SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton"

Transcripción

1 SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1

2 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción 6 Coprensión 7 SE 8 D plicción 9 C plicción 10 plicción 11 C Coprensión 1 C Coprensión 13 C Coprensión 14 C plicción 15 C Reconociiento 16 Reconociiento 17 plicción 18 C Reconociiento 19 Coprensión 0 E plicción 1 D SE plicción 3 E SE 4 plicción 5 plicción

3 Íte lterntiv Defens 1 D Por l segund ley de ewton, si un cuerpo se ueve con celerción constnte l fuerz que ctú sobre él es distint de cero, pudiendo ser (l fuerz ) un vector positivo o negtivo, dependiendo de si punt en el sentido o en sentido contrrio l eje coordendo definido. Por l prier ley de ewton, si l fuerz que ctú sobre un cuerpo es nul, el cuerpo se encuentr en reposo o se ueve en líne rect y con velocidd constnte (MRU). L fuerz es, por definición, el vector resultnte de l su de tods ls fuerzs que ctún sobre un cuerpo. I) Flso II) Verddero III) Verddero 3 E Por l segund ley de ewton, sbeos que l celerción que experient un cuerpo es directente proporcionl l fuerz que ctúe sobre él. Por lo tnto, si en el ejercicio se uent l fuerz plicd sobre el cuerpo, l celerción que este experient uent proporcionlente. Por l segund ley de ewton, sbeos que F Por lo tnto 4[ kg] 0 80 s 4 D Por l segund ley de ewton sbeos que F Por otr prte, sbeos que vf vi t sí, considerndo l inforción del gráfico teneos que

4 10 0 s s 5 F s s 500kg F.500,5 k 5 Por l segund ley de ewton, sbeos que Considerndo un eje coordendo positivo hci l derech, tendreos kg kg s 6 Ls fuerzs de cción y rección presentn ls siguientes crcterístics: 1. Poseen igul ódulo.. Poseen igul dirección, o se, ctún en línes prlels o sobre l is líne de cción. 3. Poseen sentidos opuestos. 4. Son siultánes, es decir, precen y desprecen l iso tiepo. 5. ctún sobre cuerpos distintos, nunc sobre el iso cuerpo. I) Flso II) Verddero III) Flso 7 L fuerz norl es un fuerz de rección que un superficie ejerce sobre un cuerpo poydo sobre ell. L fuerz norl sobre el cuerpo p es un rección l fuerz que p ejerce sobre l superficie en l cul descns. Coo p olest l superficie con su propio peso, l norl que l superficie ejerce sobre p es: g. p su vez, l fuerz norl sobre el cuerpo q es un rección l fuerz que todo el conjunto (p + q) ejerce sobre l superficie. Por lo tnto, l norl sobre el cuerpo q es: ( ) g. I) Verddero II) Flso III) Flso p q p q

5 8 D Por l segund ley de ewton, sbeos que F Por lo tnto, l fuerz ejercid sobre l cj es 1kg 1kg 0, 4 4,8 0,4 s s Por otro ldo, l distnci recorrid por un cuerpo celerdo podeos clculrl edinte l ecución de posición 1 x f xi vi t t sí, y considerndo que el cuerpo prte del reposo, l distnci que recorre los 5 [s] es: xi 0 vi 0 s x f 0,4 s t 5s 1 0,4 5 5 Por lo tnto, el ódulo de l fuerz ejercid sobre l cj y l distnci que recorre en 5 [s] son, respectivente, 4,8 [] y 5 []. 9 C Sbeos que el peso de un cuerpo se expres coo P P g g Por lo tnto P [ ] 50kg g 10 s 10 s 10 Coo l fuerz plicd sobre los cuerpos y es l is, entonces se cuple que F F

6 Recordndo que vf vi t entonces s s Por lo tnto : :3 11 C L s de un cuerpo es constnte, por lo que en el pl Triptón l s del stronut sigue siendo l is que en l Tierr:. Coo sbeos, el peso del stronut en l Tierr es P g p Tierr Tierr Luego, si en Triptón l celerción de grvedd es l quint prte que en l Tierr, su peso será gtierr gtierr p PTriptón gtriptón C 13 C 14 C 15 C Coo el objeto se encuentr suspendido (está en reposo), por l prier ley de ewton l fuerz que ctú sobre él es nul. En un gráfico velocidd / tiepo, l pendiente de l gráfic corresponde l celerción del óvil. Coo l pendiente de l gráfic del ejercicio (su inclinción respecto l eje horizontl) es constnte, l celerción que experient el cuerpo es tbién constnte. sí, coo l fuerz plicd sobre el cuerpo depende de l s y l celerción y bs son constntes, l fuerz que ctú sobre el cuerpo tbién lo es. Por l segund ley de ewton, sbeos que F 0[ ] F,0[ kg] 10 s Si el cuerpo se encuentr poydo sobre un superficie horizontl, el ódulo de l fuerz norl que ctú sobre él es igul l ódulo de su peso, es decir g

7 16 En un cuerpo que descns sobre un superficie horizontl, tl coo lo nuestr l figur del ejercicio, l fuerz norl es un fuerz perpendiculr l superficie de contcto y de sentido opuesto l fuerz peso. Por lo tnto, en l figur l fuerz norl está representd por el vector. 17 Por l segund ley de ewton, sbeos que F 00 50kg 4 s Por otro ldo, l celerción que experiente el cuerpo estrá dd por Por lo tnto kg 50kg s 18 C L prier ley de ewton o ley de l inerci expres que: Si l fuerz que ctú sobre un cuerpo es nul, entonces el cuerpo se encuentr en reposo o se ueve con velocidd constnte y en líne rect. Por lo tnto, l lterntiv correct es C. 19 Coo l cj se encuentr sobre un superficie horizontl, l fuerz norl que ctú sobre ell posee el iso ódulo de su peso, es decir g 10kg s. Por lo tnto, l lterntiv incorrect es. 0 E L fuerz norl que ctú sobre el bloque p tiene el iso ódulo que el peso del cuerpo, es decir p g kg10 0 s plicndo l ª ley de ewton pr el bloque p, se tiene T p T [ kg] (1)

8 plicndo l ª ley de ewton pr el bloque q, se tiene P T q q 80[ ] T 8[ kg] () Reeplzndo (1) en (), nos qued 80[ ] [ kg] 8[ kg] 80[ ] 8[ kg] [ kg] 80[ ] 10[ kg] 80[ ] 8[ ] 10[ kg] s Pr el cálculo de l tensión, reeplzos este resultdo en l ecución (1). sí, l tensión es T [ kg] 8 16 s I) Verddero II) Verddero III) Verddero 1 D El peso de l person dentro del scensor en reposo es P g 70kg s. l overse el scensor, l celerción que experient l person odific el peso que registr en l báscul. hor, por cción y rección, l fuerz que el piso ejerz sobre l person (fuerz norl) será igul l fuerz que l person ejerz sobre el piso y, por lo tnto, que registrrá l pes. Por lo tnto, clculndo el vlor de l fuerz norl que ctú sobre l person podreos conocer el vlor del peso que rcrá l báscul dentro del scensor. plicndo l segund ley de ewton y considerndo un eje coordendo positivo hci rrib, teneos: I) El scensor sube: celerción positiv. P P 701,

9 II) El scensor bj: celerción negtiv. P P ,8 574 III) Si l velocidd del scensor es constnte, por l prier ley de ewton l fuerz sobre l person (y el scensor) es cero. Por lo tnto F 0 P 0 P 700 I) Verddero II) Verddero III) Flso Por definición de celerción el scensor bj con 10 s. Por otro ldo, y sbeos que el peso del cuerpo es P 700. Utilizndo el iso procediiento del ejercicio nterior, plicndo l segund ley de ewton y considerndo que l celerción es hci bjo (negtiv según nuestro siste de referenci), nos qued P P ,0 Es decir, cundo el scensor bj con un celerción igul l celerción de grvedd, l person no registr peso! Est es, por lo tnto, un ner de generr l ingrvidez en l Tierr, siulndo ls condiciones que existen en el espcio. Este procediiento es utilizdo en el entreniento de los futuros stronuts que irán l espcio, unque obviente no se hce dentro de un scensor, sino que dentro de un vión. 3 E Coo los bloques se encuentrn unidos, pr clculr l celerción consideros el conjunto copleto.

10 plicndo l segund ley de ewton y considerndo que ls tensiones se nuln entre sí, nos qued kg 60 s Coo T 1 ctú solo sobre el bloque 1, y sbiendo que l celerción pr todos los bloques es 1 s, plicos l segund ley de ewton. Considerndo un eje positivo hci l derech, nos qued T1 1 10kg1 10 s L tensión T 3 rrstr los bloques 1 y por lo que, plicndo l segund ley de ewton y considerndo que ls tensiones T 1 y T se nuln entre sí, obteneos: F ( ) 3 1 T3 (10kg 0 kg) 1 s T 30 I) Verddero II) Verddero III) Verddero 4 plicndo l ª ley de ewton y considerndo que bos cuerpos experientn l is celerción, teneos: Pr el cuerpo (considerndo un siste coordendo positivo hci bjo): P T P T (1) Pr el cuerpo (considerndo un siste de referenci positivo hci l izquierd): T () Considerndo que T T, reeplzos () en (1), obteniendo P P ( ) 3[ kg] 10 s 30[ ] 3 (3[ kg] 7[ kg]) 10[ kg] s

11 5 Sbeos que l posición finl de un cuerpo que experient oviiento celerdo está dd por 1 x f xi vi t t Por lo tnto xi 0 vi 0 s 1 3 x f 6[ ] 3 s t s

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

SEGUNDA LEY DE NEWTON

SEGUNDA LEY DE NEWTON SEGUNDA LEY DE NEWTON Isc Newton (642-727), ncido el ño que urió Glileo, es el principl rquitecto de l ecánic clásic, l cul se resue en sus tres leyes del oviiento. Ls Leyes de Newton son tres principios

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

j Actividades propuestas

j Actividades propuestas 58 7 CAMPO MAGNÉTCO j Sigue prcticndo. Un protón inicilente en reposo se celer bjo un diferenci de potencil de 5 voltios. A continución entr en un cpo gnético unifore, perpendiculr l velocidd, y describe

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes.

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes. El cláico proble del bloque y l cuñ, pero et vez no tn cláico... INTRODUCCION: Sntigo Silv y Guillero rede. lnteo del proble: ROBLEMA 3 L figur uetr un cuñ de ángulo 30º, 60º, y 90º y ltur h que e encuentr

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estido luno: Aquí encontrrás ls clves de corrección, ls hbiliddes y los procediientos de resolución socidos cd pregunt, no obstnte, pr reforzr tu prendizje es fundentl que sists l corrección edid por

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

PROBLEMAS DE ESTÁTICA

PROBLEMAS DE ESTÁTICA UCM PEMS DE ESÁIC undmentos ísicos de l Ingenierí. Deprtmento ísic plicd UCM Equipo docente: ntonio J rbero lfonso Cler Mrino Hernández. ES grónomos lbcete Pblo Muñiz Grcí José. de oro Sáncez EU. I.. grícol

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

1.1. Respuestas a los ejercicios sobre MAS

1.1. Respuestas a los ejercicios sobre MAS .. Respuests los ejercicios sobre MAS Sbeos que l elongción de un..s. está dd por un ecución del tipo A cos ( t unque pudier ser igulente un función seno. Así que bstrí coprr con l ecución dd, pr obtener

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR FUCIOIEO FÍSICO DE U EOGEEDO 1.- Introducción El funcionmiento físico de un erogenerdor de imnes permnentes responde, como muchos sistems físicos, un ecución diferencil, cuy solución prticulr es l solución

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012 . Sistems de referenci inercil y no inercil. Explicr en que consisten y l diferencis que existen entre ellos. . Un disco de rdio r está girndo lrededor de su eje de simetr con velocidd ngulr ω y celerción

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002 Fundmentos Físicos de l Ingenierí º Emen Prcil / 9 de enero de 00. Un muchcho que está 4 m de un pred erticl lnz contr ell un pelot según indic l igur. L pelot sle de su mno m por encim del suelo con un

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Un vector es simplemente un segmento orientado. sentido. módulo a

Un vector es simplemente un segmento orientado. sentido. módulo a 1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

C A P I T U L O I V E C T O R E S Y F U E R Z A S

C A P I T U L O I V E C T O R E S Y F U E R Z A S C P I T U L I V E C T R E S U E R S I.1. Mgnitudes esclres vectoriles. Esclres: Pr su interpretción precisn del vlor numérico de l unidd de medid. Ej.: m 3, 0 V, 50 km, 5 ºC. Vectoriles: Si decimos que

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (MAS)

MOVIMIENTO ARMÓNICO SIMPLE (MAS) MOVIMIENO RMÓNICO SIMPLE (MS) E n nuestr vid cotidin con frecuenci se puede observr que existe otro tipo de oviiento, por ejeplo: el péndulo del reloj de tu cs, un sierr eléctric, un cepillo de dientes

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL Fcultd de Ciencis Ects ecnologís UNSE Apuntes de Cátedr: Investigción Opertiv / I Año: 6.- II. LA PROGRAMACIÓN LINEAL El Método Siple Definición: Un progr linel es quel que optiiz el siguiente odelo teático

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos:

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos: EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. Deterinr l posición reltiv de ls siguientes prejs de plnos ) b) c) d) 8 ' ' ' ) Discutos el siste 8 l tri de coeficientes l plid son respectivente

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles