrática V1 ( t) 0, t,6 t 10, 4 y el otro tasador la función lineal V ( t) 1, t 9,, donde t está en años y V(t) representa el valor de la máquina en millones de pesos. Considerando t mayor a 1 año, en cuántos años el valor de ambas tasaciones es el mismo? Agosto 014 / Programa de Matemática. 6

7 ANEXO DE EJERCICIOS GUIA N 5 FUNCION CUADRÁTICA Para tus horas NO Presenciales Agosto 014 / Programa de Matemática. 7

8 Con los siguientes ejercicios de Función Cuadrática, podrás seguir practicando, para abordar los Aprendizajes Esperados de la Guía, relacionados al cálculo de imagen, pre imagen y comparación de la función lineal y cuadrática. Si aún quieres aclarar los procedimientos numéricos para el cálculo de imagen y pre imagen de una función cuadrática, puedes trabajar con los siguientes ejercicios, antes de resolver los problemas de aplicación 1. Considere la función: h( x) x 8x. Determine: a) h(1) 1 b) h c) h(0). Sea g ( x) x 4x 10. Determine las pre imágenes, de los siguientes números: a) 14 b) III) Optimice los siguientes Ejercicios 8. En una empresa que era exitosa y donde el personal iba creciendo a medida que transcurría el tiempo, los recursos comenzaron a escasear y el personal decreció. Si el número de trabajadores a los t años de haber creado la empresa está dado por, p t t t 11, (t >0) a) Determine la cantidad de años, después de haber creado la empresa, donde hubo una mayor cantidad de trabajadores. b) Cuál fue la mayor cantidad de trabajadores que logró tener la empresa? 9. La Pastoral juvenil de DuocUC organizó un partido de fútbol. Durante el partido, un jugador le da un puntapié a la pelota, tal que la trayectoria de esta queda expresada por la función, h t 5t 0t 1, donde h es la altura en metros y t es el tiempo en segundos. a) Determine el tiempo, en segundos, en que la pelota alcanza la altura máxima. b) Qué altura máxima alcanzó la pelota? Agosto 014 / Programa de Matemática. 8

9 IV) Resuelva los siguientes Ejercicios. 10. Hoy, el número de habitantes de dos localidades del Sur de Chile crece según los modelos P ( t) t 7t 1. donde t se mide en años. En cuántos P ( t) 80t y años más el número de habitantes de ambas localidades será el mismo? 11. Se desea pedir un crédito de $ en dos instituciones financieras. Una de ellas calcula la tasa de interés según I1( t) 0,06t, 434 y la otra según I ( t) 0,006t 0,0t,49 donde t es el número de meses al cual se pedirá el crédito. A cuántos meses habrá que tomar el crédito para que la tasa de interés sea la misma? Agosto 014 / Programa de Matemática. 9

10 LISTA DE COTEJO GUÍA N 5 A Continuación se te presenta una lista de actividades que debes llevar a cabo, para poder completar todos pasos del desarrollo de un ejercicio. Esta lista, te permitirá revisar si lo que estás generando como desarrollo tiene todos pasos que serán considerados en la evaluación: Calcular el Vértice de la Función Cuadrática: Clasifica la concavidad de una función cuadrática, a partir del valor del parámetro a de la función Reconoce si la función tiene un máximo o un mínimo. Identifica los parámetros a, b y c de la función cuadrática Usa las operaciones numéricas para calcular la coordenada x del vértice, en la fórmula Calcula la imagen de la función cuadrática, considerando el valor de x obtenido en el paso anterior Escribe el vértice de la función cuadrática Interpreta el valor de las coordenadas del vértice Redacta una respuesta verbal, que permita interpretar el valor de las coordenadas del vértice Intersección de Funciones: Iguala las funciones lineal y cuadrática Forma una ecuación cuadrática, igualando a 0 Identifica los coeficientes a, b y c de la ecuación cuadrática Reemplaza los valores de los coeficientes en la fórmula, que permite calcular los valores de las soluciones Calcula los valores de las soluciones Identifica cuál de las soluciones obtenidas da respuesta al problema planteado Redacta una respuesta escrita que permita interpretar el valor de las soluciones Agosto 014 / Programa de Matemática. 10

11 SOLUCIONES a) La máxima utilidad se produce al vender 11 repuestos b) La utilidad máxima es de dólares a) La velocidad que maximiza el rendimiento es de 100 km/h b) El rendimiento máximo es de 40 km por litro a) El costo en madera se minimiza al producir 90 casa b) El costo mínimo en madera a utilizar es de $ a) Para obtener el máximo ingreso se deben vender 50 artículos b) El ingreso máximo será de $ a) A los 8 años el valor del bono es el mismo b) El mejor bono lo tienen los administrativos con $ a) La producción es la misma a los 8 días. b) La producción es de 48 artículos. 7. A los 6 años la tasación es la misma a) A los 11 años hubo la mayor cantidad de trabajadores en la empresa b) La mayor cantidad de trabajadores que tuvo la empresa fue de 33 a) La pelota alcanza la altura máxima a los segundos b) La altura máxima fue de 1 metros 10. A los 10 años el número de habitantes es el mismo en ambas localidades. 11. A los 14 meses la tasa de interés es la misma. Agosto 014 / Programa de Matemática. 11

Algebra Sigla MAT2001

Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Concepto de Función Algebra Sigla MAT2001 Semana Nº: 1 Actividad Nº 1 Lugar APRENDIZAJES ESPERADOS: Aprendizaje 1 Sala de clases Otro

Más detalles

GUIA N 4: FUNCIÓN CUADRATICA. Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma

GUIA N 4: FUNCIÓN CUADRATICA. Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma GUIA N 4: FUNCIÓN CUADRATICA Definición: Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma con y números reales y Solución de una ecuación

Más detalles

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas I Funciones En esta guía trabajaremos con funciones polinómicas tanto en su forma algebraica como gráfica. Tendrás que graficar funciones lineales y cuadráticas

Más detalles

Funciones Cuadráticas en una Variable Real

Funciones Cuadráticas en una Variable Real en una Variable Real Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido adrática : Contenido Discutiremos: qué es una función cuadrática : Contenido Discutiremos: qué es una función cuadrática

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

FUNCIONES Y GRÁFICAS

FUNCIONES Y GRÁFICAS FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto

Más detalles

Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1

Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIPO DE GUIA: MATEMÁTICAS MATEMÁTICAS EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO 9 N 0 4 FECHA 7 DE ABRIL

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 0 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT00 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

CONSTRUCCIÓN DE UNA FUNCIÓN POLINOMIAL

CONSTRUCCIÓN DE UNA FUNCIÓN POLINOMIAL CONSTRUCCIÓN DE UNA FUNCIÓN POLINOMIAL Sugerencias para quien imparte el curso Se deben revisar los trazos que los alumnos realicen para el bosquejo de sus graficas, el error en un signo de alguna raíz

Más detalles

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN Indicadores ECUACIONES Determina el conjunto solución de una ecuación. Resuelve ecuaciones de primer y segundo grado, así como sistemas de ecuaciones Contenido Ecuaciones De primer grado Sistemas de ecuaciones

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Lección 2.4. Funciones Polinómicas. 08/10/2013 Prof. José G. Rodríguez Ahumada 1 de 24

Lección 2.4. Funciones Polinómicas. 08/10/2013 Prof. José G. Rodríguez Ahumada 1 de 24 Lección.4 Funciones Polinómicas 08/10/013 Prof. José G. Rodríguez Ahumada 1 de 4 Actividades.4 Referencia Texto: Seccíón 3.6 Funciones Cuadráticas; Ejercicios de Práctica: Problemas impares 13-1, 37-41

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA Estimado estudiante continuando con el estudio, determinaremos el comportamiento de una función en un intervalo, es decir, cuestiones como: Tiene la

Más detalles

Funciones. Guía de Ejercicios

Funciones. Guía de Ejercicios . Módulo 4 Funciones Guía de Ejercicios Índice Unidad I. Concepto de función, dominio y recorrido Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Gráfico de funciones Ejercicios

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

1 - Ecuaciones. Sistemas de Ecuaciones Mixtos

1 - Ecuaciones. Sistemas de Ecuaciones Mixtos Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar

Más detalles

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la 1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

Duración: 2 horas pedagógicas

Duración: 2 horas pedagógicas PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Cuarto I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas El índice de erosividad de la lluvia UNIDAD 4 NÚMERO DE SESIÓN 6/14 II. APRENDIZAJES ESPERADOS

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE BAJA CALIFORNIA SUR PAQUETE ECONÓMICO ADMINISTRATIVO ASIGNATURA DE MATEMÁTICAS FINANCIERAS II BLOQUE IV:

COLEGIO DE BACHILLERES DEL ESTADO DE BAJA CALIFORNIA SUR PAQUETE ECONÓMICO ADMINISTRATIVO ASIGNATURA DE MATEMÁTICAS FINANCIERAS II BLOQUE IV: COLEGIO DE BACHILLERES DEL ESTADO DE BAJA CALIFORNIA SUR PAQUETE ECONÓMICO ADMINISTRATIVO ASIGNATURA DE MATEMÁTICAS FINANCIERAS II BLOQUE IV: CALCULAS DE ACTIVOS FIJOS COMPILACIÓN DE TEXTOS ELABORADA POR:

Más detalles

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO VALIDACIÓN DE ESTUDIOS DECRETO Nº257 LEA LA INFORMACIÓN Y RESPONDA LAS PREGUNTAS 1 Y 2. 1. Francisco desea pintar una pieza que tiene dos paredes

Más detalles

( 3) esto no es igual a 3 ya que sería

( 3) esto no es igual a 3 ya que sería MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES INECUACIONES Y SISTEMAS DE INECUACIONES

UNIDAD: ÁLGEBRA Y FUNCIONES INECUACIONES Y SISTEMAS DE INECUACIONES C u r s o : Matemática Material N GUÍA TEÓRICO PRÁCTICA Nº 7 UNIDAD: ÁLGEBRA Y FUNCIONES INECUACIONES Y SISTEMAS DE INECUACIONES DESIGUALDADES Llamaremos desigualdades a expresiones de la forma a > b,

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Preparatoria Sor Juana Inés de la Cruz 1 Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Grupo: Físico Matemático, Químico Biológico y Económico Administrativo Diciembre de 2014

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 27 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma ax 2 + bx + c = 0,

Más detalles

Función cuadrática : Gráfico, análisis y modelos

Función cuadrática : Gráfico, análisis y modelos Función cuadrática : Gráfico, análisis y modelos 1) Dada la función : y x.( x ) = ( 3 y) : a) Graficar b) Analizar ) a) Escribir la ecuación, en forma canónica y polinómica, de la función que se obtiene

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

Razón de cambio promedio 11.1 MATE 3013

Razón de cambio promedio 11.1 MATE 3013 11.1 MATE 3013 El cálculo diferencial Cambios en variables. DEFINICION: La razón de cambio promedio con respecto a x, a medida que x cambia de x 1 a x 2, es la razón entre el cambio en los valores de salida

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS:

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS: TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Función Lineal y su Gráfica Nombre Asignatura: Algebra Sigla MAT2001 Sala de clases Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las

Más detalles

FUNCIONES CON DESCARTES. HOJA DE TRABAJO

FUNCIONES CON DESCARTES. HOJA DE TRABAJO FUNCIONES CON DESCARTES. HOJA DE TRABAJO Escena 1 a) Inventa un texto que ilustre de forma clara el gráfico. b) Cuál es la variable independiente y en qué unidad se mide? c) Cuál es la variable dependiente

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss. MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Hoja de Trabajo 1: Gráfica en Papel Cuadriculado

Hoja de Trabajo 1: Gráfica en Papel Cuadriculado Hoja de Trabajo 1: Gráfica en Papel Cuadriculado La Tabla 1 a continuación muestra la población de cierta ciudad a partir del año 1900 hasta el año 2000, en lapsos de 10 años. Tabla 1 Año Población 1900

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

Bloque 4 Competencias a desarrollar:

Bloque 4 Competencias a desarrollar: Bloque 4 Competencias a desarrollar: Construir e interpretar modelos matemáticos mediante 4_CUEVAS_MAT4_B4.indd 7 la aplicación de procedimientos aritméticos, algebraicos, geométricos y variacionales para

Más detalles

Álgebra y trigonometría: Gráficas de ecuaciones y funciones

Álgebra y trigonometría: Gráficas de ecuaciones y funciones Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia

Más detalles

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT33 Nombre Curso Cálculo I Créditos 1 Hrs. Semestrales Totales 5 Requisitos MAT o MAT1 Fecha Actualización Escuela o Programa Transversal Programa de Matemática Currículum

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

Por qué expresar de manera algebraica?

Por qué expresar de manera algebraica? Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

FUNCION CUADRATICA. f(x)=ax 2 + bx + c, a 0. El dominio de toda función cuadrática es el conjunto de los números reales, decir que D f = IR

FUNCION CUADRATICA. f(x)=ax 2 + bx + c, a 0. El dominio de toda función cuadrática es el conjunto de los números reales, decir que D f = IR FUNCION CUADRATICA Se llama función cuadrática a una función poli nómica real de variable real, que tiene grado dos. La función cuadrática tiene la forma: Ejemplos: f(x)=ax + bx + c, a 0 = x + 3x + = 3x

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

MAXIMOS Y MINIMOS RELATIVOS

MAXIMOS Y MINIMOS RELATIVOS MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial

Más detalles

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar: TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles