3.1 Representación de la posición.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.1 Representación de la posición."

Transcripción

1 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. 3. Repesentación de la posición. Movimiento Mecánico. Bases paa su estudio. Métodos vectoial, de coodenadas y natual. Magnitudes cinemáticas. Movimiento unidimensional y tidimensional. Movimiento ectilíneo unifomemente vaiado. Movimiento ectilíneo unifome.

2 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Mecánica de los cuepos macoscópicos Cinemática: Rama de la Mecánica que se dedica a la descipción del movimiento mecánico sin inteesase po las causas que lo povocan. Cinemática de los manipuladoes: opiedades geométicas y tempoales del movimiento de bazos aticulados Movimiento mecánico Cinética: Rama de la Mecánica que se dedica a investiga las causas que povocan el movimiento mecánico.

3 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Como inicio... Recueda que es el poducto inteno X cos cos actica con el dot

4 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Tayectoias punto a punto En este tipo de tayectoias cada aticulación evoluciona desde su posición inicial hasta su posición final sin hace ningún tipo de consideación sobe el estado o evolución del esto de las aticulaciones. Se pueden distingui dos casos: Movimiento eje a eje sólo se mueve un eje cada vez, una vez que halla alcanzado su posición lo haá el siguiente. Ofece un mayo tiempo de ciclo a cambio de un meno consumo de potencia. Movimiento simultáneo de ejes todas las aticulaciones comienzan a movese simultáneamente, acabando su movimiento cada una en un instante difeente. El tiempo total necesaio coincide con el del eje mas lento, pudiéndose da la cicunstancia de que el esto de los actuadoes hallan fozado su movimiento paticula pa finalmente tene que espea a la más lenta

5 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Además, se establece que... Cinemática Diecta q 3 q Y q Z X

6 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Cinemática Diecta Link q 3 q Link Link 3 X,Y,Z??? X,Y,Z??? q (t) q (t) q 3 (t) q????

7 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. osición y Oientación de un Cuepo en el Espacio... Z O k O i j Oientación osición del del cuepo X Y i i x i o + i y j o + i z k o O j j x i o + j y j o + j z k o O x O y O z k k x i o + k y j o + k z k o i x i i o i y i j o i z i k o

8 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... Z i Visto desde el SC k k x i o + y j o + z k i j j eo visto desde el SC x i + y j + z k X Y ox i o ox i o oy j o oz k o x i i o + y j i o + z k i o x i j o + y j j o + z k j o x i k o + y j k o + z k k o

9 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... Z i Visto desde el SC Visto desde el SC k k x i o + y j o + z k i j j eo visto desde el SC x i + y j + z k X Y Maticialmente tenemos... ox i i o j i o k i o x oy oz i k o j k o k k o i j o j j o k j o y z o R *

10 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... Z i Visto desde el SC Visto desde el SC k k x i o + y j o + z k i j j eo visto desde el SC x i + y j + z k X Y Maticialmente tenemos... ox i i o j i o k i o oy oz i k o j k o k k o i j o j j o k j o x y z

11 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... Z i k k j i j Así, la Matiz viene a se... X Y ox i j k x oy y ox i j T x oy T y oz z oz T k z

12 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... ox i j k x oy oz y z Esta Matiz tiene algunas caacteísticas.... Los vectoes columna de la matiz son otogonales.... Los vectoes columna tienen noma unitaia 3. La matiz R es otogonal... (R T *RI) y det(r ) (R ) - (R ) T R (R ) T

13 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... R Matiz de Rotación Esta Matiz tiene vaias intepetaciones.... Repesenta una matiz de tansfomación de coodenadas ente dos S.C. Z i i k k j j o R * X Y

14 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... R Matiz de Rotación Esta Matiz tiene vaias intepetaciones....- Repesenta la oientación de un sistema de coodenadas... Z i k ox x i k j j oy oz i j k y z X Y

15 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Consideemos solo Oientación... R Matiz de Rotación Esta Matiz tiene vaias intepetaciones Repesenta un opeado maticial de otación vectoial... Y ox oy R x y oz z Z α X...La otogonalidad de la matiz mantiene la noma del vecto...

16 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotaciones elementales... XZ XZ Y Sentido ositivo de las otaciones j ik α ji YZ k k α ji X Z Y YX Z YX R Z, α cos(α) sen (α) sen(α) cos (α) R X, α cos(α) sen (α) R Y, α cos(α) sen (α) sen(α) cos (α) -sen(α) cos (α)

17 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Composición de Matices de Rotación... Z i i k X Y k j j i Estos puntos están elacionados a tavés de matices de otación o R * Ley de Composición de Rotaciones * R k j R n R *R * *R n n- o R * R * R *

18 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Composición de Matices de Rotación... Ejemplo Rotaciones elementales R R R Z Z Z Y Y Y R R Z,9 R R Y,9 Y X Z R R Z,9 *R Y,9 X X Z Y Y Y Y R R Y,9 *R Z,9 X X Z X Z Z R R R R R Y,9 R R Z,9

19 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Composición de Matices de Rotación... Reintepetemos la segunda opeación Como opeaciones sobe el SC base Z Y Z Y Y Y Z X Z R R Y,9 *R Z,9 X X Como opeaciones sobe el SC actual o móvil R R Z,9 *R Y,9

20 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Composición de Matices de Rotación... Ejemplo Rotaciones sobe el sistema base Z Z θ Z Z R R *R Y X θ θ Y Y R R Y, R?? R Y,9 X X X debemos detemina R

21 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Composición de Matices de Rotación... Usemos otaciones elementales Z R R *R Z Z θ Z Z Y Y R R Y, - * R Z, θ * R Y, R R Y, * R Y, - * R Z, θ * R Y, θ Y X θ Y Y Ley de Composición de Rotaciones Elementales R R Z, θ * R Y, X X X X X Rotaciones Sistema Móvil R n R *R * *R n DA RA R n R n * R *R Rotaciones Sistema Base

22 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotación alededo de un eje abitaio... Recodando... Z Eje de otación... Alineamos uno de los ejes con el eje de gio... Z Z θ Z Z Y Y Rotamos sobe el eje de gio Desalineamos Devolvemos la alineación inicial θ Y Y X θ Y X X X X X

23 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotación alededo de un eje abitaio... RA DA 3 RA 4 TA 5 TA Z φ z R, φ R Z, α * R Y, β * R Z, φ * R Y, -β * R Z, -α β y x α Y X Alinea Gio nos devolvemos

24 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotación alededo de un eje abitaio... Z R, φ R Z, α * R Y, β * R Z, φ * R Y, -β * R Z, -α z φ Son matices elementales de otación... β y Y sen y ( α ) cos( α ) x + y x x + y x α ( β ) x y cos( β ) z sen + X

25 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotación alededo de un eje abitaio... R, θ x x y z x A + cosθ A + z A y senθ senθ ( θ) dondeka cos x y y z A y A + cosθ A + z x senθ senθ Toda matiz tiene un eje-ángulo equivalente R ( ) x y A + sen z y θ A senθ z x A + cosθ z A + 3+ cos θ 33 x y z 33 θ cos + A + 3cosθ cos θ + 3cos θ ( ) yz A + x senθ yz A x senθ 3 3 sen( θ) x senθ

26 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Rotación alededo de un eje abitaio... Ejemplo R z Z θ cos θ cos ± sen + + cos ( θ) X θ x y Z Y sen ( ),577 Y X

27 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Repesentación mínima de la oientación La matiz de otación da una descipción edundante Requeimos sólo de tes paámetos independientes Angulos de Eule Se genean a patí de 3 otaciones elementales X Y Z X-Y X-Z Y-X Y-Z Z-Y Z-X X-Y-X X-Y-Z Y-X-Y Y-X-Z Z-Y-X Z-Y-Z X-Z-X X-Z-Y Y-Z-X Y-Z-Y Z-X-Y Z-X-Z

28 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Angulos de Eule Z R R Z,Φ Z Z 3 φ Y 3 R R Y, θ R R Z,Φ R Y, θ Z θ θ Y Y R 3 R Z,Ψ φ Y R 3 R Z,Φ R Y, θ R Z,Ψ R eule X φ X θ X X 3 R eule cφcθcψ sφsψ sφcθcψ + cφsψ sθcψ cφcθsψ sφcψ sφcθsψ + cφcψ sθsψ cφsθ sφsθ cθ

29 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Angulos de Roll, itch y Yaw Se genean a patí de 3 otaciones elementales sobe el sistema base Z φ R R X, Ψ Z Z 3 R R Y,θ R X, Ψ Z θ θ ψ φ ψ θ φ Y θ Y 3 Y R 3 R Z,Φ R Y, θ R X,Ψ R RY X X Ψ φ Y R RY cφcθ sφcθ sθ cφsθsψ sφcψ sφsθsψ + cφcψ cθsψ cφsθcψ + sφsψ sφsθcψ cφsψ cθcψ X X 3

30 Tansfomaciones Homogéneas X Y Z j k i i k j Consideemos también la taslación del objeto ígido O R O + Maticialmente O R 3 A 3 epesentación homogenea Matiz de tansfomación homogenea R R O R R + O R R T T Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only.

31 Tansfomaciones Homogéneas O R 3 Matiz de Rotación Vecto de Taslación Vecto de espectiva Escala 3 O R R T T La tasfomación invesa (A ) T A Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only.

32 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Tansfomaciones Homogéneas Consideemos algunas taslaciones elementales Z Z d X Y A Tasz, d d X Y

33 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Tansfomaciones Homogéneas Consideemos algunas taslaciones elementales Z d Z X Y A Tasx, d d X Y

34 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Tansfomaciones Homogéneas Consideemos algunas taslaciones elementales Z Z X Y d A Tas y, d d X Y

35 Geneated by Foxit DF Ceato Foxit Softwae Fo evaluation only. Tansfomaciones Homogéneas Consideemos vaios sistemas i O + R Z k O + R j O i k j O A A X Y A A A A

Robótica Industrial. Robótica Industrial

Robótica Industrial. Robótica Industrial TEMA 3: HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN INDUSTRIAL Ingenieía de Sistemas y Automática Contol de Robots y Sistemas Sensoiales Robótica Industial Robótica Industial ISA.- Ingenieía de Sistemas

Más detalles

Coordenadas homogéneas

Coordenadas homogéneas Coodenadas homogéneas Una matiz de otación 3 x 3 no nos da ninguna posibilidad paa la taslación y el escalado. Intoducimos una cuata coodenada p(x,y,z) p(wx,wy,wz,w), donde w tiene un valo abitaio y epesenta

Más detalles

Unidad 2 Vectores y Espacios Vectoriales

Unidad 2 Vectores y Espacios Vectoriales Unidad Vectoes Espacios Vectoiales Popedéutico 8 Da. Ruth M. Aguila Ponce Facultad de Ciencias Depatamento de Electónica Popedéutico 8 Facultad de Ciencias Un ecto es un conjunto odenado de n númeos, (,

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

Herramientas matemáticas para la localización espacial

Herramientas matemáticas para la localización espacial Heamientas matemáticas aa la localización esacial Análisis del desaollo del tabajo o medio de un sistema coodenado La maniulación de iezas llevada a cabo o un obot imlica el movimiento esacial de su extemo.

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa:

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa: LECCION 7: DINAMICA DEL PUNTO 7.. Fueza. Leyes de Newton. Masa. 7.. Cantidad de movimiento. Impulso mecánico. 7.3. Momento cinético. Teoema del momento cinético. 7.4. Ligaduas. Fuezas de enlace. 7.5. Ecuación

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I Unidad 2. Tigonometía 2.7 Cuvas paaméticas Cuvas paaméticas Supongamos que en un plano catesiano dibujamos una cuva, y que el punto de la cuva coespondiente al instante t se denota po P(t) entonces, como

Más detalles

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando.

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando. DNAMCA ROTACONAL ENERGA CNÉTCA DE ROTACON Y MOMENTO DE NERCA Cada patícula en un cuepo en otación, tiene una cieta cantidad de enegía cinética, una patícula de masa a una distancia V ω Luego: La Enegía

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

3.1 ANÁLISIS VECTORIAL. (31_CV_T_v14; 2005.w21.3; 1/2 C23 & 1/2 C24) 1. Introducción: vectores, bases y productos

3.1 ANÁLISIS VECTORIAL. (31_CV_T_v14; 2005.w21.3; 1/2 C23 & 1/2 C24) 1. Introducción: vectores, bases y productos 3. ANÁLISIS VECTORIAL (3_CV_T_4; 005.w.3; / C3 & / C4). Intoducción: ectoes, bases y poductos objeto con diección & magnitud que existe en el espacio Si añadimos un sistema catesiano de coodenadas con

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

2.5 Vectores cartesianos

2.5 Vectores cartesianos .5 VECTORES CRTESINOS 43.5 Vectoes catesianos Las opeaciones del álgeba vectoial, cuando se aplican a la esolución de poblemas en tes dimensiones, se simplifican consideablemente si pimeo se epesentan

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

TEMA 1: Álgebra Vectorial

TEMA 1: Álgebra Vectorial TEMA 1: Álgeba Vectoial 07/10/2008 Depatamento de Física Aplicada II. Miguel Galindo del Pozo 1 Magnitudes escalaes y vectoiales. Escalaes Vectoiales Nº eal y unidad Nº eal y unidad Diección Sentido 07/10/2008

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Fundamentos y Teoías Físicas ETS Aquitectua 1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Se define sólido ígido como un sistema de puntos mateiales cuyas distancias son inaiables. Cuando un cuepo

Más detalles

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0 Pueba de cceso a la Univesidad. JUNIO 0. Instucciones: Se poponen dos opciones y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

Campo magnético en el vacío.

Campo magnético en el vacío. Campo magnético en el vacío. El campo magnético. Intoducción históica (I). Desde la Gecia Clásica (Tales de Mileto 640 610 ac a 548 545 ac) se sabe que algunas muestas de mineal de magnetita tienen la

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

4. APLICACIONES LINEALES

4. APLICACIONES LINEALES Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4. APLICACIONES LINEALES 4.1. DEFINICION DE APLICACIÓN LINEAL 4.2. EXPRESIÓN MATRICIAL DE UNA APLICACIÓN LINEAL 4.3. NÚCLEO E IMAGEN

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014 Contenidos de Clases Dictadas. Gupo G. Pof. F.H. Sánchez. Mates 5/3/4 Beve intoducción a la Física. Conceptos antiguos y enacentistas. Sujeto de estudio de la Física. Ámbitos de validez de las teoías físicas.

Más detalles

SUPERPOSICIÓN DE M. A.S.

SUPERPOSICIÓN DE M. A.S. SUPERPOSICIÓN DE M. A.S. Enconta la ecuación del movimiento que esulta de la supeposición de dos movimientos amónicos simples paalelos cuas ecuaciones son sen t + π A sen t + π con m A m. Hace un gáfico

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

ÁNGULOS. Tema 7 Rectas y planos en el espacio- Matemáticas II 2º Bachillerato 1. ANGULO ENTRE DOS RECTAS Cos (r 1,r 2 ) = cos ( v 1, v 2 ) =

ÁNGULOS. Tema 7 Rectas y planos en el espacio- Matemáticas II 2º Bachillerato 1. ANGULO ENTRE DOS RECTAS Cos (r 1,r 2 ) = cos ( v 1, v 2 ) = Tema 7 Recta y plano en el epacio- Matemática II º Bachilleato ÁNGULOS ANGULO ENTRE DOS RECTAS Co (, ) co (, ).. ANGULO ENTRE DOS PLANOS Co (Π, Π ) co( n, n ) n n.n. n ÁNGULO ENTRE RECTA Y PLANO Sen (,

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

Fundamentos de Robótica

Fundamentos de Robótica Fundamentos de Robótica Herramientas Matemáticas para la Localización Espacial Matrices de Rotación Ricardo-Franco Mendoza-Garcia rmendozag@uta.cl Escuela Universitaria de Ingeniería Mecánica Universidad

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA. . UCIA / UNIO 04. OGS / FÍSICA / XAN COPO XAN COPO PUBAS D ACCSO A A UNIVSIDAD PAA AUNOS D BACHIAO OGS. (PAN 00 unio 004 FÍSICA. OINACIONS: Comente sus planteamientos de tal modo que demueste que entiende

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una Fundamento y Teoía Fíica ETS quitectua 1 INEMÁTI DEL SÓLIDO RÍGIDO Poblema 1 Un cuepo ígido gia alededo de un eje fijo de ecuacione x = y = z, con una ad ad velocidad angula ω = y una aceleación angula

Más detalles

Elementos de Elasticidad:

Elementos de Elasticidad: Elementos de Elasticidad: Consideemos el sólido como un continuo. Ondas de λ ~ 0-6 cm ν ~ 0, 0 H. Le de Hooke: Las defomaciones son popocionales a las fueas que las povocan. Si no se cumple, estamos en

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

TEMA 10 :VECTORES EN EL ESPACIO

TEMA 10 :VECTORES EN EL ESPACIO TEMA 0 :VECTORES EN EL ESPACIO. Coodenadas de un unto en el esacio Vamos a estudia el esacio R. Sus elementos son untos ue eesentaemos mediante tes coodenadas. Paa ello necesitamos fija un sistema de efeencia

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

Existe la costumbre de dividir el estudio de la Mecánica en tres partes:

Existe la costumbre de dividir el estudio de la Mecánica en tres partes: U I.- T : Cinemática del Punto Mateial 3 1.- LA MECÁNICA Y SUS PARTES Existe la costumbe de dividi el estudio de la Mecánica en tes pates: + Cinemática: es una descipción geomética del movimiento + Dinámica:

Más detalles

TEMA12: ESPACIO MÉTRICO

TEMA12: ESPACIO MÉTRICO TEMA1: ESPACIO MÉTRICO 1. PERPEDICULARIDAD A) RECTA-RECTA: Do ecta on pependiculae i u vectoe diectoe on otogonale: V. W = 0. ota que eta condición no implica que la ecta e coten, pueden tene dieccione

Más detalles

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A CASTILLA Y LEÓN / SEPTIEMBRE. LOGSE / MATEMÁTICAS II / EXAMEN CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se obsevaán fundamentalmente los siguientes aspectos: coecta utilización de los conceptos,

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

CAPÍTULO VII - DINÁMICA DEL RÍGIDO. Ecuaciones cardinales

CAPÍTULO VII - DINÁMICA DEL RÍGIDO. Ecuaciones cardinales CÍTULO VII - DIÁMIC DEL RÍIDO Ecuaciones cadinales En el caso de un cuepo ígido las ecuaciones fundamentales paa un sistema de patículas desciben completamente el movimiento del cuepo. Dada la posición

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

UNIDAD TEMÁTICA I BIOMECÁNICA

UNIDAD TEMÁTICA I BIOMECÁNICA UNIDAD TEMÁTICA I BIOMECÁNICA Mecánica: estudio de las condiciones que hacen que los objetos pemanezcan en equilibio (estática) y de las leyes que igen su movimiento (dinámica). La cinemática descibe el

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a.

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a. Pueba de Acceso a la Univesidad. SEPTIEMBRE 00. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una

Más detalles

Aeronaves y Vehículos Espaciales. Valor total: 2.5 puntos.

Aeronaves y Vehículos Espaciales. Valor total: 2.5 puntos. Aeonaves y Vehículos Espaciales Duación: 50 minutos Ingenieos Aeonáuticos N o DNI Cuso 07/08 Escuela Supeio de Ingenieos e Apellido 2 do Apellido 04/09/08 Univesidad de Sevilla Nombe Poblema II Valo total:

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

Transferencia de Momentum

Transferencia de Momentum Tansfeencia de Momentum 1740-. 014-0-5 8ª Contenido Sistemas coodenados convencionales Ecuación de continuidad; Balance de momentum. 014-0-5 y t z x v 0 =0 cuando Ecuación de continuidad, notación vectoial:

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 15/16 Índice 1. Escalaes vectoes 2 1.1. Nociones básicas de análisis

Más detalles

Mecánica de sólidos Una visión práctica de la mecánica de medios continuos

Mecánica de sólidos Una visión práctica de la mecánica de medios continuos Mecánica de sólidos Una visión páctica de la mecánica de medios continuos Mecánica de sólidos Una visión páctica de la mecánica de medios continuos Jaio Andés Paedes López Ingenieo Civil Magíste en Ingenieía

Más detalles

Conceptos centrales. Tema 1. Cadenas. Alfabetos. Cadenas. Cadenas. Nociones Preliminares y Lenguajes. Dr. Luis A. Pineda ISBN:

Conceptos centrales. Tema 1. Cadenas. Alfabetos. Cadenas. Cadenas. Nociones Preliminares y Lenguajes. Dr. Luis A. Pineda ISBN: Tema Nociones Peliminaes y Lenguajes D. Luis A. Pineda ISBN: 0--- Alfabetos Lenguajes Repesentación Intepetación Poblemas Conceptos centales Funciones, algoitmos y fómulas Alfabetos Conjunto finito (no

Más detalles

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades.

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades. 1 Espacios vectoiales 2 Combinaciones lineales 3 Dependencia e independencia lineal 4 Bases 5 Rango de un conjunto de vectoes 6 Tansfomaciones elementales 7 Método de Gauss TEMA I 1 Espacios vectoiales

Más detalles

Tema 1: Geodesia. Cartografía. Sistemas de referencia. Tiempos. Rafael Vázquez Valenzuela. 5 de marzo de 2009

Tema 1: Geodesia. Cartografía. Sistemas de referencia. Tiempos. Rafael Vázquez Valenzuela. 5 de marzo de 2009 Navegación Aérea Tema 1: Geodesia.... Rafael Vázquez Valenzuela Departamento de Ingeniería Aeroespacial Escuela Superior de Ingenieros, Universidad de Sevilla rvazquez1@us.es 5 de marzo de 2009 Proyecciones.

Más detalles

Parámetros Redundantes para Rotación y Traslación en Cinemática

Parámetros Redundantes para Rotación y Traslación en Cinemática Parámetros Redundantes para Rotación y Traslación en Cinemática O. Altuzarra, A. Hernández, E. Amezua, V. Petuya Universidad del País Vasco - Euskal Herriko Unibertsitatea Departamento de Ingeniería Mecánica,

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200 Boque II. Geometía Autoevauación Página Detemina todo o vectoe de móduo que on otogonae a o vectoe u(,, ) y v (,, ). Lo vectoe pependicuae a o do vectoe a a vez on popocionae a poducto vectoia de ambo.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso (Septiembre) MATERIA: FÍSICA

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso (Septiembre) MATERIA: FÍSICA UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Cuso 008-009 (Septiembe) MATERIA: FÍSICA INSTRUCCIONES GENERALES y VALORACIÓN La pueba consta de dos

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

ϕ ), la métrica estática e isótropa puede

ϕ ), la métrica estática e isótropa puede ÓRBITAS EN LA METRICA DE SCHWARZSCHILD El objetivo de esta páctica con odenado es el estudio de las tayectoias obitales en la mética de Schwazschild. Las geodésicas, definidas como aquellas cuvas que tanspotan

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STER DJOZ PRUE DE ESO (OGSE) UNIVERSIDD DE EXTREMDUR JUNIO (GENER) (RESUETOS po ntonio Menguiano) MTEMÁTIS II Tiempo máimo: hoa y minutos Instucciones: El alumno elegiá una de las dos opciones popuestas

Más detalles