LOCALIZACIÓN DE UN SERVICIO NO DESEADO EN REDES USANDO EL CRITERIO ANTI-CENT-DIAN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LOCALIZACIÓN DE UN SERVICIO NO DESEADO EN REDES USANDO EL CRITERIO ANTI-CENT-DIAN"

Transcripción

1 27 Congro Naconal d Eadíca Invgacón Oprava Llda, 8-11 d abrl d 2003 LOCALIZACIÓN DE UN SERVICIO NO DESEADO EN REDES USANDO EL CRITERIO ANTI-CENT-DIAN M. Colbrook, J.M. Guérrz, J. Scla Dparamno d Eadíca, Invgacón Oprava y Compuacón Unvrdad d La Laguna, av. Arofíco F. Sánchz /n, La Laguna, Tnrf, Epaña E-mal: RESUMEN S uda l problma d localzacón d un rvco no dado n una rd no drgda y conxa, condrando l crro an-cn-dan. E crro rprna la combnacón convxa dl cnro no dado (maxmzar la mínma danca) y d la mdana no dada (maxmzar la uma d danca). S prna un procdmno fcn para drmnar l puno d localzacón dado. Palabra y fra clav: Localzacón no dada, problma an-cn-dan. Clafcacón AMS: 90B85, 05C12, 05C85, 05C Inroduccón Lo problma d localzacón n rd con n nodo y m ara raan d bucar la pocón corrca dond uno o má rvco dbrían r mplazado, d forma qu opmc una funcón objvo qu á rlaconada con la danca dd l rvco a lo puno d dmanda. Hakm (1964) nrodujo lo problma dl cnro (mnmzar la máxma danca) y d la mdana (mnmzar la uma d danca). Porormn, oro auor han darrollado o modlo orgnal aporando nuva olucon (Karv y Hakm, 1979; Mnka, 1981). Normalmn, l rvco a localzar condra dabl para lo poncal cln, como por jmplo, rvco d mrgnca (polcía/bombro/ambulanca), grand almacn/uprfc, colgo, c. Sn mbargo, xn oro rvco qu no on an agradabl (ndabl) para la poblacón crcundan, como pudn r pron, ba mlar, baurro, plana dpuradora, c. Alguno rvco pudn llgar a r haa plgroo, como por jmplo racor nuclar, cnral químca, o plana ndural alamn conamnan. Lo problma d localzacón d rvco no dado n rd furon nroducdo por Church y Garfnkl (1978), qun dfnron y rolvron l problma 1

2 1-maxum (maxan) n mpo O( mnlog n ). Mnka (1983) propuo lo problma ancnro (maxmax) y anmdana (maxum). Porormn, Tamr (1991) ugró brvmn qu l problma maxan podía r rulo n O( mn ). Tng (1984) darrolló un algormo lnal n O( n ) para l problma maxum n árbol. Oro problma condrado ambén n la lraura obr localzacón no dada l problma dl cnro no dado (maxmn). Tamr (1988) ndcó cuamn qu problma podía r rulo n mpo O( mn ). Porormn, Mlachrnoud y Zhang (1999) y Brman y Drznr (2000) aporaron ndo procdmno para rolvr l problma n mpo O( mn ). La rfrnca má rcn d problma dbda a Colbrook al (2002b). Para un udo má amplo y acual obr localzacón d rvco no dado rm al lcor a Erku y Numan (1989) y Cappanra (1999). En rabajo va a combnar l problma dl cnro no dado con l d la mdana no dada para obnr l crro d localzacón dnomnado an-cn-dan. El modlo an-cn-dan n rd condra la combnacón convxa d lo crro maxmn y maxum. Morno-Pérz y Rodríguz-Marín (1999) darrollaron do algormo qu calculan, rpcvamn, la localzacón ópma para un valor λ fjo aocado a la combnacón convxa, y l conjuno d localzacon ópma para oda la combnacon convxa. Ambo pon una compljdad n mpo O( mnlog n ). En la gun ccon moramo qu la compljdad dl prmr algormo pud r rducda a O( mn ). 2. Noacón y formulacón Sa N = G( V, E ) una rd mpl, no drgda y conxa con n nodo (vérc) V = { v1, v2,, v n}, y m ara E = {( v, v ) : v, v V }, con E = m. Para cada nodo v V dfnmo una funcón w : V, w( v ) = w 0, la cual rprna l númro d cln uado n v qu harán uo dl rvco. Obvamn, aummo qu no odo lo w = 0. Por oro lado, obr cada ara E dfnmo una funcón l : E +, l( ) = l > 0 qu ndca la longud d la ara. Por ano, un puno x n un rango [0, l ]. Dado un par d nodo v, v V, dfn la danca d( v, v ) nr o do nodo j como la longud l camno má coro nr v y v j. D modo, para cualqur ara = ( v, v ) E y dado un puno nror x, la danca nr x y un nodo v d( x, v ) = mn{ x + d( v, v ), l x + d( v, v )}. El puno obr dond d( x, v ) alcanza u qulbro, o x + d( v, v ) = l x + d( v, v ), llama un puno cullo d bolla, y dnoa por b = ( d( v, v ) d( v, v ) + l) / 2. La funcón d( x, v ) lnal y cóncava con al mno un puno cullo d bolla. j 2

3 Dfnmo ahora la funcón cnro no dado y no pado (maxmn) y la funcón mdana no dada (maxum/maxan). Dado cualqur puno x n la rd N, dfnmo f ( ) mn (, ) mn x = d x v como la mínma danca no pada dd l puno x al ro d v V nodo d la rd. Un puno y N N un cnro no dado (uncnr: undrabl cnr) fmn ( yn ) = max fmn ( x). Cuando odo lo po d lo nodo w on gual, x N l puno y N localza n la mad d la ara má larga. Enonc, l puno uncnr para cualqur ara = ( v, v ) y = l / 2, y por ano f ( ) / 2 mn y = l. D modo, l puno ópmo local pud r obndo n O(1). Por oro lado, dada la uma oal d po d lo nodo W = w y un puno x N, dfnmo ahora f um ( x) = w d( x, v ) / W como la uma promdo d la danca v V pada dd l puno x al ro d nodo d la rd. Un puno z N N un puno mdana no dada (maxan) f ( z ) = max f ( x). El puno maxan local obr la um N um x N ara dnoa por z. Fnalmn, la funcón an-cn-dan dfn como: mn um v V f ( λ, x) = λ f ( x) + (1 λ) f ( x) (1) y cualqur puno x N N qu maxmza f ( λ, x) para un valor parcular d λ, 0 λ 1, dnomna puno λ-an-cn-dan. En parcular, λ = 0, l puno an-cn-dan gual al maxan, mnra qu para λ = 1, obnmo l puno uncnr. La Fgura 1 mura la gráfca d la funcón f (, x) λ obr la ara. Para λ = 0, la funcón an-cn-dan f ( x ), con [, ] um z a b. A mdda qu l parámro λ crc, la funcón an-cn-dan va ranformando n la funcón f ( x ). mn Combnando la propdad d lo problma uncnr y maxan, pudn obnr propdad pcal para l problma λ-an-cn-dan. Dcha propdad furon orgnalmn ablcda n Morno-Pérz and Rodríguz-Marín (1999). Ammo, como la funcon maxmn y maxum on amba cóncava, podmo drvar una nuva propdad concrnn al conjuno d puno canddao dnro d una ara. Dado un valor d λ, 0 λ 1, l problma (1) pud r formulado obr cada ara como gu: y un puno xn f ( λ, x) = λ f ( x) + (1 λ) f ( x) (2) mn um N un puno λ-an-cn-dan f (, ) max (, ) λ x = f λ x. Un méodo para drmnar odo lo puno λ-an-cn-dan para cualqur valor d λ [0,1] n mpo O( mnlog n ) fu propuo por Morno-Pérz y Rodríguz-Marín (1999). Dcho méodo drva d un algormo n mpo O( mnlog n ) darrollado por Hann al (1991). Ea compljdad no pud r rducda dado qu l algormo N E 3

4 á baado n l cálculo d la nvolura convxa d O( mn ) puno, lo cual llva a cabo n mpo O( mnlog n ) (vr Hrhbrgr, 1989). f ( x) um f ( x) mn y a b λ v l v Fgura 1: Gráfca d la funcón f (, x) λ para dfrn valor d λ. Por oro lado, Morno-Pérz and Rodríguz-Marín (1999) ambén prnaron un procdmno n O( mnlog n ) para obnr l puno an-cn-dan cuando λ fja a una valor parcular. Sn mbargo, n cao í podmo alcanzar un algormo n mpo O( mn ), como dcrbrmo porormn. 3. Anál dl problma y nuva coa upror Sa = ( v, v ) E una ara. A connuacón vamo a caracrzar la olucón a (2). Obvamn, cuando λ = 1, la olucón a (2) x = y, y ará localzado n la mad d la ara. Por oro lado, λ = 0 nonc x = z. Por ano, l anál ará cnrado n l cao n l qu 0 < λ < 1. Para odo lo nodo v V, condramo ahora la dfrnca d = d( v, v ) d( v, v ) y lo gun conjuno: A = { v V : l < d l } B = { v V : d = l } C = { v V : l d < l } D = { v V : d = l } 4

5 con B C, D A y A B = C D = V. Sa W la pndn drcha d la funcón f um ( x ) n l nodo v, y a zqurda con gno opuo d f ( x ) n um v, o, W = w w = W 2 w = 2 w W v A v B v B v A W = w w = 2 w W = W 2 w v C v D v C v D W la pndn Como la funcón an-cn-dan una combnacón convxa d la funcon f ( x ) y mn f ( x ), la pndn drcha zqurda d f ( λ, x) n lo nodo um v y v dbría r, rpcvamn, W = λ + (1 λ) W / W y W = λ + (1 λ) W / W Como W, W W, nonc W, W 1. S W 0 o W 0, l problma (2) pud rolvr fáclmn. En l cao d qu W y W on ambo rcamn povo, l problma (2) no an fácl d analzar. An d dcrbr l méodo para rolvr l problma (2) vamo a mjorar la gun coa upror propua por Morno-Pérz y Rodríguz-Marín (1999): mn UB( λ, ) = λub ( ) + (1 λ) UB ( ) (3) con UBum ( ) = ( fum( v) + fum( v ) + l) / 2 y UBmn ( ) = ( fmn ( v ) + fmn ( v ) + l ) / 2. Ea coa calcula n mpo O( n ), aunqu pud r mjorada n la mma compljdad d mpo. Aummo ambo W y W rcamn povo. S calcula l puno d nrccón x al qu f ( λ, v ) + xw = f ( λ, v ) + W ( l x), y u valor d ordnada y( x ). f (, v ) f (, v ) W l f (, v ) W f (, v ) W WWl x λ λ +, y( x) λ + λ + = = W + W W + W um La funcón an-cn-dan n lo xrmo d la ara gual a (1 λ) f ( x). Enonc, rmplazando f (, ) λ v y f ( λ, v ) por, rpcvamn, (1 λ) fum ( v ) (1 λ) f ( v ) obnmo um y x (1 λ )( f ( v ) W + f ( v ) W ) + WWl W + W um um ( ) = Sa NUB( λ, ) = y( x) la nuva coa upror. Dado qu f ( λ, x) una funcón cóncava, obvamn f ( λ, x) NUB( λ, ), x, 0 λ 1. S pud dmorar qu la nuva coa upror al mno an buna como (3). A parr d la dfncón d a coa, y omando como ba l algormo dado n Colbrook al (2002a) para rolvr l problma maxan, pud obnr un um y 5

6 algormo n O( mn ) qu rulv l problma dl an-cn-dan (2) para un valor parcular d λ, 0 < λ < 1, cuando W > 0 y W > Agradcmno E rabajo ha do parcalmn fnancado por un proyco d nvgacón d la Unvrdad d La Laguna, númro Rfrnca Brman, O., Drznr, Z. (2000): A no on h locaon of an obnoxou facly on a nwork. Europan Journal of Opraonal Rarch 120(1), Cappanra, P. (1999): A urvy on obnoxou facly locaon problm. Tchncal Rpor 11, Church, R.L., Garfnkl, R.S. (1978): Locang an obnoxou facly on a nwork. Tranporaon Scnc 12(2), Colbrook, M., Guérrz, J. and Scla, J. (2002a): A nw bound and an O(mn) algorhm for h undrabl 1-mdan problm (maxan) on nwork. DEIOC Workng Papr 02(1), Colbrook, M., Guérrz, J., Alono, S., Scla, J. (2002b): A nw algorhm for h undrabl 1-cnr problm on nwork. Journal of h Opraonal Rarch Socy 53(12), Erku, E., Numan, S. (1989): Analycal modl for locang undrabl facl. Europan Journal of Opraonal Rarch 40(3), Hakm, S.L. (1964): Opmum locaon of wchng cnr and h abolu cnr and mdan of a graph. Opraon Rarch 12(3), Hann, P., Labbé, M., Th, J.-F. (1991): From h mdan o h gnralzd cnr, Rchrch Opraonll/Opraon Rarch 25(1), Hrhbrgr, J. (1989): Fndng h uppr nvlop of n ln gmn n O(n log n) m. Informaon Procng Lr 33(4), Karv, O., Hakm, S.L. (1979): An algorhmc approach o nwork locaon problm. I: Th p-cnr. SIAM Journal on Appld Mahmac 37(3), Karv, O., Hakm, S.L. (1979): An algorhmc approach o nwork locaon problm. II: Th p-mdan. SIAM Journal on Appld Mahmac 37(3), Mlachrnoud, E., Zhang, F.G. (1999): An O(mn) algorhm for h 1-maxmn problm on a nwork. Compur and Opraon Rarch 26(9), Mnka, E. (1981): A polynomal m algorhm for fndng h abolu cnr of a nwork. Nwork 11(4), Mnka, E. (1983): Ancnr and anmdan of a nwork. Nwork 13(3), Morno-Pérz, J.A., Rodríguz-Marín, I. (1999): An-cn-dan on nwork. Sud n Locaonal Analy 12, Tamr, A. (1988): Improvd complxy bound for cnr locaon problm on nwork by ung dynamc daa rucur. SIAM Journal on Dcr Mahmac 1(3), Tamr, A. (1991): Obnoxou facly locaon on graph. SIAM Journal on Dcr Mahmac 4(4), Tng, S.S. (1984): A lnar-m algorhm for maxum facly locaon on r nwork. Tranporaon Scnc 18(1),

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO Ana María Islas Cors Insuo Polécnco Naconal, ESIT amslas@pn.mx Gabrl Gullén Bunda Insuo Polécnco Naconal, ESIME-Azcapozalco ggulln@pn.mx Yolanda Monoya

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313 Unvrdad Smón Bolívar Dparamno d Proco y Sma Guía d Ejrcco d Sma d Conrol Avanzado PS-433 Pro. Alxandr Hoyo hp://pro.ub.v/ahoyo ahoyo@ub.v ÍNDICE Pág. Tranormada d Laplac 3 Tranormada Invra d Laplac y Rolucón

Más detalles

JUEGOS RESTRINGIDOS MULTICRITERIO. Amparo Mª Mármol Conde Luisa Monroy Berjillos Victoriana Rubiales Caballero 1

JUEGOS RESTRINGIDOS MULTICRITERIO. Amparo Mª Mármol Conde Luisa Monroy Berjillos Victoriana Rubiales Caballero 1 éodo aemáco para la Economía y la Emprea JUEGOS RESTRINGIDOS UTICRITERIO Amparo ª ármol Conde ua onroy Berllo Vcorana Rubale Caballero Deparameno Economía Aplcada III Unverdad de Sevlla Reumen: a eoría

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

Funcionamiento asimilable al de una fuente de corriente controlada por corriente BJT TRANSISTOR BIPOLAR DE JUNTURA

Funcionamiento asimilable al de una fuente de corriente controlada por corriente BJT TRANSISTOR BIPOLAR DE JUNTURA Funconamnto asmlabl al d una funt d corrnt controlada por corrnt JT TRASSTOR POLAR D JUTURA J T TRASSTOR POLAR D JUTURA Dos tpos d portadors lctrons hucos Dspostos d 3 trmnals con dos unons p-n nfrntadas

Más detalles

CrosbyIP Garras para Izaje

CrosbyIP Garras para Izaje p m l C g n t f L P I y b o C CobyIP p Izj Copyght 2006 Th Coby oup, Inc. Todo lo dcho vdo 383 LE HEMOS ENSEÑADO AL VIEJO TENER MÁS ARRAS Admá d l nnovcón, l lt cldd y mpl gm d poducto ofcdo ocdo con l

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad CONDCONES PARA UNA NMUNZACÓN POR DURACONES PARA SEGUROS A PRMA PERÓDCA J. ñak d a Pña Profsor Tular d Unvrsdad RESUMEN a nmunzacón s una sraga nvrsora ncamnada a rspaldar un compromso d pago. El raamno

Más detalles

Nuevas tendencias y diferencias culturales en el uso de telefonía móvil. Daniel Halpern

Nuevas tendencias y diferencias culturales en el uso de telefonía móvil. Daniel Halpern Nuva tndncia y difrncia cultural n l uo d tlfonía móvil Danil Halprn por primra vz n Chil midió comparativamnt cuán dpndint hoy on lo jóvn chilno d u clular y actitud hacia conducta conidrada ocialmnt

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

El Método de Monte Carlo para la Solución de la Ecuación de Transporte

El Método de Monte Carlo para la Solución de la Ecuación de Transporte Anál de Reacore Nucleare Faculad de Ingenería-UNAM Juan Lu Franço El Méodo de Mone Carlo para la Solucón de la Ecuacón de Tranpore En la prácca, mucho problema de ranpore no e pueden reolver por méodo

Más detalles

Tema 10. Modelos de tipo de cambio con cuenta corriente

Tema 10. Modelos de tipo de cambio con cuenta corriente Tma 10. Modlos d po d cambo con cuna corrn Modlos dl po d cambo con cuna corrn S: Movldad prfca d capals Susubldad mprfca d acvos fnancros Rlacón drca nr l saldo d la CC y l po d cambo Para conocr la dnámca

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

I. DEFINICIÓN (i): LOGIT como un tipo concreto de MODELOS DE REGRESIÓN PARA VARIABLES DEPENDIENTES LIMITADAS.

I. DEFINICIÓN (i): LOGIT como un tipo concreto de MODELOS DE REGRESIÓN PARA VARIABLES DEPENDIENTES LIMITADAS. Curso d Posgrado 0-03 FORMACIÓN DE ESPECIALISTAS EN INVESTIGACIÓN SOCIAL APLICADA Y ANÁLISIS DE DATOS Técncas d modlzacón d varabls cualtatvas: Rgrsón Logístca Part I: El modlo d rgrsón logístca bnaro

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada d alac CIPQ Marga Marco, Itzar Caban, Eva Portllo, 6 Tranformada d alac f(t funcón tmoral f(t f(t ara t < [ f (t] F( f (t t σ jω varabl comlja d alac t f(t g(t [ f (t] [ g(t ] F( G( Cambo d

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

Tema 1. Repaso de Teoría de Circuitos

Tema 1. Repaso de Teoría de Circuitos Tma. paso d Toría d rcuos Joaquín aquro ópz Elcrónca, 7 Joaquín aquro ópz paso d Toría d rcuos: índc. oncpos prlmars. oncpo d crcuo, lmnos d un crcuo. ys fundamnals d los crcuos lécrcos: ys d Krchhoff.3

Más detalles

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO.

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. 8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. La oría conrol ópmo lnal mpo scro s nrsan por su aplcacón n l conrol por compuaor. 8. DESCRIPCION EN VARIABLES DE ESTADO A vcs nrsa obsrvar un ssma n

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Programación lineal. m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u j e ta s a d e terminad as

Programación lineal. m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u j e ta s a d e terminad as Programación lineal L a p r o g r a m ac i ó n l i ne al d a r e s pu e s t a a s i t u aciones e n l as q ue s e e xi g e m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u

Más detalles

CUÍDALOS cartilla para el cuidado de la primera infancia

CUÍDALOS cartilla para el cuidado de la primera infancia CONVENIO DE ASOCIACIÓN No. 62 DE 2014 ENTRE EL FONDO DE DESARROLLO LOCAL DE SUBA Y CORHUMANA CUÍDALOS CON CON AMOR AMOR CUÍDALOS cartilla para l cuidado d la primra infancia JUNTA ADMINISTRADORA LOCAL

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

APLICACI ONES DE LA FUNCI ÓN

APLICACI ONES DE LA FUNCI ÓN APLICACI ONES DE LA FUNCI ÓN GENERADORA DE MOMENTOS Adrés Camlo Ramírz Gaa adrs.camlo.ramrz@gmal.com Trabajo d Grado para Opar por l Tulo d Mamáco Drcor: Bgo Lozao Rojas Esadísco Uvrsdad Nacoal d Colomba

Más detalles

gu g v C u. mró rm r mbr fum mé í írm Pró uh. m gué r - r rx L. r m r rm r mr r - m - rr, mr m gu fá v b má ér u u r b u m, fru r uó v rr m h uv C. r

gu g v C u. mró rm r mbr fum mé í írm Pró uh. m gué r - r rx L. r m r rm r mr r - m - rr, mr m gu fá v b má ér u u r b u m, fru r uó v rr m h uv C. r Mur ó Crv V Eér rr N r P Brá Ag V fí, ur j h ué m, vgur L g u, hum, r rr r, év E v rr mm u q R Luz Ág L. P Exr U - r M E mbé f r grr r rzr uv íqu xr r. r m m r ué ur jó f g ñr U Qu rá. mu rvur í u mur,

Más detalles

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li Sopas Silábicas animales po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li po no ce pe li ri be ca ri ce ve sa

Más detalles

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO Aál Facro Nº 93 Frado Gómz-Bzar, Joé A. Madaraga y 6 PRMER CUATRMESTRE 004 CUARTA EPOCA. P.V.P. 9,9 Javr Sabáñz PERFORMANCE AJUSTADA A RESGO 8 Jú Joé Agla Jméz y Aracl Rodríguz Mrayo E NVE DE A NFORMACÓN

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Estrategias Inmunizadoras para seguros de vida y Pensiones. Dr. D. J. Iñaki De La Peña

Estrategias Inmunizadoras para seguros de vida y Pensiones. Dr. D. J. Iñaki De La Peña Eraega Inmunzadora para eguro de vda y Penone Dr. D. J. Iñak De a Peña índce. El Problema. Eraega de Geón Acvo-Pavo 3. Opmzacón 4. a ley y la eraega de AM y algún que oro cueno... 3 El Problema 4 PROBEMA

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

4. Método estadístico para el mapeo de amenaza por deslizamientos. Método de información ponderada. Cálculo de pesos. Probabilidad.

4. Método estadístico para el mapeo de amenaza por deslizamientos. Método de información ponderada. Cálculo de pesos. Probabilidad. 1 4. Método stadístco para l mapo d amnaza por dslzamntos Cs van Wstn Lbro: onham-cartrm, capítulo 9, pp 30-333 Método d nformacón pondrada tp 1: : 3: 4: 7: tp tp 6: act=ff(actvty="actv",npx,0) Aggrgat

Más detalles

Trabajo Práctico N 12

Trabajo Práctico N 12 Fscquímca IBEX Guía de Trabajs Práccs 2010 Trabaj Prácc N 12 - néca pr Plarmería- Objev: Deermnar la cnsane de velcdad de la reaccón de hdrólss de la sacarsa y esudar el efec de la cncenracón de Hl sbre

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

FICHA 10 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FICHA 10 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FICHA FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. E poibl mdir la concntración d alcohol n la angr d una prona. Invtigacion médica rcint ugirn qu l rigo R (dado como porcntaj) d tnr un accidnt automovilítico

Más detalles

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor Unvrdad Naconal dl Nordt Facultad d Ingnría Dpartamnto d Fíco-uímca/Cátdra Fíca II FÍSICA II Guía D Problma Nº5: Tranmón dl Calor 1 PROBLEMAS RESUELTOS 1 - Una barra d cobr d cm d dámtro xtror tn n u ntror

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

UNIDAD 13. 1.- Places (lugares) Actividad: Escribe en español los lugares que puedes encontrar en una ciudad

UNIDAD 13. 1.- Places (lugares) Actividad: Escribe en español los lugares que puedes encontrar en una ciudad UNDAD 13 E a uidad aprdrás los siguits tmas: 1.-ugars 2.-Prposicios 3. Dar dirccios 1.- Placs (lugars) Actividad: Escrib spañol los lugars qu puds cotrar ua ciudad Ejmplo: 1.- scula 11.- 2.- oficia poal

Más detalles

glosario de BBVA GLOSARIO -Análisis Técnico-

glosario de BBVA GLOSARIO -Análisis Técnico- BBVA GLOSARIO -Aná Tén- A (): Mn n (ún ní Pn On E) qu nn n n. Auuón (uun n): Fón nón u n un (uu íu n ). A ADX (ADX): ADX (DMI): Ín n n, un n un nn. L ín ADX W n n n n un 0 100. Un ín ADX nn n qu n nn y

Más detalles

Explicación de operaciones. fraccionarios

Explicación de operaciones. fraccionarios Eplicación d opracions d divisions con ponns fraccionarios Mamáicas I Ejrcicio :. Simplifica obén l rsulado d las siuins raícs. ( ) 8 Paso : s muliplica l ponn fura d cada parénsis por l ponn d cada variabl

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos Mnstro d Fomnto Scrtaría d Estado d Infrastructuras, Transport y Vvnda Drccón Gnral d Arqutctura, Vvnda y Sulo Documnto d Apoyo al Documnto Básco DB-HE Ahorro d nrgía Códgo Técnco d la Edfcacón DA DB-HE

Más detalles

Biología Avanzada Tejidos Vegetales Dra. en Ciencias. Laura García Hernández

Biología Avanzada Tejidos Vegetales Dra. en Ciencias. Laura García Hernández Bilgía Avanzada Tjid Vgal Dra. n Cincia. Laura García Hrnándz Rumn La rganización d la célula n frma d jid para la diviión dl rabaj, l ha prprcinad a l rganim pluriclular la vnaja d la vlución y la adapación

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

La tasa de interés y sus principales determinantes

La tasa de interés y sus principales determinantes La tasa d ntrés y sus prncpals dtrmnants 1. INTRODUCCIÓN Rchard Roca * Uno d los tmas qu domna l dbat académco d los últmos años s sobr las tasas d ntrés. Los mprsaros sñalan qu todavía sta muy alta y

Más detalles

APROXIMACION A LAS RELACIONES DINAMICAS DE LOS PRINCIPALES INDICADORES DE PRECIOS. Julián Moral Carcedo Julián Pérez García

APROXIMACION A LAS RELACIONES DINAMICAS DE LOS PRINCIPALES INDICADORES DE PRECIOS. Julián Moral Carcedo Julián Pérez García APROXIMACION A LAS RELACIONES DINAMICAS DE LOS PRINCIPALES INDICADORES DE PRECIOS Julán Moral Carcdo Julán Pérz García Ára d Modlzacón Macroconómca Insuo L. R. Kln Juno 000 RESUMEN En los úlmos mss ha

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

Ruta Alimentadora Sur

Ruta Alimentadora Sur Ad Ru Ador Ad Lo Horzo Ad B A-02 ALAEDA UR Ad Lo Cd P PUENTE VILLA E o P Hy J rí E o Ovo L Cv Grd Cv ERVICIO EPECIAL CIRCUITO DE PLAYA L Gvo Hy Tr A-04 VILLA EL ALVADOR Rvou Ro A-07 AÉRICA L Uó Grd A-08

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

Fuerzas distribuidas. 2. Momento de inercia

Fuerzas distribuidas. 2. Momento de inercia Dpto. Físca y Mecánca Fuerzas dstrbudas d Centro de gravedad centro de masas. Centro de gravedad, centro de masas. Momento de nerca ntroduccón. Fuerzas dstrbudas Cálculo de centrodes y centros de gravedad

Más detalles

ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D 3. 1 b 4. 1 é 5. 1 ORORD.. Vé, í, ó á b: b b, x f ó,." éx,, f, bá á O, b fó f ó g á. g O g, j b

ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D 3. 1 b 4. 1 é 5. 1 ORORD.. Vé, í, ó á b: b b, x f ó,. éx,, f, bá á O, b fó f ó g á. g O g, j b M I MIO MIO D UB B O HO M, b B í Og: M W. W f W Ó 1978, O I F. ó: V ú D gz: @ (U, g. ) - 03 22/08/03 IDI I ó 1. b b 2. 3. fz x? 4. z f 5. b 6. ú g? ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D

Más detalles

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA Deño de Controladore PID Stema de Control Prof. Marela CERRADA Controlador del to PI: Mejorando la reueta etaconara Lo controladore del to PI olo ncororan la accone Proorconale Integrale, aumentando en

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Programación de la Producción en un sistema flow shop híbrido sin esperas y tiempos de preparación dependientes de la secuencia

Programación de la Producción en un sistema flow shop híbrido sin esperas y tiempos de preparación dependientes de la secuencia DITS ( 2006/01). Workng Paper del Departament d Organtzacó D empree de la Unvertat Poltècnca de Catalunya. Programacón de la Produccón en un tema flow hop híbrdo n epera y tempo de preparacón dependente

Más detalles

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos:

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos: emaro rabajos. odo 7. El rassor. Magesmo 9. duccó elecromagéca. rcuos de corree alera. Odas elecromagécas. lcacoes ócas odo. odo Zeer. odo LE 3. Foododo. odo úel 5. odo Schoky El rassor. El JFE, fudameos

Más detalles

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

III Game Campori Online

III Game Campori Online 2015 14-16 d ag vã www.gam.ampl.m puguê III Gam Camp Ol Gua dl Ev A Equp Rad Wb Avdad y glam Cdad Publdad Tadu Rla x Rd Sal Epaldad dl Ev Pdu y vd Múa Dg Tx 2 Thag Sf Hla quad! C ga algía l v a hé d aha

Más detalles

dossier COMERCIAL Día de la FISIOTERAPIA

dossier COMERCIAL Día de la FISIOTERAPIA dossir COMERCIAL Día d la FISIOTERAPIA dossir COMERCIAL Prsnación índic Colgio d Fisiorapuas d Caalunya, nidad organizadora Qué s la Fisiorapia: dfinición, paologías y spcialidads El Fisiorapua, l arsano

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

FAM 2004 FAM 2006 FAM 2007 FAM 2008 LICITACIÓN PUBLICA CONVOCATORIA 010_2009

FAM 2004 FAM 2006 FAM 2007 FAM 2008 LICITACIÓN PUBLICA CONVOCATORIA 010_2009 RCURO: RCCÓ PROYCO Y OBR FOO PORCO ÚP (F) 2004-2009 F 2004 FCH U CUZCÓ: 9 JUO 2010 PG 1 5 O GR OBR COR VC (%) OBR o. OBR (COVO) UBCCÓ O. CORO PZO JCUCO OO OBR FCO FCRO CRO VGCO / PCHUC OO, PyO/17/04 12/OC/2004

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Diseño óptimo de un regulador de tensión en paralelo

Diseño óptimo de un regulador de tensión en paralelo Deño óptmo de un regulador de tenón en paralelo Federco Myara 1. egulador mple con un dodo de ruptura El cao má mple e el regulador con un dodo zener, ndcado en la fgura 1. S ben el crcuto parece muy encllo,

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO RÚ d fa d lía paa la fa ó al d duaó y a u d duaó Sup Tlóg úbl d la uza Aada STTUT UAÓ SURR TLÓ ÚBL LAS URZAS ARAAS ala pfal STRU aó d la aa pfal: STRUÓ L ad SURR uaó: 240 HRAS TRAR RAT A: ALTA fdad la

Más detalles

: ú z bg,, g R, O [] é N ó á á í éf í Df g A g ñ, b j, ñ, z, N! ó C ó g R f!, bj j ] [!, H, ñ H - ó? N b; á ] [ gú f í bg, bz! C C b T b ó, Aí b, b b

: ú z bg,, g R, O [] é N ó á á í éf í Df g A g ñ, b j, ñ, z, N! ó C ó g R f!, bj j ] [!, H, ñ H - ó? N b; á ] [ gú f í bg, bz! C C b T b ó, Aí b, b b Ká Bk H 1888 J Lf b P : U ww w ó! z O, ó! z O, ó! xñ O, g í é j; f fg fé,, Y zbb í M ág, j M bí gb C g! á f Y 1831 J, (L T ) g b bé, j U báb f, U ] [ g b, bj g g j g á Aí b P f é f,, g é b A f b, ó, M

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales.

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales. 7. Transformaors Cállo ransformaors S s onsrano n oro qvaln. Calqr ransformaor p sñars hano so rs aons nrals. Prmra aón. Dfnón nsa fljo manéo (nón ampo manéo). B A Sna aón. y Ampèr. l I 7. Transformaors

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

CONTENIDO 1. TEORÍA DEL RIESGO Y ÁRBOLES DE DECISIÓN...2

CONTENIDO 1. TEORÍA DEL RIESGO Y ÁRBOLES DE DECISIÓN...2 CONTENIDO. TEORÍ DEL RIESGO Y ÁRBOLES DE DECISIÓN.... ELEMENTOS ESTRUCTURLES DE JUEGOS EN RIESGO.... DOMINCIÓN SIMPLE Y ESTOCÁSTIC.... DOMINCIÓN ESTOCÁSTIC....4 VLOR ESPERDO DE L INFORMCIÓN PERFECT....4.

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

10212 Aplicaciones de la Ingeniería Electrónica II

10212 Aplicaciones de la Ingeniería Electrónica II Univeria de le Ille Balear Deparamen de Ciènie Maemàique i Informàia Apliaione de la Ingeniería Elerónia II Máer en Ingeniería Elerónia Imágene en olor: Proeamieno. Yolanda González Cid Mejora del onrae

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles