c b 2 i 6 4 són equivalents, ja que 2 6 = 3 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "c b 2 i 6 4 són equivalents, ja que 2 6 = 3 4"

Transcripción

1 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Un rió s ompon un numror i un nominor. Dnominor és l qu iviix l unitt n prts iguls. Numror és l qu ns iu qunts prts n intrssn l totl. Exmpl Frió Numror Dnominor Dnominor iviix l unitt n qutr prts iguls. Numror ns intrssn trs prts l totl. Un rió s pot rprsntr irnts mnrs Rprsntió srit Rprsntió grài Rprsntió n l rt rl - 0. Rprsnt ls sgünts rions mnr grài i n l rt rl Dus rions són quivlnts si s omplix qu l prout nrut nominors és igul. és quivlnt Exmpl ls rions i són quivlnts, j qu Dus rions són quivlnts qun rprsntn l mtix nomr. 0, i 0, Pr otnir rions quivlnts un on pom mpliir-l o simpliir-l. Ampliir vol ir multiplir l numror i l nominor pr un mtix nomr. Simpliir vol ir iviir l numror i l nominor pr un mtix nomr. Exmpl simpliiió 0 0 mpliiió 0 Dossir rions. /

2 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit.. Clul trs rions quivlnts un ls rions sgünts. Tro l nomr qu lt prquè qusts rions siguin quivlnts x x x 0 x 0 x Qun un rió no s pot simpliir més irm qu és irrutil. Exmpl l rió és l rió irrutil Pr tror l rió irrutil un on pom nr simpliint ins qu no pugum més om n l xmpl ntrior o é pom somposr l numror i l nominor n tors primrs i simpliir l qu siguin omuns. Exmpl. Simplii ls sgünts rions ins tror l rió irrutil sun g h 0 i 0 0 j k l Comprió rions Pr omprr us rions és nssri qu tinguin l mtix nominor, llvors és més grn l qu té l nominor més grn. Exmpl Quin rió és més grn? o? Porím r un grài prò no smpr és lr. Pr tnt, l qu rm és tror un rió quivlnt rió, prò tots us m l mtix nominor, és ir, m nominor omú. Hm mpliit pr l primr rió i pr l sgon, és l nominor omú. Ar om qu > pom uir qu > Aqust proés tror rions quivlnts us ons s nomn ruió omú nominor i s utilitz pr omprr rions i pr sumr o rstr rions. Dossir rions. /

3 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Pr tror l omú nominor s h lulr l m..m. ls nominors. Ror qu pr lulr l m..m. s h toritzr ls nominors i gr ls tors omuns i no omuns m l xponnt més lt. Exmpl Ruix omú nominor 0 i. 0 i m m, llvors...0, Pr tror l vlor l numror només l r 00 Pr tror l numror només l r 0. Complt l tul Frions Ruïs omú nominor Orns mjor mnor Sum i rst rions. Si tnn l mtix nominor l numror l rsultt és l sum o l rst ls rsultts i l nominor és l mtix qu l ls sumns. Si tnn l nominor irnt l ruir ls rions omú nominor i sprès s proix om n l s ntrior. Consult l rqur ntrior pr vur om hm ruït ls rions omú nominor. Sum, rst i simplii ls rsultts 0 0 g h i j k l 00 m 0 n o 0 p q 0 r 0 s t 0 u 0 v w x 0 Dossir rions. /

4 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Dossir rions. /. Fs ls sgünts multipliions i ivisions simpliint l rsultt.. Clul ls sgünts oprions omins m rions Multipliió rions El prout us rions és un ltr rió n què l numror és l prout ls numrors i l nominor és l prout ls nominors Exmpl 0 Divisió rions L ivisió us rions és un ltr rió n què l numror és l prout l numror l primr rió pl nominor l sgon rió, i l nominor és l prout l nominor l primr rió pl numror l sgon rió. Exmpl 0 0 g 0 k j i h o n m l Oprions omins. Ror qu qun s n oprions omins, és ir, sums, rsts, multipliions i ivisions l mtix tmps Es n primr ls oprions qu hi h ntr prèntsis. Tot sguit s rsoln ls multipliions i ls ivisions. Finlmnt ls sums i ls rsts. I smpr sgons l orr n què són srits, squrr rt. 0 i h g j

5 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Potèni un rió. Pr lvr un rió un potèni, n lvm l numror i l nominor qust potèni.. Opr ls sgünts rions i simplii l rsultt 0 0. Clul ls oprions sgünts. Ror qu primr s n ls oprions ls prèntsis. n n n Exmpl 0 Nomrs rls. Pr otnir l orm iml prtir un rió o nomr rionl, només hm iviir l numror ntr l nominor. Exmpls 0' '... Diml xt '... ' ' Diml priòi pur Diml priòi mixt Qun iviim l numror ntr l nominor un rió pr otnir-n l xprssió iml s pon onr qusts sos. Si l rsiu és zro l ivisió és xt i l iml otingut és un iml xt. Si l rsiu no és zro ls xirs l quoint s rptixn, l xprssió iml té ininits xirs i llvors otnim un iml priòi. Si l prt qu s rptix omnç prtir l om, n im iml priòi pur. Si l prt qu s rptix no omnç prtir l om, n im iml priòi mixt.. Exprss n orm iml ls nomrs rionls sgünts 0 Dossir rions. /

6 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit.. Complt l tul sgünt m ls nomrs imls l tivitt ntrior, lssiint-los sgons qu siguin xts, priòis purs o priòis mixtos. Form priòi 0 Form iml Diml xt Diml priòi pur Diml priòi mixt ' No Sí No Tot nomr iml s pot xprssr n orm rió. Tror l rió què quivl un nomr iml és tror l rió gnrtriu. Càlul l rió gnrtriu Si l iml és xt Només l posr om numror ls mtixs xirs qu l nomr iml qu tingum i om nominor l potèni 0 qu tingui l mtix quntitt zros om xirs iml tingui l nomr. Exmpl ' 00 Si l iml és priòi pur Cl sguir l sgünt proimnt ' Intiiqum l nomr m un lltr X ' Multipliqum l quió pr l potèni 0 qu tingui l mtix quntitt zros om xirs té l prío. 00 X ' Rstm ls us quions otingus n ls prtts i Aïllm l X Llvors uïm qu 00 X X X ' X ' ' Dossir rions. /

7 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Si l iml és priòi mixt Cl sguir l sgünt proimnt ' Intiiqum l nomr m un lltr X ' Multipliqum l quió pr l potèni 0 qu tingui l mtix quntitt zros om xirs té l prt iml qu no orm prt l prío. 00 X ' Multipliqum l quió pr l potèni 0 qu tingui l mtix quntitt zros om xirs té l prt priòi X ' Rstm ls us quions otingus n ls prtts i Aïllm l X Llvors uïm qu X 00X X 00 ' 00 X 00 ' '. Agrup ls nomrs sgünts n qurs inriors 0' '... ' ' '... Diml xt Diml priòi pur Diml priòi mixt '.... Tro l rió gnrtriu ls sgünts nomrs imls ' ' ' ' ' ' Nomrs rionls. Fins r hm stt trllnt m rions nomr nturls, ls nomrs rionls són l onjunt rions m nomrs ntrs. Q m, Z, 0 Pr tnt, tot l qu hm trllt ins r s pot gnrlitzr m rions ngtivs i s trll l mtix mnr tnint n ompt l àlul m nomrs ntrs. Tot sguit troràs un sguit xriis on hs plir tot l qu hm stuit m nomrs rionls. Dossir rions. /

8 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit.. Complt ls numrors i nominors qu ltn Esriu rions quivlnts un ls sgünts 0. Esriu xmpls rions imls ngtivs i xprss-ls sprés m un nomr iml. Pr què?. Convrtix rió n un ltr quivlnt qu sigui rió iml. Esriu sprès n orm iml l su vlor. 0' Ror Ls rions vgs tun om oprors, és ir, s pliqun un ltr númro. Pr xmpl Els prnttgs tmé s pon xprssr n orm rió Pr xmpl % Dossir rions. /

9 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. 0. Complt lulnt mntlmnt Els / onills són.. onills. Els / 0 uros són. uros. Els /0 00 olls són. olls. Els /. pssos són pssos. Els /. is són is. Els /. litrs oli són litrs oli. g Els.../... progrms són progrms. h Els.../... ints són 0 ints.. Enrl ls rions qu rprsntin nomrs rionls positius Fs om n l xmpl % 0' 00 0%... % 0' g % i. 0' % '% h %... j Esriu l vlor solut ls sgünts nomrs. Ror qu l vlor solut un nomr és l vlor positiu l nomr Esriu ntr us rions un qusts signs >,, <. Esriu ls pssos qu hs t pr vurho ruió omú nominor, àlul l iml orrsponnt,... g 0 0 h. Rprsnt n un rt numèri ls sgünts rions 0 0 i Dossir rions. /

10 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit.. Simplii mprnt, si vols, l m.. l numror i l nominor g h i 0. Rsol ls sgünts sums g h 0 i. Rsol ls sgünts rsts trnsormnt-ls n sums om n l xmpl 0. Rsol ls sgünts rsts trnsormnt-ls n sums om n l xmpl 0 Dossir rions. 0/

11 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Dossir rions. / 0. Rsol ls sgünts sums i rsts ntr ntrs i rions. Un lumn h t prolms i nr li n qun /0 ls qu li hn propost r. Qunts prolms li ltn pr r?. Si un míli gst / ls ingrssos mnsuls pr pgr ls uros l llogur l pis, quins són ls sus ingrssos mnsuls?. Multipli. Ror qu hs onr ls rsultts simpliits i qu n gnrl és més ràpi simpliir ls tors omuns n l numror i n l nominor ns r l multipliió. 0 h g. Diviix. Dón l rsultt simpliit. 0. Esriu n orm potèni prout. Clul mntlmnt ls potènis j i h g

12 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit. Dossir rions. /. Rsol uint ls prioritts. Rsol 0. Clul potènis xponnt ngtiu 0 g 0. Clul l vlor ls sgünts potènis i h g

13 Dprtmnt Mtmàtiqus. IES Ernst Lluh Cunit.. Trnsorm notió intíi ls sgünts nomrs imls ' 0 0 ' g 0' i '0 k 0' 0 m 0'0 00 ' h 0'000 j 0 l ' 0 n Esriu ls soluions ls sgünts rrls nomrs rionls g h. Arroonix ls mil lèsims '0 0'0 ' '0. Aproxim ls ntèsims π. El prssupost prsntt pr un mprs pr instl lr 0 Km. il onutor ltriitt és uros. Clul l ost pr Km. I l ost ls /0 l or.. El l un riu l stiu r mtrs úis pr sgon; ixò rprsntv ls / l l qu tni l ms mrç. Tro l l l ms mrç.. L Mrt i n Mr s hn omprt un glt u. L Mrt s hi h gstt ls ls inrs qu portv,0 i n Pu ls tni,0. Qunt ls hi h ostt l glt?. Si l Mrt s h gstt n un rgl pl su grmà ls ls sus inrs, i tni, qunt li h ostt l rgl?. El Mr h t ls ls prolms Mts qu portv. Si n h t, sps ir qunts n hi hvin post? 0. L Mrt vol rprtir llminurs ntr ompnys lss. Exprss n orm un sol rió l qu to ompny.. El Mr i l Mrt un, onjuntmnt, 0 uros. Exprss n orm un sol rió qun u sú. Dossir rions. /

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

1:5 DETALL X R55 C R0,50 R0,50 SCALE 2 : 5. Sergio Barbero BRAÇ. Salvo indicación contraria cotas en milímetros ángulos en grados tolerancias 0,5 y 1º

1:5 DETALL X R55 C R0,50 R0,50 SCALE 2 : 5. Sergio Barbero BRAÇ. Salvo indicación contraria cotas en milímetros ángulos en grados tolerancias 0,5 y 1º 1150 R5 25 50 45 9 55 50 45 R55 905 500 0 60 0 X 42 R0,50 R0,50 50 TLL X SL 2 : 5 ibujado Sergio arbero omprobado MTRIL: RÇ SL : SL : 1:5 4 7,50 45 12 40 R25 TLL - M5 H7x2 160 ibujado Sergio arbero omprobado

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne -

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne - 1 31 FESTEJO DE AVIDAD Allgro ( C= 10) Hrbr Birich Txo Alfro Osoj 1 6 1 Conrlo I I I I S - پ0ٹ9or Don Jo - 18 پ0 0 I I I I I پ0 0 J I I I I I پ0 0 J I I I I s, Y پ0 0 Y پ0 0 Y S - پ0ٹ9o - Y r M - r ھ -

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

NÚMEROS REALES Clasificación. Acerca de las operaciones

NÚMEROS REALES Clasificación. Acerca de las operaciones NÚMEROS REALES Clsifiió Aer de ls oerioes - Prioridd. Prétesis de detro fuer.. Poteis y ríes.. Multiliioes y divisioes de izquierd dereh. Sums y rets, de izquierd dereh o ositivos or u ldo y egtivos or

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: MIDUVI DIRION INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D : 01/07/ OR: 11:0:1 IV rrado laboracion del Traslado NTIDD 550-000-0000 MINISTRIO D DSRROLLO URNO Y VIVIND 000 MIDUVI DIRION

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

s S ä k E l e k t r i s k s ä k e r h e t I n s t a l l a t i o n s s ä k e r h e t R e n g ö r i n g s s ä k e r h e t S p l k L C D d s k ä P l l k P l a c e r i n g I n s t a l l a t i o n E x t e r

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

MODIFICACIÓN PUNTUAL DE PLAN GENERAL SECTOR PAG1 EN PEÑA DE LAS AGUILAS G AL NORTE DE "CAMINO VIEJO DE CREVILLENTE" Y ESTE DE "CAMINO DE LUCERGA"

MODIFICACIÓN PUNTUAL DE PLAN GENERAL SECTOR PAG1 EN PEÑA DE LAS AGUILAS G AL NORTE DE CAMINO VIEJO DE CREVILLENTE Y ESTE DE CAMINO DE LUCERGA MDFÓ PUU D P F B 2 1 4 P1 PÑ D U D "M J D " Y D "M D U" É D UBM. PM Y DÓ / Ubr, 1-3º \ : 966659228 \ -mi: st.pmit@yt-ch.s yutmit ch mmri P r X FH D PM Y. U UBZB U UBZB D DD U PD PÑ U P-1

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque I.E.S Pdre Ju Ruíz Aritméti Hiojos del Duque PROPIEDADES DE LA ARITMÉTICA Y ERRORES MÁS COMUNES NÚMEROS ENTEROS Elimir prétesis: Del mismo sigo, sle + De distito sigo, sle + (+) = + ( ) = + + ( ) = (+)

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

P A R T E I I C r í t i c a r y j u s t i f i c a r s e CAPITULO 5 El imperio de la crítica S o b r e l a s o c i o l ó g i c a d e l r i e s g o y e l d e l i t o t e c n o l ó g i c o s Si el científico,

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Ín d i c e. In m u e b l e. Of e rta d e c o m p r a. Fo r m u l a r i o d o s... 5

Ín d i c e. In m u e b l e. Of e rta d e c o m p r a. Fo r m u l a r i o d o s... 5 Ín d i c e Contrato de Compraventa Bienes Inmuebles In m u e b l e. Ofe rta d e co m p r a. Fo r m u l a r i o u n o... 3 In m u e b l e. Of e rta d e c o m p r a. Fo r m u l a r i o d o s... 5 In m u

Más detalles

5to GRADO. Fracciones HOJAS DE TRABAJO

5to GRADO. Fracciones HOJAS DE TRABAJO to GRADO Friones HOJAS DE TRABAJO Friones y eimles esriir éimos omo eimles Etiquet l seión e l regl omo entímetros en eimles. Hemos heho el primer reuro pr yurte. (Not: este igrm está grno pr ver ls línes

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

Me pregunto si alguna gente crea y publica sitios de internet con el único propósito de atormentar a sus visitantes.

Me pregunto si alguna gente crea y publica sitios de internet con el único propósito de atormentar a sus visitantes. DIIEZ COSAS QUE ODIIO EN UN WEBSIITE Por Jason Oconnor Traducción libre del artículo aparecido el 5 de octubre 2004 en marketingprofs.com ( Ten things I hate in a website ) Me pregunto si alguna gente

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

www.baygar.com La Calidad es nuestra Energía

www.baygar.com La Calidad es nuestra Energía www.ygr.om L Clidd es nuestr Energí s gsolin 2009-2010 2 www.ygr.om GRUPOS ELECTRÓGENOS Gsolin GESAN y los motores Hond y Vngurd presentn un gm de grupos eletrógenos que sumn ventjs y multiplin el rendimiento.

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

Tema 3. Guías de Onda y Líneas de Transmisión

Tema 3. Guías de Onda y Líneas de Transmisión Tm 3. Guís On Líns Trnsmisión 3. Inrouión 3. Soluions gnrls pr ons TM T TM 3.3 L guí plnos prllos 3.4 L guí rngulr 3.5 L guí on irulr 3.6 l bl oil 3.7 Líns plnrs 3.8 Comprión nr isinos ipos líns guís Bibliogrfí

Más detalles

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 ID_PLAN PLAN CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 Mi Plan Plus 1430 CI9 Pool Optimo 167 CJ0

Más detalles

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14.

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. UNIDAD TEMÁTICA: Intrscción suprficis. HOJA DE EJERCICIOS: 4. Los puntos A B C D I J K L son los vértics ls ss ispusts orizontlmnt

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: 15 INSTITUTO NIONL D IINI NRGTI Y NRGIS RNOVLS INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 13 : 19/3/15 OR: 11:4:58 Descripcion del ur IV rrado laboracion probado G=- del Traslado ntregado

Más detalles

Allegretto Allegretto Lento Allegretto Allegro Lento Adagio

Allegretto Allegretto Lento Allegretto Allegro Lento Adagio El K. Zöllr / M. rre rr. Moisés G. Chr llegret o C m ut re e e e e o C m m m m m ut re! e e e e o Quéh r 5 ut ho? e e e e m m m m,,,,.. El Co Voclis. voclis.wordress.m or l or ss llegret o o o o l l l

Más detalles

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12 PRO PO RCIO NALIDADES 1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : a) 4 x 10 60 b) 9 12 12 x c) 8 2 32 3 x x d) x 12 Sol : a) x= 2 4, b) x= 1 6, c)

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS UVRS TÉ MBÍ FULT S MSTRTVS Y OÓMS RRR: MSTRÓ MPRSS TÍTULO: GRO OMRL Malla urricular 009 (ctualizada gosto 01) SGTURS VL 10 0 VL 9 VL 8 VL 7 6 VL 6 4 VL 5 SRROLLO GR L L Y RSPOSBL SOL GR VLORO MPRSS RGRÍ

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

b-h s:= )EE F "fif E(e )kq r 7: 60 su) ) { ; ;l ec_ .A nf ;c"t {d<r \-{ o+ qtrc s;.., Yts f F{ q )'6 =O (U LU o- )) $fi 3 -tue ah ;.

b-h s:= )EE F fif E(e )kq r 7: 60 su) ) { ; ;l ec_ .A nf ;ct {d<r \-{ o+ qtrc s;.., Yts f F{ q )'6 =O (U LU o- )) $fi 3 -tue ah ;. l l ll l l,l " l l '( i '( (. j /, 1 l l.l l *l.t..., T 0!. ^. L \ \ \.>. i. L \ L L 1 ( i > ' K i!! : l ( 1 bh Q,Lj 5 T QD 1..,4 ' 0 0 L > L L? 4 u l! i5 0, ul l l l i' l (l (l > * Y { '* {! : ( l } D

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

Filosofía de Entrenamiento

Filosofía de Entrenamiento Filosofía de Entrenamiento Nuestra filosofía no s e b a s a e n r e p r o d u c i r m o d e l o s d e en t r e n a m i e n t o p o r "ev o l u c i ó n c o n t r a s t a d a " m e d i a n t e l a ev o l

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores c.a.)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores c.a.) POBLEMS E ELECTÓNIC NLÓIC (Trantr.a.) Eula Plténa Suprr Prr. arí aría ríuz Trantr.a..3.- En l rut r ún la fura la part nqura, n u parátr h, h 8 y h y u parátr π, r π y 8 /V. Calular anana ntna y tnón y

Más detalles

Ín d i c e. De c u o ta. Es c r i t u r a. Fo r m u l a r i o... 662. Limitación d e g a r a n t í a. Es c r i t u r a. Fo r m u l a r i o...

Ín d i c e. De c u o ta. Es c r i t u r a. Fo r m u l a r i o... 662. Limitación d e g a r a n t í a. Es c r i t u r a. Fo r m u l a r i o... Ín d i c e TOMO IV Contrato de Hipoteca Co n t r at o s Hi p o t e c a. Es c r i t u r a. Fo r m u l a r i o 1... 649 Hi p o t e c a. Es c r i t u r a. Fo r m u l a r i o 2... 653 Hi p o t e c a. Es c

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 25 26 28

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

CIENCIAS EXPERIMENTALES

CIENCIAS EXPERIMENTALES Fult CIENCIAS EXPERIMENTALES Gr Bilí Uivri Jé GRADO EN BIOLOGÍA PRESENTACIÓN DEL GRADO El Gr Bilí u titulió rátr itífi qu ti m bjtiv frmr l lum l imit l vi t u ft l ut vit mlulr ht l tui l itm rfi l l

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Problemas de ecuaciones de primer grado

Problemas de ecuaciones de primer grado Problemas de ecuaciones de primer grado Roberto, un compañero de clase, asegura que podrá descifrar el número que cualquiera piense. El método se basa en los siguientes pasos Piense un numero Multiplícalo

Más detalles

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente.

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente. Dprmno Mmái Apli. Ful Inormái. UPM. Rlions quivlni RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE ) En l onjuno N N s in l rlión (, ) R (, ). =.. Avrigu si s quivlni y si lo s lul l ls l lmno [(4, 8)]. 2) En l

Más detalles

Operaciones Combinadas

Operaciones Combinadas TTEMA... LOS NÚMEROS NA TTURALES Operiones ásis. Reliz ls siguientes operiones: 0 0. Efetú ls siguientes multipliiones: 0. Resuelve ls siguientes ivisiones: : : : :. Clul: 0 0 0 : :. Reliz ls siguientes

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

Negocio desde la Visión del Cliente

Negocio desde la Visión del Cliente El MAPACnstruynd DE EMPATIA Nustr Mdl d En la antrir prsntación hablábams d mpatía y afirmábams u un prfund CONOCIMIENTO DEL CLIENTE rprsnta una vntaja cmptitiva difrncial n las rganizacins. Asimism, prsntábams

Más detalles

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils,

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

P R O G R A M A D E G O B I E R N O 2012-2015. C o n g e s t i n, s e g u r i d a d y t r a b a j o

P R O G R A M A D E G O B I E R N O 2012-2015. C o n g e s t i n, s e g u r i d a d y t r a b a j o P R O G R A M A D E G O B I E R N O 2012-2015 C o n g e s t i n, s e g u r id a d y t r a b a jo 1 W I L M A N H A R R Y M A R ح N C A S T A ر O H O J A D E V I D A N a c ي e l 1 7 de S e p t ie m b r

Más detalles

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii CAPÍTULO I Nociones generales 1. Re s e ñ a hi s t ó r i c a... 1 2. De n o m i n a c i ó n... 3 3.

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN Cpítul LÓGIC PROPOSICIONL INTRODUCCIÓN L lógi stui l frm rzmit. Es u isipli qu s utiliz pr trmir si u rgumt s váli, ti pliió ts ls mps l sr; l filsfí, pr trmir si u rzmit s váli, y qu u frs pu tr ifrts

Más detalles