UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA. CÁTEDRA: Física de los Semiconductores"

Transcripción

1 UNIVRSIDAD NACIONAL D MAR DL PLATA FACULTAD D INGNIRÍA - DPARTAMNTO D FÍSICA CÁTDRA: Físic de los Seiconductores SRI : Función Densidd de stdos - Bnds de nergí 1.- Pr los vlores peritidos de l energí y del vector de ond k en un pozo de potencil unidiensionl de profundidd infinit y ncho L: ) Qué longitud del espcio k ocup cd estdo? 1 dn b) ncontrr l densidd de estdos g ( ) ( L ) d c) Repetir los enuncidos () y (b) pr ls cjs de potencil bidiensionl y tridiensionl, con ldos de longitudes "", "b", y "", "b", "c" respectivente..- Clculr el núero de estdos disponibles en un piez de cobre de 1c 3 pr energís entre 0 y 6eV por enci del fondo del pozo de potencil. Son suficientes estos estdos pr poder coodr todos los electrones de vlenci de un cristl de cobre de 1c 3? Dtos de l tbl periódic: Vlenci=1, es decir el cobre tiene un solo electrón de vlenci por átoo. Núero de Avogdro=6.0 x10 3 Ms=63.55 gr/ol Densidd=8.96 g/c 3 Voluen tóico=7.1 c 3 /ol 3.- Pr un trozo de cobre en for de un delgdo lbre de 1 x 4. x 4., obtener el núero de estdos con energí 0 < < 10eV. 4.- Deostrr el teore de Bloch. ste teore estblece que si ikx ( x) e u ( x) es l función de ond de un electrón en un red periódic con k k espciiento, entonces l x u debe ser un función periódic con período igul l espciiento de l red, es decir u k (x)=u k (x+). 5- ncontrr l relción de dispersión de un odelo de Kronig-Penney infinito consistente en un tren de delts de Dirc de peso P, espcids un distnci L entre sí. 6.- Grficr el segundo iebro (función de α L) de l relción de dispersión del odelo de Kronig-Penney del proble nterior, pr tres vlores de R: R=0, R=,

2 R=10. stir gráficente los nchos (en α L) de l bnd peritid y prohibid en cd cso y discutir los resultdos. 7.- Pr l función hlld en proble nterior con R=10, evlur los vlores de energí en los bordes superior e inferior de l prier bnd prohibid, en k = /. l período espcil de l red es de 1Å. Hllr el ncho de l segund bnd peritid, y coprrlo con el ncho de l prier bnd peritid. Sugerenci: usr el étodo de proxición de Tylor cundo hicier flt. 8.- Deostrr que en el odelo de Kronig-Penney, l d ( k) / dk se nul en los bordes de un bnd peritid. Cuáles son los vlores del vector de ond cristlino en cd discontinuidd de l energí? 9.- Pr el odelo de Kronig-Penney de longitud finit: ) Hllr los vlores peritidos del vector de ond k, dentro de cd bnd. Cóo encontrrí los vlores peritidos de l energí? b) Hllr l función densidd de estdos g(), en for exct. c) Hllr l función densidd de estdos g(), en for proxid, en el borde inferior de l prier bnd peritid. sto se hce suponiendo MIN +ħ k /*, donde * es un constnte con uniddes de s. d) Qué nuevo fenóeno surge l generlizr este odelo tres diensiones? Ctes. Fundentles: Ms del electrón e = 9.11 x Kg. Ms del Protón p = 1.67 x 10-7 Kg. Velocidd de l luz c =.99 x 10 8 /s Cte de Plnck h = 6.6 x J.s Crg del electrón e = 1.60 x C Cte de Boltznn k = 1.38 x 10-3 J/K

3 RSPUSTAS D LA SRI 1/ 1) ) Δk=π/L, b) g( ), h 4 c) Cj de potencil bidiensionl: Δkx Δky =π /(b) g( ), h Cj de potencil tridiensionl: Δkx Δky Δkz =π 3 /(bc) 4 g( ) ) xisten N= estdos entre =0 y =6eV. Hy electrones de vlenci en 1c 3 de cobre 1/ 3 / h 3 3) Si lo resolvier del iso odo que en el ejercicio nterior obtendrí N= electrones. Sin ebrgo, coeterí un precible error, y que en este cso hy un bj densidd de estdos en dos de los tres ejes del espcio k. Pr resolver en odo ás excto, priero encuentre qué vlores de k en dichos dos ejes cuplen con <10eV. A prtir de este resultdo, encuentre el odo de hllr el núero de estdos, sbiendo que en el tercer eje del espcio k l densidd de estdos es lt. ncontrrá que N= electrones cuplen con <10eV. ste es el resultdo excto. 4) n bibliogrfí puede encontrrse l deostrción teáticente ortodox del teore de Bloch. Sin ebrgo, pr nosotros bstrí un solución plicd específicente ls funciones de ond. Sugerenci: l probbilidd de hllr l prtícul en puntos congruentes de pozos vecinos es l is. s decir: x x x x 3 / 3 s decir que el cociente de ls funciones de ond entre dos puntos congruentes contiguos deberí ser, por sietrí, independiente de los pozos elegidos, e igul un núero coplejo de ódulo igul 1, que escribireos 1 e ik, siendo k un práetro justble. x ik 1e x Ahor, suponiendo que se cuple l fórul de Bloch, deuestre que l vrible u(x) es periódic con período "". De est for l deostrción qued coplet.

4 5) l resultdo es: k L L PL R R L L Sugerenci: plntee l solución de Schrödinger independiente del tiepo en el intervlo 0 + < x < L -, con l únic diferenci que hor se función de α=() 1/ /ħ. Luego, usndo el teore de Bloch, hlle u(x) en dich zon. Por edio de l periodicidd de u(x), sbeos que u(0 - )=u(l - ). Usndo l condición de contorno en x=0 pr Φ(x) debe llegr : i k L i k e A e L 1 B 0 1 Ahor, sbiendo que u(0 - )=u(l - ) y u'(0 - )=u'(l - ), se puede plnter l condición de contorno pr l derivd, de l cul surge: i i e P A i i e k L i k i P B L 0 6) Pr R=0, no hy bnds prohibids. Pr R=, bnd prohibid en el intervlo (0<α L<1.7), bnd peritid en el intervlo (1.7<α L<π), bnd prohibid en el intervlo (π <α L<4.1), bnd peritid en el intervlo (4.1<α L<π), etc. Pr R=10, bnd prohibid en el intervlo (0<α L<.6), bnd peritid en el intervlo (.6<α L<π), bnd prohibid en el intervlo (π <α L<4.8), bnd peritid en el intervlo (4.8<α L<π), etc. Todos vlores proxidos. Se observ cóo ls bnds prohibids se hcen ás pequeñs y ls peritids ás grndes edid que increentos (α L). Y cóo ls bnds prohibids se hcen ás grndes y ls peritids ás pequeñs edid que increentos R. 7) Utilizndo un proxición de Tylor de segundo grdo en (α )=3π/, d (α )=5.75 en el borde superior de l prier bnd prohibid. l resultdo es entonces 38eV<<106eV pr l prier bnd prohibid. Pr l segund bnd peritid, 106eV<<150eV. Utilizndo un proxición de Tylor de segundo grdo en (α )=π, d (α )=.635 en el borde inferior de l prier bnd peritid. ntonces, pr dich bnd, 6eV<<38eV. 8) Sugerenci: derive en for iplícit l relción de dispersión. Los vlores de k en ls discontinuiddes de l función (k) es k=n π /, con "n" entero.

5 9) ) Debe relizr un deducción y llegr k=n π / L, donde L es l longitud totl del teril. b) L densidd de estdos qued de l siguiente ner: c) L función g() del inciso nterior puede siplificrse en ls inediciones de los bordes de ls bnds peritids. n este cso: Observe que est ecución posee for siilr l resultdo del inciso (1), si bien otro odelo totlente distinto fue usdo pr deducirl. d) l nuevo fenóeno que surge hce posible l conducción eléctric en los etles bivlentes. R R g ) ( 1 MIN MIN h g 1/ * 1/ * ) (

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Te. Sistes conservtivos Prier prte: Dináic de l prtícul en un rect studios el oviiento de un prtícul puntul de s lo lrgo de un rect bjo l cción del potencil V (. L fuerz que ctú sobre l prtícul es F =

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

SELECTIVIDAD: SISTEMAS DE ECUACIONES

SELECTIVIDAD: SISTEMAS DE ECUACIONES SELECTIVIDAD: SISTEMAS DE ECUACIONES EJERCICIO. El siste es coptible deterindo. ) Si se suprie un de ls ecuciones Cóo es el siste resultnte? Depende l respuest de l ecución supriid? b) Qué ecución h que

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

TALLER 2 SEGUNDA LEY DE NEWTON

TALLER 2 SEGUNDA LEY DE NEWTON TALLER SEGUNDA LEY DE NEWTON A. En un experienci de lbortorio se hló un crro dináico, con un fuerz F ejercid por un bnd de cucho estird ciert longitud. Luego se duplicó l fuerz, después se triplicó y finlente

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente:

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente: OPCIÓN Proble.. En el espcio se dn ls rects : r : α s Obtener rondente: El vlor de α pr el que ls rects r s están contenids en un plno. puntos b L ecución del plno que contiene ls rects r s pr el vlor

Más detalles

Lección 4. Desarrollo multipolar del potencial escalar. Las fuentes puntuales del campo electrostático.

Lección 4. Desarrollo multipolar del potencial escalar. Las fuentes puntuales del campo electrostático. Lección 4. Desrrollo ultiolr del otencil esclr. Ls fuentes untules del co electrostático. 121. Clculr el oento diolr de un esfer de rdio uniforeente crgd con densidd ρ, () resecto su centro y (b) resecto

Más detalles

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4 MATEMÁTICAS DE CÁLCULO BÁSICO OPERACIONES CON POTENCIAS. Coplet ls csills vcís. ( ) ( b) 8 8 8 ( ) ( ) ( : ) : ( ) 9 : : : (: ) ( : ) : 8 : : 0 : : ( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) : ) ( ) 0 ( ) 0 ( :

Más detalles

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromgnetismo I Semestre: 24-2 TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Solución por Crlos Andrés Escobr Ruíz.- Problem: (25pts) Un esfer de rdio R, centrd en el origen, posee un densidd de crg ρ(r,

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

Problema 4.5 Electromagnetismo (Profesor: Benito Gimeno)

Problema 4.5 Electromagnetismo (Profesor: Benito Gimeno) ferhue()luni.uv.es 1-4-9 Proble 4.5 Electrognetiso (Profesor: Benito Gieno) Con cutro láins conductors uy lrgs se for un pris de sección rectngulr de ldos y b. Deterinr el potencil dentro del pris cundo

Más detalles

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución : Ley de Guss jercicio 1 Un cscrón delgdo esférico de rdio, se encuentr rodedo concéntricmente por un cscrón metálico grueso de rdio interno b y externo c. Se sbe que el cscrón grueso tiene crg nul y el

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

CÁLCULO NUMÉRICO (0258) Tercer Parcial (20%) Jueves 27/09/12

CÁLCULO NUMÉRICO (0258) Tercer Parcial (20%) Jueves 27/09/12 Universidd Centrl de Venezuel Fcultd de Ingenierí Deprtmento de Mtemátic Aplicd CÁLCULO NUMÉRICO (58 Tercer Prcil (% Jueves 7/9/ Se l fórmul de diferencición numéric f(x f(x + + f(x + f ''(x Usndo series

Más detalles

Electromagnetismo II

Electromagnetismo II Electromgnetismo II Semestre: 25- TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Por: Pedro Edurdo Romn Tbod.- Problem: (5pts Clcul l fuerz sobre l crg +q de l figur que se muestr continución. El plno XY represent

Más detalles

0, , , , ,9 9

0, , , , ,9 9 UNIDAD 1: Los números reles EJERCICIOS Y ACTIVIDADES-PÁG. 1 1. Expres como deciml ls siguientes frcciones y clsific los números decimles obtenidos: 5 0, 71485 es un periódico puro. 7 5 1, 6 es un deciml

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 2

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 2 REAL SOCIEDAD ESPAÑOLA DE FÍSICA Proble eórico Proble. El experiento de Cvendish. Henry Cvendish (1731 181) fue un notble físico y quíico británico. rbjó en prácticente tods ls áres de l físic de su tiepo,

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Física del Estado Sólido

Física del Estado Sólido UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Fcultd de Ciencis Físics Escuel Acdémico Profesionl de Físic Físic del Estdo Sólido L red recíproc Jime Frncisco Vento Flores Introducción Jueg un rol fundmentl

Más detalles

Soluciones Hoja 4: Relatividad (IV)

Soluciones Hoja 4: Relatividad (IV) Soluciones Hoj 4: Reltividd (IV) 1) Un estdo excitdo X de un átomo en reposo ce su estdo fundmentl X emitiendo un fotón En físic tómic es hitul suponer que l energí E γ del fotón es igul l diferenci de

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Superior de Ingenieros Cmino de los Descubrimientos s/n 41092 Sevill Exmen de Cmpos electromgnéticos. 2 o Curso de Ingenierí Industril. 8 de septiembre de 2009 PROBLEMA

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

Curso de Mecánica Cuántica. Enero-Mayo de 2017

Curso de Mecánica Cuántica. Enero-Mayo de 2017 Curso de Mecánic Cuántic. Enero-Myo de 7 Tre Ejercicios del cpítulo (págin 76) del libro Quntum Mechnics. Concepts nd pplictions. Second edition. Nouredine Zettili........6..9 6.. 7.. 8..7 9..9....8..

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

=, despeja y calcula la matriz X.

=, despeja y calcula la matriz X. 4 4 5 www.clseslcrt.com Universidd de Cstill l Mnch PAEG Junio.05 Opción A. ) Despej l mtriz X en l siguiente ecución mtricil: X + XA + B = I 4, suponiendo que tods ls mtrices son cudrds del mismo orden

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

Segunda Ley de Newton

Segunda Ley de Newton Sen 55 Epeceos! Sludos estidos prticipntes, y estos encindos en el sber de ls leyes del oviiento. En l sen nterior vios cóo se relcion l fuerz net que ctú sobre un cuerpo con su estdo de oviiento que puede

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales Indicdores NÚMEROS REALES Identific ls propieddes de los números reles, determinndo el vlor de verdd de proposiciones. Clcul el vlor de epresiones lgebrics usndo ls propieddes del vlor bsoluto. Evlú y

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Fundmentos de Químic Teóric SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d + kx

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidd de Buenos Aires - Fcultd de Ciencis Excts y Nturles - Depto. de Mtemátic Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cutrimestre 17 Práctic N 8: Integrción Numéric - Métodos Multipso

Más detalles

1. Tipo de interés de mercado para esta referencia el (fecha compra)

1. Tipo de interés de mercado para esta referencia el (fecha compra) EJERCICIO BOLETIN CENTRAL ANOTACIONES RESUELTO EN CLASE Inforción: (http://www.bde.es/bnot/bnot.ht) El Sr. Pérez dquirió el 18.11.05 100 Obligciones del Estdo de l referenci ES0000012791 O EST que pgn

Más detalles

OPTIMIZACION = 5. Para comprobar que se trata de un mínimo acudimos al citerior de la segunda derivada

OPTIMIZACION = 5. Para comprobar que se trata de un mínimo acudimos al citerior de la segunda derivada 0 OPTIMIZACION En un eperimento en un lbortorio se hn relizdo medids del mismo objeto, que hn ddo los resultdos siguientes: m 0.9; m 0.9; m 0.9; m 0.90; m 0.9. Se tomrá como resultdo el vlor de tl que

Más detalles

Unidad I: Números Reales. 1) Expresar como fracción y luego resolver: b) 5,08. a) 4,1 0, 21 1,2 0,6 0,7 0,3 1 0,027 0,3 0,05 2,3 1, 2 3, 4

Unidad I: Números Reales. 1) Expresar como fracción y luego resolver: b) 5,08. a) 4,1 0, 21 1,2 0,6 0,7 0,3 1 0,027 0,3 0,05 2,3 1, 2 3, 4 MATEMATICA II Trbjo Práctico Unidd I: Números Reles ) Epresr como frcción y luego resolver: ) 4, 0,, 0,6 c) 0,07 0, 0,05 b) 0, 0, 0,4 0,5 d) 0,7 0,,, e), 4 f ),7,7 0,7 0,8 5, 4 ) Resolver ls siguientes

Más detalles

P: C CP: C i C i C i + C

P: C CP: C i C i C i + C RESOLUCIÓN TEMA EMPRÉSTITOS DE OBLIGACIONES 1.- Se un epréstito de obligciones de ls siguientes crcterístics: - N = 100.000 títulos. - C = 1.000. - n = 3 ños. - i = 0,0325. - Obligciones ericns, cupón

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES PRODUCTOS NOTABLES APELLIDOS Y NOMBRES SECCIÓN Qué es un producto notble? L plbr "producto" hce referenci l resultdo de un multiplicción y l plbr "notble" hbl de lgo que se puede notr simple vist; por

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS PROBLEMAS PROPUESTOS 1: Se hce girr un superficie pln con un áre de 3,2 cm 2 en un cmpo eléctrico uniforme cuy mgnitud es de 6,2 10 5 N/C. ( ) Determine el flujo eléctrico

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d 1 + kx = E (1 m dx L solución de

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Apuntes de frenos y embragues

Apuntes de frenos y embragues Apuntes de frenos y embrgues FREOS DE ZAPATA EXTERO Cundo el ángulo de contcto del mteril de fricción con el tmbor es pequeño se puede considerr que l fuerz de rozmiento es tngente en el centro del ngulo

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señles en Geofísic 6 Clse Fcultd de Ciencis Astronómics y Geofísics, Universidd Ncionl de L Plt, Argentin Trnsformd Integrl de Fourier Recordemos que un función f( t), definid en un dominio

Más detalles

EXÁMENES DE CURSOS ANTERIORES

EXÁMENES DE CURSOS ANTERIORES EXÁMENES DE CURSOS NTERIORES CURSO ª EVLUCIÓN EXMEN. Sistes de ecuciones lineles. EXMEN. Sistes de ecuciones lineles. Geoetrí fín Euclíde en el espcio tridiensionl. RECUPERCIÓN EXMEN. Sistes de ecuciones

Más detalles

Álgebra Selectividad

Álgebra Selectividad Álgebr Selectividd 4-11 1 Cundo el ño 18 Beethoven escribe su primer Sinfoní, su edd es diez veces mor que l del jovencito Frnz Schubert. Ps el tiempo es Schubert quien compone su célebre Sinfoní Incomplet.

Más detalles

Átomos polielectrónicos

Átomos polielectrónicos Átomos polielectrónicos Principio de ntisimetrí Los electrones son indistinguibles uno respecto l otro. Un intercmbio de los electrones del átomo de helio no debe fectr ningun de ls propieddes mensurbles

Más detalles

Introducción a la Física del Estado Sólido

Introducción a la Física del Estado Sólido Introducción l Físic del Estdo Sólido Apuntes de clse Semn 1. Difrcción de onds en redes cristlins y l red recíproc. Pr que ocurr difrcción, l longitud de ond debe ser precid l longitud de periodicidd.

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

Tema 8: Teorema de Rouché-Frobenius

Tema 8: Teorema de Rouché-Frobenius www.selectividd-cgrnd.co Te : Teore de Rouché-Froenius Se lln ecuciones lineles ls ecuciones en ls que ls incógnits precen tods con grdo ; no están elevds ningun potenci ni jo ningún rdicl ni ultiplicds

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

1.1. Sistema internacional de unidades

1.1. Sistema internacional de unidades Cpítulo 1 Mgnitudes físics 1.1. Sistem interncionl de uniddes Un mgnitud es tod propiedd medile de un cuerpo. Medir es comprr es propiedd con otr de l mism nturlez que tommos como ptrón o unidd. P.e. l

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

2º de Bachillerato Principios de Física Cuántica

2º de Bachillerato Principios de Física Cuántica Física TEMA º de Bacillerato Principios de Física Cuántica.- La luz de un rayo LASER tiene una longitud de onda de 654 Å, correspondiente al color rojo del espectro luinoso. Deducir su frecuencia y la

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

08/04/2016. Materiales Eléctricos. Metales Conductores. Bandas de Energía E TOTAL. n = 5 n = 4 n = 3. n = 2. n = 1

08/04/2016. Materiales Eléctricos. Metales Conductores. Bandas de Energía E TOTAL. n = 5 n = 4 n = 3. n = 2. n = 1 08/04/016 Materiales léctricos Metales Conductores Bandas de nergía + - n = 5 n = 4 n = TOTL r n = n = 1 1 08/04/016 x Banda de Conducción n = 5 n = 4 n = n = n = 1 + + + + n la Banda de Conducción los

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies

Más detalles

PLANTEL Iztapalapa V

PLANTEL Iztapalapa V Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +

Más detalles