Dpto. Matemática Aplicada Universidad de Málaga

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Dpto. Matemática Aplicada Universidad de Málaga"

Transcripción

1 Dpto. Matemática Aplicada Universidad de Málaga M. Atencia & I. P. Cabrera

2 Sucesiones numéricas y ejemplos Convergencia Una sucesión numérica es una lista infinita de números reales a 1,a 2,a 3,...,a n, tantos como números naturales. Una sucesión de números reales es una aplicación ϕ :N R Se denota por a n = ϕ(n) y se suele identificar la aplicación con el conjunto imagen. ϕ(n) = 1 es una sucesión constante a n = {1,1,1,...}. ϕ(n) = n, es decir, a n = n es el conjunto {1,2,...,n,...} a n = log(n+1) = {log2,log3,...} M. Atencia & I. P. Cabrera

3 Convergencia Límite de una sucesión Se dice que una sucesión {a n } converge a l si dado un número real ε > 0, existe un número natural n 0 tal que a partir de él, todos los términos de la sucesión distan de l menos que ε : lim a n = l si para todo ε > 0 existe n 0 Ntal que n + para todo n n 0 se tiene a n l < ε. Dicho de otro modo, en cualquier entorno de l están contenidos todos los términos de la sucesión salvo un número finito. El ĺımite de una sucesión, en caso de existir, es único. Una sucesión que no es convergente, se dice que es divergente. M. Atencia & I. P. Cabrera

4 Propiedades Sucesiones numéricas Convergencia Si lim n + a n = l y lim n + b n = m, entonces lim (a n +b n ) = l +m n + lim (λ a n) = λ l n + lim (a n b n ) = l m n + lim n + a n b n = l m si m 0. M. Atencia & I. P. Cabrera

5 Convergencia Sucesiones acotadas Una sucesión {a n } está acotada superiormente si an M para todo n N. Una sucesión {a n } está acotada inferiormente si an M para todo n N. Una sucesión {a n } está acotada si está acotada superior e inferiormente. Toda sucesión convergente está acotada. El recíproco no es cierto, por ejemplo a n = ( 1) n no es convergente pero 1 a n 1, para todo n. Una sucesión acotada y monótona (a n a n+1 o a n a n+1 ) sí es convergente. M. Atencia & I. P. Cabrera

6 Convergencia Sucesiones divergentes a ± Existen sucesiones que a medida que vamos tomando números naturales, los valores de la sucesión se van haciendo indefinidamente grandes o indefinidamente pequeños. Por ejemplo, a n = n o a n = n 2. Se dice que una sucesión {a n } diverge a + si para cualquier k R existe n 0 N tal que para todo n n 0 se cumple a n > k. Se dice que una sucesión {a n } diverge a si para cualquier k R existe n 0 N tal que para todo n n 0 se cumple a n < k. M. Atencia & I. P. Cabrera

7 Convergencia Subsucesiones Sea {a n } una sucesión de números reales y ϕ :N N una aplicación tal que ϕ(k) < ϕ(k +1) para todo número natural k. Se dice que la sucesión {b k } definida por b k = a ϕ(k) es una subsucesión de {a n }. Toda subsucesión de una sucesión convergente (resp. divergente) a l (resp. a ± ) también converge (resp. diverge) a l (resp. ± ). En particular, el carácter de una sucesión se mantiene si se eliminan un número finito de elementos puesto que dado {a n }, basta tomar la subsucesión {a n0 +k}, para algún n 0 N. M. Atencia & I. P. Cabrera

8 Sucesiones numéricas Convergencia Cálculo de ĺımites de sucesiones usando funciones Dada una sucesión {a n } de números reales, se puede considerar la función real de variable real dada por f(x) = a x y se cumple que lim a n = lim f(x) n x + Ejemplo 2n 2 +n+1 2x 2 +x +1 lim = lim = 2 n n+10 x + x +10 M. Atencia & I. P. Cabrera

9 y Convergencia El concepto de serie de números reales se introduce para formalizar la idea intuitiva de sumar infinitos números reales, más concretamente de sumar los términos de una sucesión. Para una sucesión {a n } se construye una nueva sucesión a {S n }, a la que se denomina sucesión de sumas parciales, sumando consecutivamente en la forma: S 1 = a 1 ; S 2 = a 1 +a 2 ;...;S n = a 1 +a 2 + +a n En el caso de que dicha sucesión {S n ) sea convergente a l R, se dice que la serie a n es convergente a l. M. Atencia & I. P. Cabrera

10 y Convergencia Condición necesaria de convergencia Cuando una serie general {a n } tiende a 0. La serie lim n La serie a n es convergente, entonces, el término n 3 +n 2 2 n 3 n 3 +n 2 2 n 3 = 1 0. no puede ser convergente puesto que ( 1) n+1 no puede ser convergente puesto que la sucesión ( 1) n+1 no tiene ĺımite. M. Atencia & I. P. Cabrera

11 y Convergencia Propiedades Si a n = l y (a n +b n ) = l +m (λ a n ) = λ l (a n b n ) l m a n = n=k b n = m, entonces, a n (a 1 +a 2 + +a k 1 ) M. Atencia & I. P. Cabrera

12 Sucesiones numéricas Serie geométrica de razón r, y Convergencia r n Si r 1, la serie no converge, pues el término general {r n } no tiende a 0. Si r < 1, entonces r n = r 1 r. M. Atencia & I. P. Cabrera

13 Sucesiones numéricas Series de términos positivos Convergencia absoluta y condicional Series alternadas Criterio de condensación. P-series Criterio de condensación Sea {an} una sucesión decreciente de términos no negativos. Entonces, a n es convergente si y sólo si 2 k a 2 k convergente. i=1 k=1 Este criterio es muy útil si en el término general de la serie aparece la función logaritmo. 1 Una serie del tipo np, a la que se denomina p-serie, es convergente si y sólo si p > 1. M. Atencia & I. P. Cabrera

14 Sucesiones numéricas Series de términos positivos Convergencia absoluta y condicional Series alternadas Criterio de comparación Sean a n y a n b n para todo n N entonces, Si Si b n dos series de términos positivos tales que b n converge entonces a n diverge entonces a n también converge. b n también diverge. M. Atencia & I. P. Cabrera

15 Sucesiones numéricas Series de términos positivos Convergencia absoluta y condicional Series alternadas Criterio de comparación por paso al ĺımite Sean lim n a n y b n dos series de términos positivos tales que b n 0 para todo n suficientemente grande y supongamos que a n = c 0. Entonces, b n a n y b n tienen el mismo carácter M. Atencia & I. P. Cabrera

16 Series de términos positivos Convergencia absoluta y condicional Series alternadas Criterio de la raíz Sea lim n a n una sucesión de términos positivos tales que n an = l. Entonces, 1 Si l < 1, la serie 2 Si l > 1, la serie 3 Si l = 1, la serie a n es convergente. a n es divergente. a n puede ser convergente o divergente. M. Atencia & I. P. Cabrera

17 Series de términos positivos Convergencia absoluta y condicional Series alternadas Criterio del cociente Sea lim n a n una sucesión de términos positivos tales que a n+1 a n = l. Entonces, 1 Si l < 1, la serie 2 Si l > 1, la serie 3 Si l = 1, la serie a n es convergente. a n es divergente. a n puede ser convergente o divergente. M. Atencia & I. P. Cabrera

18 Sucesiones numéricas Series de términos positivos Convergencia absoluta y condicional Series alternadas Convergencia absoluta y condicional Para una serie arbitraria a n tal que a n es convergente, se tiene que a n es convergente y además En tal caso, se dice que a n a n a n es absolutamente convergente. i=1 De una sucesión convergente que no es absolutamente convergente, se dirá que es condicionalmente convergente. M. Atencia & I. P. Cabrera

19 Sucesiones numéricas Criterio de Leibniz Series de términos positivos Convergencia absoluta y condicional Series alternadas Los criterios anteriores solamente son válidos para series cuyos términos salvo quizás un número finito, son positivos. También son aplicables a las series que tienen todos los términos negativos, ya que entonces se considera la serie ( a n). Criterio de Leibniz para series alternadas Sea {an} una sucesión decreciente de términos positivos que satisface lim a n = 0. Entonces, la serie n ( 1)n a n es convergente. M. Atencia & I. P. Cabrera

20 Existen muy pocas series cuya suma puede determinarse, por ejemplo las series geométricas. A continuación se citan dos ejemplos más. Series aritmético-geométricas: Si 0 r < 1, entonces nrn = Si r 1 la serie es divergente r (1 r) 2 Series telescópicas: La serie (b n b n+1 ) es convergente si y sólo si existe lim b n, en cuyo caso se cumple n (b n b n+1 ) = b 1 lim n b n M. Atencia & I. P. Cabrera

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes 1. Sucesiones DEF. Una sucesión infinita de números reales es una función cuyo dominio es N y su imagen un subconjunto

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

TEMA 3. SERIES NUMÉRICAS

TEMA 3. SERIES NUMÉRICAS TEMA 3. SERIES NUMÉRICAS 3.1 DEFINICIÓN DE SERIE DE NÚMEROS REALES Definición: Dada una sucesión de números reales x n, se considera una nueva sucesión s n de la forma : s 1 x 1 s 2 x 1 x 2 s 3 x 1 x 2

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n. Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES BLOQUE 5 SUCESIONES Y SERIES DE NÚMEROS REALES Sucesiones de números reales - Límite de una sucesión - Cálculo de límites Series de números reales Progresiones aritméticas y geométricas Series geométricas

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Series y Probabilidades.

Series y Probabilidades. Series y Probabilidades Alejandra Cabaña y Joaquín Ortega 2 IVIC, Departamento de Matemática, y Universidad de Valladolid 2 CIMAT, AC Índice general Sucesiones y Series Numéricas 3 Sucesiones 3 2 Límites

Más detalles

Ejercicios de Análisis I

Ejercicios de Análisis I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Ejercicios de Análisis I Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero 2005 Ramón

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA Universidad Nacional de Rio Cuarto Facultad de Ciencias Exactas, Físico-Químicas y Naturales UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

CÁLCULO DIFERENCIAL TEMARIO

CÁLCULO DIFERENCIAL TEMARIO CÁLCULO DIFERENCIAL TEMARIO 1. FUNCIONES 1.1 Función real de variable real Función. Variable independiente y variable dependiente. Dominio, recorrido y codominio. Imagen y preimagen. Existencia y unicidad.

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

11. Integrales impropias

11. Integrales impropias 11. Integrales impropias 11.1. Definición de Integrales Impropias Las denominadas integrales impropias son una clase especial de integrales definidas (integrales de Riemann) en las que el intervalo de

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

2 SUCESIONES Y PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS

2 SUCESIONES Y PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 2 SUCESIONES Y PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS Una sucesión es un conjunto ordenado de números, uno a continuación del otro. Por ejemplo, el conjunto de los números naturales es una sucesión de

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro.

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. Sucesiones Concepto de sucesión Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos

Más detalles

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá Fundamentos Matemáticos Grado en Ingeniería Informática Grado en Ingeniería de Computadores Universidad de Alcalá Francisco Javier Bueno Guillén Óscar Gutiérrez Blanco José Enrique Morais San Miguel Francisco

Más detalles

SUCESIONES INFINITAS

SUCESIONES INFINITAS SUCESIONES INFINITAS 1 2 Ejercicio: Cálculo del término general de una sucesión: Encontrar el quincuagésimo término de la sucesión 1, 3, 5, 7,... Es una progresión aritmética de diferencia 2. Su término

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: CALCULO I Código 1.1 PLAN DE ESTUDIOS: 2002 CARRERA: Profesorado en Matemática DEPARTAMENTO: Matemática

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

SESIÓN 3 SERIES, SUCESIONES Y LÍMITES

SESIÓN 3 SERIES, SUCESIONES Y LÍMITES SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:

Más detalles

RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones

RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones RESUMEN DE TEORIA Primera Parte: Series y Sucesiones SUCESIONES Definición: La sucesión converge a L y se escribe lim = si para cada número positivo hay un número positivo correspondiente N tal que =>

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

Cálculo Diferencial en una Variable

Cálculo Diferencial en una Variable UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Cálculo Diferencial en una Variable Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

10. LIMITES DE FUNCIONES

10. LIMITES DE FUNCIONES 10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Taller: Introducción a las Relaciones de Recurrencia.

Taller: Introducción a las Relaciones de Recurrencia. Taller: Introducción a las Relaciones de Recurrencia. Déboli Alberto. Departamento de Matemática. F.C.E. y N. Universidad de Buenos Aires. Semana de la Enseñanza de la Ciencia. Buenos Aires 15 de julio

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

MATEMÁTICAS PARA LA ECONOMÍA II

MATEMÁTICAS PARA LA ECONOMÍA II MATEMÁTICAS PARA LA ECONOMÍA II CÁLCULO EN UNA VARIABLE. Tema 1. - Números Reales. Nociones de topología en R. 1.1 - Números reales racionales e irracionales. El cuerpo de los números reales. 1.2 - Valor

Más detalles

Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados:

Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados: E.T.S.I. Industriales y Telecomunicación Curso 011-01 Medida de ángulos Unidad Como unidad del tamaño de un ángulo se utiliza el radián, más natural y con más sentido geométrico que el grado. Recordemos

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

PRÁCTICAS CON DERIVE 19

PRÁCTICAS CON DERIVE 19 PRÁCTICAS CON DERIVE 19 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA TRES. SERIES NUMÉRICAS INTRODUCCIÓN DE SERIES DE NÚMEROS REALES Una serie de números reales se puede introducir definiendo

Más detalles

Límites y continuidad de funciones

Límites y continuidad de funciones Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Funciones reales de variable real

Funciones reales de variable real 84 Matemáticas I : Cálculo diferencial en IR Tema 8 Funciones reales de variable real 8. Los números reales Los números reales son de sobra conocidos, sus operaciones básicas así como su identificación

Más detalles

sumas = 58 = 48 = 73 = 59 =

sumas = 58 = 48 = 73 = 59 = Operaciones aritmeticas sencillas sumas 93 + 67 + 91 + 28 + 50 + 94 = 58 = 48 = 73 = 59 = 89 + 20 + 58 + 95 + 2 + 95 = 57 = 100 = 54 = 72 = 57 + 7 + 14 + 10 + 19 + 72 = 62 = 19 = 1 = 9 = 80 + 89 + 29 +

Más detalles

UNIDAD 8: SUCESIONES Y SERIES

UNIDAD 8: SUCESIONES Y SERIES UNIDAD 8: SUCESIONES Y SERIES Llegamos a la última unidad de la asignatura correspondiente a Sucesiones y Series, recuerde mantener la motivación hasta el final, el tema que vamos a tratar aquí es de especial

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

ANÁLISIS DE VARIABLE REAL

ANÁLISIS DE VARIABLE REAL ANÁLISIS DE VARIABLE REAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice Los números reales, sucesiones y series 7 Los números naturales

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Existencia y unicidad de soluciones

Existencia y unicidad de soluciones 48 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 8 Eistencia y unicidad de soluciones En el capítulo anterior se han introducido las ecuaciones diferenciales

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Funciones y Límites Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Euler, números primos y la función zeta

Euler, números primos y la función zeta Scientia et Technica Año XVII, No 52, Diciembre de 202. Universidad Tecnológica de Pereira. ISSN 022-70 6 Euler, números primos y la función zeta Euler, prime numbers and the zeta function Oscar Fernández

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

1 Sucesiones de números reales

1 Sucesiones de números reales 1 Sucesiones de números reales 1.1 Números reales En el conjunto de los números reales tenemos definidas dos operaciones binarias, suma y producto, y una relación de orden (a, b) a + b (a, b) ab a b. Ellos

Más detalles

Volumen y conjuntos de medida cero

Volumen y conjuntos de medida cero Capítulo 2 Volumen y conjuntos de medida cero En la recta real normalmente las funciones se integran sobre intervalos. En R n es deseable poder considerar integrales de funciones sobre conjuntos más complicados

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Parte II CALCULO DIFERENCIAL.

Parte II CALCULO DIFERENCIAL. Parte II CALCULO DIFERENCIAL. 165 En esta parte veremos el Cálculo diferencial en forma precisa. 167 168 Capítulo 1 Axiomas Para los Números Reales. En este capítulo daremos las bases en las cuales se

Más detalles

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS Arte, finanzas y sucesiones en EXCEL MATH 2252 Calculus II Dra. Carmen Caiseda Copyright 2015 Arte, Finanzas y sucesiones en Excel Engage: MSEIP Engineering

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Introducción a los números reales

Introducción a los números reales Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico Matemáticas Estudio de la Convergencia de Sucesiones Dobles y Algunas de sus aplicaciones Tesis que para obtener el título de: Licenciada

Más detalles