5.- BANDA FINITA CON ELEMENTOS LIBRES DE ROTACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5.- BANDA FINITA CON ELEMENTOS LIBRES DE ROTACIÓN"

Transcripción

1 Anss d cs n ANDA FINITA CON ELEMENTOS LIRES DE ROTACIÓN E roósto uscdo n todo rocso d rsoucón d ntos fntos s rduccón d s ncógnts qu ntrvnn n ro r rducr cost coutcon d so. L nd fnt rsnt un forucón trntv qu rduc s cost n núro d ncógnts d ro s v dsnudo n grn núro rscto étodo d os ntos fntos. Lo qu s rtnd contnucón s hcr un forucón qu rduzc ún ás st cost coutcon rt cácuo d un án con un soo grdo d rtd or nodo PRESENTACIÓN DEL MÉTODO T coo s h ntroducdo n forucón n nd fnt s tn un dsnucón d núro d nodos qu dscrtzn structur qu so to rduc núro d ncógnts d ro. Pr consgur un nuv rduccón d núro d ncógnts d ro s ud ctur or otro cno. L rduccón d os grdos d rtd n cd nodo. En forucón n nd fnt d Rssnr-Mndn tnos 3 grdos d rtd or nodo sndo { } s tuds d os ovntos nods. En forucón n nd fnt d Krchhoff s tnn grdos d rtd or nodo { }. Esto s os grcs hótss d ortogondd d nor dford d no do ro s hótss nos t náss cs dgds. Aún sí o no s un hcho rocunt qu s un crctrístc qu cun orí d cs áns qu s ccun n ráctc. E étodo qu s roon contnucón ntroduc torí d os ntos sn rotcón coo hrrnt r rducr os 3 grdos d rtd nods d torí d Rssnr- Mndn soo grdo d rtd. Dcho étodo rcs ccón d s hótss d Krchhoff ro con vntj d uso d nto undnson d dos nodos coo dscrtzdor d nd rovchndo scdd qu ofrcn s funcons d for ns d nto undnson DESARROLLO DEL MÉTODO Ls ts qu s vn sgur son náogs s dscrts n rtdo 4.3 ro s rsons rsutnts d dcun s nuvs dsoscons. S ud dcr qu rr so srá un sfccón d torí d Rssnr-Mndn dnt dcón d s hótss d krchhoff n os gros.

2 Anss d cs n Sfccón d gro n drccón S rt ntoncs d s cucons 4.5: dond Por ccón d s hótss d Krchhoff s udn rsr os gros coo drvd d fch rscto drccón qu corrsondnt gro. Adás coo s hí untdo s tn qu s tuds nods son ndndnts d drccón. Todo o rt rsr coo: Qudndo soo coo tuds nods r os ovntos n rónco. Ls tuds d os ovntos dndnts sont d coordnd trnsvrs s dscrtzn usndo ntrocón cásc d os ntos fntos undnsons. S usr n st cso s funcons N d cs C d dchos nodos. Entoncs c qud dvdd n nds ongtudns con uns íns nods socds con su drccón trnsvrs. Un crto núro d nodos qu dfnn co d ovntos trnsvrsnt or ntrocón d ntos fntos ongtudnnt os ovntos qudn dfndos or os dsrroos n sr d Fourr. Y Y 5.3 Y sn Y cos π } { } { N n N S

3 Anss d cs n 3 dond T T N Ι N S S S sn S π 5.6 Ls dforcons os sfurzos gnrzdos n nd s otnn d torí d Rssnr-Mndn ro tnndo n cunt qu s hn usdo s hótss d Krchhoff. S consdr ntoncs soo rt rtncnt fón: f S 5.7 dond S tn s rsón qu n Introduccón d os ntos sn rotcón S ntroduc n st onto torí d os ntos rs d rotcón. Est torí dsrrod or J.Jovcvc E.Oñt [8] rtr d torí d vgs d Eur- rnou n stcdd n nos rtrá sfcr s rotcons forur ro d nd fnt con un soo grdo d rtd fch coo únc vr nod. L torí s s n ror curvtur d nto undnson coo dfrnc d grdnt d fch o rgo d os ords d dono. L torí s dsrro con dt n Anjo I. Ddo qu fch s dscontnu n os ords d nto s to vor do con os grdnts d os ntos contguos con os qu s cortn os nodos tros. L ntrocón qu s us s n curvtur co d fons sun un vor constnt dntro d nto rc t coo s ustr n Fgur 5.. Fgur 5. Funcons ntrodors r co d dszntos curvtur ontos n squ C Cntrd funt [8].

4 Anss d cs n 3 Entoncs su ccón rcs d s fchs d os nodos djuntos nto undnson qu hc d rc. Eo hc qu s trcs d dforcón tngn d forurs coo trcs qu ngon st nto sus ntos contguos -. Est conjunto for un dono cocto d trs ntos 4 nodos n tot s rsnt n Fgur 5.. Est squ s C Cntrd sch dono rc nor d CC nt. Fgur 5. Ento d contro r C Cntrd sch funt [8]. Est otro squ do C Vrt sch n qu grdnt d fch s contnuo n os tros d nto d contro dono rc nor d CV nt. En st forucón s h scogdo uso d nto CC qu s qu rcs d nor vrcón rscto cácuo d curvturs convncon. No ostnt s odrí usr d for náog otro ntnto con nto CV qu rc odr coortnto d structur con un convrgnc grnt jor. Los dts d C Vrt sch s udn vr n Anjo I. A contnucón s rsn s trcs d dforcón rsutnts d ccón d nto CC n náss d cs or étodo d nd fnt. L curvtur n dono d contro s otn d cucón sgunt: S tn qu dstcr qu n st cso s otnn s drvds d fch n os ntos d contorno con s rsons rodo qu sgun χ

5 Anss d cs n 3 Susttundo n cucón 5.6 s rsons ntrors s otn trz d curvtur d dono coo E vctor contn s fchs d todos os nodos qu contrun n dono d nto d contro Accón d os ntos sn rotcón forucón n nd fnt Estos rsutdos s vn cr r ncontrr rsón d trz d dforcón o trz d curvturs r forucón d nd fnt. Entoncs s rt d vctor d dforcons gnrzds 5.7 s dsrron cd uno d sus térnos : s tn qu χ ntoncs s ud utzr nto CC n otncón d rr térno d vctor dforcons gnrzds coo [ ] f δ S [ ] χ [ ] T

6 Anss d cs n 33 r sgundo térno s c sfccón hch n rtdo 5. or s hótss d Krchhoff. Fnnt os térnos cruzdos s cotn coo dond Y son s funcons trgonoétrcs d 4.6 s trz d curvtur d 5. vctor d dszntos nods d nto CC 5.3 r rónco n co s tud nod d fch r nodo rónco. Pr s rsons ntrors s h rzdo susttucón d os ovntos dndnts d or ntrocón cásc d ntos fntos d 5.4. Fnnt r sfcr gro qu nos qud n curvtur n 5.7 s rz rocón sgún s cucons : Pr sfcr rsón d trz d dforcón rsutnt s consdr qu todos os ntos tnn s ongtud : Entoncs s tn n N n N d N ε S

7 Anss d cs n 34 dond N N N N 5. [ ] 5.3 Con trz ntror usndo ntgrcón rducd n un unto r os ntos d nd undnsons d dos nodos s otn rsón d trz d rgdz d nd dnt T [ K ] [ ] D 5.4 Por o tnto tnos un trz K r cd nto d contro qu s ns d nr dcud sgún os nodos qu hc rfrnc cd cofcnt d trz K. Pr cd rónco s otn un trz nsd K. Ests trcs r conjunto d todos os róncos confgurn os ntos d sst K f 5.5 L vntj s qu hor vctor contn soo s fchs r cd nodo rónco. E tño d sst h rntdo un grn rduccón. L concón dcud d s dstnts forucons rt sfcr sst un soo grdo d rtd. D s nr qu n 4.44 vctor d furzs nods quvnts d un nto d nd r rónco vn ddo or [ f ] N T T [ q ] d 5.6 sndo ncho d nd q un furz unfornt dstrud vrtc: q q sn sn q π cos cos 5.7

8 Anss d cs n 35 con os íts ongtudns d ccón d crg Fgur 4.9. En cso d crgs untus vctor f s snt { W sn } f 5.8 dond W s ntnsdd d crg vrtc qu ctú n nodo d un nd un dstnc d tro odofgur 4.9. Pr un onto untu cdo s tn qu cr trnsforcón dcud tnndo n cunt qu r M s crá funcón rónc or su drvd qudndo: f { M cos } 5.9 En cso d M s tn qu rzr un rocón dnt cocnts ntr ncrntos fntos con os nodos contguos unto dond onto stá cdo d for náog o rctcdo r ntos sn rotcón rtdo IMPOSICIÓN DE LAS CONDICIONES DE CONTORNO EN LOS ELEMENTOS SIN ROTACIÓN. Ests condcons d contorno son s qu s dn n os dos o ords ongtudns d nd n j t coo s ud rcr n s Fgurs qu vndrán contnucón. L trz d dforcón o d curvturs qu s h rsntdo n rtdo ntror srv r ntos rc ntrors nzdos n sus dos tros junto otros ntos ccs d forr donos d 3 ntos. En os ords n co s tn qu consdrr un forucón concrt sgún s condcons d contorno qu s tn: ords rs snt odos o otrdos ords rs o snt odos ord zqurdo r o snt odo: Fgur 5.3 Dono d contro con un nodo r o snt odo n ord zqurdo funt [8].

9 Anss d cs n 36 En st cso gro nod s odfc r nodo d for qu: s ncuntr rsón d trz d dforcón r tro zqurdo odo o r coo: ord drcho r o snt odo: Fgur 5.4 Dono d contro con un nodo r o snt odo n ord drcho funt [8]. N N N N

10 Anss d cs n 37 En st cso gro nod s odfc r nodo d for qu: trz d dforcón r tro drcho odo o r s: ords otrdos S os ords stán otrdos s trcs d dforcón s dvdn n dos r un soo nto trnsvrs d for qu : Eotrnto n ord zqurdo: Fgur 5.5 Dono d contro con un nodo otrdo n ord zqurdo funt [8]. N N N N N N N N

11 Anss d cs n 38 Eotrnto n ord drcho: Fgur 5.6 Dono d contro con un nodo otrdo n ord drcho funt [8]. T D K N N N N T D K N N N N K K K

12 Anss d cs n 39 N N N N 5.4 K K T T D D K K K IMPOSICIÓN DE LAS CONDICIONES DE CONTORNO DEFINIDAS POR LAS FUNCIONES EN SERIE. Ests condcons d contorno son s qu s dn n os dos o ords trnsvrss d nd n j t coo s ud rcr n Fgur 5.7. Fgur 5.7 Condcons d contorno n os ords trnsvrss funt [6]. Pr forucón d un c con dos ords snt odos rocón n drccón dnt srs d Fourr s u fvor. Pro sto no sucd cr s condcons d contorno. Pr otros tos d rstrccons s funcons Y son dstnts. Entoncs s s utz cuqur otro dsrroo r rroducr un to dfrnt d condcons d oo n os tros d c s roduc un conto ddo rcón d roductos S r C qu no stsfcn condcón d ortogondd 4.4. En dchos csos trz d rgdz s n h qu utzr técncs trtvs scs r hcr étodo d nd fnt cottvo frnt d os ntos fntos. Coo jo d os dsrroos ncsros r dscrtzr corrctnt otrs condcons d oo s ud onr:

13 Anss d cs n 4 S os dos dos stán otrdos: Y sn sn snh α cos cosh snh α π sn π cos cosh 5.44 E rsto d csos son concons d sts funcons un do otrdo otro r o un do otrdo otro snt odo. Cundo gro s ndndnt d fch n torí d Rssnr-Mndn stn otrs osdds coo osdd d utzr n condcons otrds s funcons Y S sn 5.45 Aún sí nts s funcons snusods tnín s rodds ortogons 4.4 π rπ sn sn d π rπ cos cos d r r r r 5.46 Pro con s condcons d contorno otrds or jo os roductos d s funcons snusods no s nun r r s s rsons rsutnts d s ntgrs r hr trz d rgdz s hcn u cojs soo s fct rsovr-s usndo ntgrcón nuérc. E hcho ás ngtvo d sunto s qu trz d rgdz go s n. Esto hc qu uso d un nuv forucón qu sfc náss un grdo d rtd or nodo s v ofuscdo or rcón d un sst con un trz n. Pr souconr st rcnc d ndo d trz d rgdz o qu s ud hcr s utzr s funcons ds 3-sns coo funcons rodors n drccón ongtudn. Ests son funcons onócs dfnds trozos qu or sus crctrístcs nn soo un nd td d trz d rgdz. L torí d nd fnt con sns h surgdo coo rsust r surr s dfcutds qu rsnt étodo d nd fnt cásc scogndo funcons 3- sns r susttur s srs trgonoétrcs s srs hrócs n ntrocón d funcons r náss d cs áns.

La función truncadora se define con respecto a las variables arbitrarias T i como. k k

La función truncadora se define con respecto a las variables arbitrarias T i como. k k Anss d cs n 4.- ADA FIIA USADO -SPLIES L trnoogí d funcón -sn fu ntroducd or Sconbrg [9] r rfrrs s curvs báscs d sns, utzds r sovntr crtos robs d dcucón d dtos. Incnt, os -sns furon utzdos n robs d rocón

Más detalles

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN Anass d acas y amna 34 ANEJO I A. ELEMENOS DE VIGA DE EULER ERNOULLI LIRES DE ROACIÓN La toría d vgas d Eur-rnou s robabmnt uno d os robmas modo más sms d a formuacón rstrngda d a astcdad na. La rstrccón

Más detalles

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden Bds d rgí otdo Tor d Boch. Torí d ctró cs r.org d ds. Modo d Krog-Py. jo. stdo Sódo Potc áss otc qu s usó áss tror fu u otc tt. s áss d uy u rsutdo s s ctr trs tá us ocurr u tto d ctros. S rgo, otros trs

Más detalles

Se desea saber como se ha de procesar el producto de forma que se minimicen los costos totales.

Se desea saber como se ha de procesar el producto de forma que se minimicen los costos totales. Emn d l Asgntur Optmzcón d Procsos 5º curso d Ingnrí Químc uno mpo: h. Prolm En un fctorí hy qu procsr un fluo ddo F m /h d un producto qu s otn d un tnqu d lmcnmnto clntándolo n cutro undds térmcs qu

Más detalles

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son

Más detalles

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos.

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos. Funntos Inorát II Prosor Cuo Loos oos@n.uts. Unvrs Tén Fro Snt Mrí Funntos Inorát II ILI 153 Un prutón un onunto nto X, s un yón X X. S pu vr qu y n! prutons n un onunto n ntos Un prton α pu sr sunt: 1

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctrco y conuctors El prolm l potncl. Cpc léctrc Grl Cno Gómz, G 7/8 Dpto. Físc F Aplc III (U. Svll) Cmpos Elctromgnétcos tcos Ingnro Tlcomunccón Grl Cno G Gómz, 7/8 Plntmnto l prolm Dscrpcón

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

ESTIMACIÓN LINEAL DE ERROR CUADRÁTICO MEDIO MÍNIMO

ESTIMACIÓN LINEAL DE ERROR CUADRÁTICO MEDIO MÍNIMO STIMACIÓ LIAL D RROR CUADRÁTICO MDIO MÍIMO MOTIVACIÓ: Los stmdors óptmos sgún l crtro d Bs son, n gnrl, funcons no lnls d ls obsrvcons. s ncsro conocr l f.d.p. d l vrbl ltor dds ls obsrvcons. Usndo stmdors

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores SERIE 1

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores SERIE 1 UNIVERSIDD NCIONL DE MR DEL PLT - 07 FCULTD DE INGENIERÍ - DEPRTMENTO DE FÍSIC CÁTEDR: Físc d los Sconductors EFECTO FOTOELÉCTRICO SERIE.- Clculr l ntrvlo d nrgí, prsdo n V, d los fotons n l spctro vsbl

Más detalles

Tarea 11. Integral Impropia

Tarea 11. Integral Impropia Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los

Más detalles

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO Ó Ó SÍT Ó R Ó SÍT T (*) S ÓS TS "" (*-**) ST TZRS R R SRÓ R SÍT T R SST S ÓS RRÓ R - RS T S ÓS SÍT R.8-00/0 8 STT TRTT SÉS Ú T T RÍ RT Ó RÓ T Ú / / S / S TRR ÍS SÉS RÁ STS / STWR / / S / R / R(S) ST S

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real. Tema 4: DEFORMACION EN LA FLEXION

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real. Tema 4: DEFORMACION EN LA FLEXION Cátedr de ngenierí ur scue Universitri de ngenierí Técnic gríco de Ciudd e Tem : DFOCON N L FLXON Deformción en s vigs. cución de eástic. Definición de fech. étodo de áre-momento. Teorems de ohr. icción

Más detalles

Compuerta i Compuerta i+1 y i. u i q i. Figura 12 Esquema general del sistema a controlar

Compuerta i Compuerta i+1 y i. u i q i. Figura 12 Esquema general del sistema a controlar Cítuo. Moo Mtáto -MODELO MEMÁICO.-SISEM GLOBL E sst oto onto s un n o N tos on N outs N vons ts. E u u s un ósto uo n to us out on nv u s ntn onstnt uno o os N tos st n úto to on s nunt on un vto. E su

Más detalles

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO Mcroconomía AE Tma 3. LA COMPETENCIA PERFECTA PROBLEMA REUELTO uponga qu cada una d las 144 mprsas qu forman una ndustra prfctamnt compttva tnn una curva d costs totals a corto plazo déntca qu vn dada

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

Figura 8.1 Estructuras laminares prismáticas discretizadas en bandas finitas de dos nodos (fuente [6]).

Figura 8.1 Estructuras laminares prismáticas discretizadas en bandas finitas de dos nodos (fuente [6]). Ass d s 99 8.- ETRUCTURA AIARE PRIÁTICA PAA E éodo d bd o ss dss oros dsrs os rdos rds s d r áss d ás s. E s ío s rá sdo o bd do áss d srrs rs rsás rs. Es o d srrs gob or r d os s d só r ás ss. Por o o

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

Mecánica lineal de la fractura

Mecánica lineal de la fractura Concntrdors d tnsón Mcánc lnl d l frctur Un rsultdo d l rsstnc d mtrls clásc s lo rfrnt l concntrcón d tnsons qu tn lugr n un sóldo l plcrs un sfurzo rmoto. En l fgur 1 s mustrn trs csos. L concntrcón

Más detalles

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN.

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN. tgrco uérc étodos d tgrcó NGRACÓN NUÉRCAÉODOS D NGRACÓN troduccó Clculo tgrl y drcl rs udtls cálculo tsl l cálculo tgrl c dl cálculo d árs l org dl cálculo tgrl pud rotrs l Grc clásc clculo d árs por l

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

e a a x x x x u x 0 en cualquier otra parte en los puntos nodales, conduce a: u a a x u a a x

e a a x x x x u x 0 en cualquier otra parte en los puntos nodales, conduce a: u a a x u a a x III.- EEMETOS Y FUCIOES DE ITERPOACIÓ..- Introduccón En l mf, un vz qu s h dscrtzdo l domno d un prolm ddo, l cmpo d l(s) vrl(s), ( poslmnt l d sus drvds), nvolucrds n l msmo, s promn mdnt funcons d ntrpolcón,

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

ENFOQUE MEDIA VARIANZA 1

ENFOQUE MEDIA VARIANZA 1 ENFOQE MEDIA VARIANZA Sndro A. Humn Antono El nfoqu Md-Vrnz nos d qu, bjo runstns spls, un utldd sprd pud sr dsrt n funón l md y l vrnz d los pgos y/o lotrís. Dh rduón s dud sólo n l so n qu l funón d

Más detalles

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales Cítulo 4: Rotcos Multdmsols co Orcos ctorls Como s vo l cítulo tror s ud hcr rotr u ojto l sco D roorcodo - utos o cohrlrs s dcr s roorco l j d rotcó l cul s l rrstcó d u sml -D. E st cítulo s lz y td

Más detalles

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado n Economía y Mastría n T. y P. Económica Avanzada FACES UCV Microconomía I Prof. Angl García Banchs contact@anglgarciabanchs.com Clas/Smana Toría dl uilibrio dl mrcado d bins Balancar l ingrso

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne -

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne - 1 31 FESTEJO DE AVIDAD Allgro ( C= 10) Hrbr Birich Txo Alfro Osoj 1 6 1 Conrlo I I I I S - پ0ٹ9or Don Jo - 18 پ0 0 I I I I I پ0 0 J I I I I I پ0 0 J I I I I s, Y پ0 0 Y پ0 0 Y S - پ0ٹ9o - Y r M - r ھ -

Más detalles

Construyendo la función exponencial

Construyendo la función exponencial Costrdo l ció ocil Cr SÁNCHZ DÍZ Pd costrirs l ció ocil ri o trl coo l ció ivrs d l ció logrito trl r d idtiicrs co l ocil d s úro rl os d ror tl coicidci l cso d ot tro tié rciol l cso d ot rl d diirs

Más detalles

H 2 = 3,6 kn + 3,6 kn = 7,2 kn

H 2 = 3,6 kn + 3,6 kn = 7,2 kn Trabajo Pracco Nº 8: Torsón n Ejs Ejrcco 1: Una coluna d sccón crcular acúa coo soor d un carl sodo a cargas horzonals (vno). A los fns d dl dnsonano sas cargas las suonos alcadas n ars guals n las cuaro

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

r,, R r exp exp 1 cos cos 1

r,, R r exp exp 1 cos cos 1 Como obtn función on y su ngí tvés cución Schöing. Rcomos qu función on s un cución mtmátic, qu cump citos quisitos, n cu s ncunt to infomción sistm, n st cso s tt infomción cion con ctón o núco. st función

Más detalles

AUXILIAR 6: CAPM y Teoría de carteras

AUXILIAR 6: CAPM y Teoría de carteras urso: IN56A Seestre: Priver 007 Pro: José Miguel ruz Andrés Kettlún Aux: Lorenzo Réus Jie Sáez AUXILIAR 6: APM y Teorí de crters Pregunt 1 Supong que usted tiene los siguientes dtos sore los retornos esperdos

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

APIMAN-PL MANZANILLO GOBIERNO MUNICIPAL

APIMAN-PL MANZANILLO GOBIERNO MUNICIPAL .0. con que t e o es n co illd o cret.0 n..00.0..0.0.00..0.0 con cret n que t e o es n co illd o.0.. P : ST SRTR US Y TRSPRTS Z R UP 0-0. yuntmiento de nznillo, olim PURTS Y R RT P-P--0- :\P - Proyectos\0_ocumentción\ogos\ogo

Más detalles

Resumen TEMA 6: Momentos de inercia

Resumen TEMA 6: Momentos de inercia EMA 6: Momntos d nrca Mcánca Rsumn EMA 6: Momntos d nrca. Dfncons Sstma matral d puntos matrals d masa m, =, 2,...,. a) Momnto d nrca rspcto d un plano π md (d = dstanca d la masa m al plano π) π =Σ 2

Más detalles

Romance de la alondra desahuciada

Romance de la alondra desahuciada Romnce l dr shd Orqt Co olfóc demb 2012 on 400.000 ls e hcrs rzds pñ. 400.000 fls shds, nds jstm r ton n tm drmtsmo, qe tá pcn rmedbm nmess trgeds como l qe h sr mnce. Contr fr hcro, p cho l d! oprno lgt

Más detalles

Capítulo 5. Primeros pasos para el estado límite shakedown. 5.1 Introducción al análisis límite para shakedown

Capítulo 5. Primeros pasos para el estado límite shakedown. 5.1 Introducción al análisis límite para shakedown Cots cts n nálss límt. Modlo M-C y SOCP Cp 5. stdo límt skdown Cpítulo 5. Prmros psos pr l stdo límt skdown. 5. Introduccón l nálss límt pr skdown l concpto clv n l dsrrollo pr l nálss skdown no s otro

Más detalles

4 La compresión excéntrica en el campo elástico

4 La compresión excéntrica en el campo elástico ING FABIÁN SABADINI Copresión céntric en e Cpo ástico L copresión ecéntric en e cpo eástico Hst hor, cundo deterinábos s tensiones en un estructur, se hcín todos os cácuos sobre configurción inici sin

Más detalles

LECCIÓN N 5 AMPLIFICACIÓN N DE SEÑALES

LECCIÓN N 5 AMPLIFICACIÓN N DE SEÑALES EIÓN 5. lcacón d sñals TEM III MPIFIIÓN N EETÓNI ccón 5. MPIFIIÓN DE EÑE. Parátros báscos ccón 6. MPIFIDOE OPEIONE ccón 7. EIMENTIÓN EN MPIFIDOE ccón 8. OIDOE Y GENEDOE DE EÑE Elctrónca Gnral EIÓN 5. lcacón

Más detalles

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA 1. a) Exliqu las xrincias d Örstd y cont cóo las cargas n oviinto originan caos agnéticos. b) En qué casos un cao agnético no jrc ninguna furza sobr una artícula cargada? Razon la rsusta.. Dos conductors

Más detalles

l ij l'; 1r" 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,?

l ij l'; 1r 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,? ,' ḻ.) r Ë'.' -f,.-.. =(-,, '; -'..f - ' -. -^ 0 '..'.., ḷ C. c).,' C., c. C!.c.' - ạ - C. ( rô -, '.r,.,. ',, - v ) - '.. ) r, -) '_ r Ë )'.., ^,' à ',, ' ',.' ( ) ' ',' r r ) - r c c,', ḷ,' s ) c, -

Más detalles

. Se apoé en la inspecc ón de la mportac ón del buque M/T Atlant c Breeze, de la empresa S.A., elcualdescargó Gasol na Super or y Regular. Vo. Bo.

. Se apoé en la inspecc ón de la mportac ón del buque M/T Atlant c Breeze, de la empresa S.A., elcualdescargó Gasol na Super or y Regular. Vo. Bo. Gu, 1 Dbr 014 nnr Lus Ar Ay Vrs. Drr Gnr Hr rburs. Mnsr n rí y Mns. Su DsDh, Sñr Dr r. n upn n áusu v nr núr DGH-4-014 br nr Drn Gnr Hrrburs y prsn, pr prsnr NORü ÍNSUAL, pr Srvss Tns, p prn 01 1 Obr prsn

Más detalles

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad.

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad. Gnhos Apliions Los nhos s utilizn n sistms lvión omo un onxión ntr l r y l l o n. Aln Vn Bst or un mpli m nhos, s nhos normls orjos ro l rono hst nhos irtorios ro lo, qu son tmplos y rvnios. Bjo ptiión,

Más detalles

XDX11 Un algoritmo mejorado de alta velocidad para su uso en reconocimiento de imágenes y comparación de datos adquiridos

XDX11 Un algoritmo mejorado de alta velocidad para su uso en reconocimiento de imágenes y comparación de datos adquiridos XDX Un lgortmo mjordo d lt vlocdd pr su uso n rconocmnto d mágns y comprcón d dtos dqurdos Jvr Lus Lópz, Judy Atkns. Pulsotron S.L. Rsúmn S propon l llmdo lgortmo "XDX" qu compr dtos lt vlocdd provnnt

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

p m son términos semejantes

p m son términos semejantes Páin dl Colio d Mtmátics d l ENP-UNAM Ocions con monomios olinomios Auto: D. José Mnul Bc Esinos OPERACIONES CON MONOMIOS Y POLINOMIOS UNIDAD IV IV. OPERACIONES CON MONOMIOS Un vil s un lmnto d un ómul,

Más detalles

ρ = γ = Z Y Problema PTC

ρ = γ = Z Y Problema PTC Probla PTC-18 Dibujar l spctro d aplitud d un cabl con pérdidas n circuito abirto, dtrinando los valors y frcuncias d los valors áxios y ínios. Solución PTC-18 Sabos qu la función d transfrncia d un cabl

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1 ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL Síolos. E ls tls siguits,, c, y ot costts, itrs qu u, v, w y so vrils, u, v, y w so tos fucios. L s l sist Npirio o tié llo turl logritos s ot

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctrico y conuctors. El prolm l potncil Gril Cno Gómz, G 9/1 Dpto. Físic F Aplic III (U. Svill) Cmpos Elctromgnéticos ticos Ingniro Tlcomunicción III. Cmpo léctrico y conuctors Gril Cno G Gómz,

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Unversdd Técnc Federco Snt Mrí Vrles Aletors Cpítulo 5: Vrles Aletors Dstrucones stdístc Computconl II Semestre Profesor : Héctor Allende Págn : www.nc.nf.utfsm.cl/~hllende e-ml : hllende @nf.utfsm.cl

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

1 IES Carlos Bousoño

1 IES Carlos Bousoño 1 2 3 5 6 7 MIS DEL PP MRCELLO CREDO G.P. Palsrna 8 9 10 11 12 13 L L NN LLL LLL NN OO OO OO OO OO OO 1 PRQSUXWZY[ PRQSUXWZY[\[ ]_^UXWZY `asdcf_[ `a Sdcf_[g[ hh QYgYXWdY ML ML )! #"%$')( *+',-(./$0213(

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura:

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura: LONGITUD DE ARCO Clculr l longtud de rco o de un curv dd por un funcón f en un ntervlo x, tene muchs plccones en ls cencs. Es necesro que hgmos un reve estudo del cálculo de ells. Un proxmcón es un líne

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

:& 'a u. 2 ro ó V, "O ro ai. ro o. I. V, "O Q) o. > ro o. 5 ro ro :::J E. -~ E ro ... V, ~ w ro w w "O e "ro :::J V,..Q u. :::J :::J o Q) o.

:& 'a u. 2 ro ó V, O ro ai. ro o. I. V, O Q) o. > ro o. 5 ro ro :::J E. -~ E ro ... V, ~ w ro w w O e ro :::J V,..Q u. :::J :::J o Q) o. ai ' r ' v ai..!!1 6 ai v 2' :::J... r...... :::J, u c r x r r r a.... r :::J O'l u s: ai..8.s -..Q. r 15... r r r... r r r s: r :::J s: -º ;; [::! :::J r ; r 'ClJ r r r r ;:: r u.... c-, :::J 'ClJ.21..Q

Más detalles

Método Variacional (Método de Rayleigh-Ritz)

Método Variacional (Método de Rayleigh-Ritz) Método Varacona Método d Raygh-Rtz Dncón La uncón n d apromacón qu gnré un vaor mínmo d uncona a oucón n má m apromada d a cuacón n drnca Ecuacón n Drnca Forma urt : Funcona d D D d Q Q d d Ω d uncón d

Más detalles

Al ojami e ntos r ural e s

Al ojami e ntos r ural e s In cre m en t a r l a c a l i d a d d el es t a b l eci mi en to o s u cate g orí a. Al ojami e ntos r ural e s Ca m pa ñ a s de prom oci ón del a l oja m i en to Acce s ib i l i d a d Ins t al a ci o

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

Prueba: Audi A3 Sportback

Prueba: Audi A3 Sportback Pub: Aud A3 Spbck D Vsón Ogn Pc Vcdd áx Ac. 0 100 k/h Cnsu pd 3.2 V6 DSG qu An u$s 59.500 254.8 k/h 6s7 10,1 /100 k n c p f Un p dd,. L un f s s u pu x nc d s á d n df x són n u 3 A s s sy v s un d 2 p

Más detalles

Dinamos c.c. Alternadores c.a. Monofásicos. Trifásicos. De corriente alterna. Universales

Dinamos c.c. Alternadores c.a. Monofásicos. Trifásicos. De corriente alterna. Universales BL OQUE 4:ÁQUINAS ELÉCTRICAS DE CORRIENTE CONTINUA 0. Introduccón a las máqunas léctrcas Es todo aarato qu gnra, transforma o arovcha la nrgía léctrca. Podmos consdrar trs grands gruos d máqunas léctrcas

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada)

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Aéndice Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Ŝ o o N r r N V 7 M N rn Ŝ.. n,. 5 v1 M o0 M v M N M N r N j 7 N M N V N 00

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Apéndice A ANÁLISIS TENSORIAL

Apéndice A ANÁLISIS TENSORIAL Apéndc A ANÁLISIS TENSORIAL El análss tnsoral s cntra n l studo d nts abstractos llamados tnsors, cuyas propdads son ndpndnts d los sstmas d rfrnca mplados para dtrmnarlos. Un tnsor stá rprsntado n un

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Capítulo 7: Problema de Contacto CAPÍTULO 7: PROBLEMA DE CONTACTO

Capítulo 7: Problema de Contacto CAPÍTULO 7: PROBLEMA DE CONTACTO Cítuo 7: om d Contcto CAÍUO 7: ROBMA D CONACO 64 Cítuo 7: om d Contcto.- INRODUCCIÓN: mucón d tm vhícuo fovo ví undo gotmo do n tm mutcuo qu mo d un móduo cífco ocu d ntccón ud c. om d contcto nt ud c

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores UNIVRSIDAD NACIONAL D MAR DL PLATA - 017 FACULTAD D INGNIRÍA - DPARTAMNTO D FÍSICA CÁTDRA: Físic de los Seiconductores SRI : Función Densidd de stdos - Bnds de nergí 1.- Pr los vlores peritidos de l energí

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles