PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce"

Transcripción

1 Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros del modelo, es perinene comprobar las propiedades esadísicas de los mismos. En ese senido, los parámeros MCO y Máximo-verosímiles se calcularán así 1 : [ X ' X X ' Y 1 β donde se ha uilizado la expresión del modelo en forma maricial: Y X β + U nx1 nxk kx1 nx1 Se demuesra, a coninuación, que esos esimadores son esimadores lineales, insesgados, ópimos y consisenes (ELIO +Consisenes). Es decir, cumplen las mejores condiciones que esadísicamene se puede pedir a un valor esimado. En primer lugar, conar con un esimador insesgado nos asegura que el valor esperado de nuesro cálculo coincide con el valor real del parámero. Ése requisio es fundamenal a la hora de realizar una esimación, siendo la condición sinequanon para seguir realizando algunas comprobaciones esadísicas. De hecho, la segunda demosración que se realiza en ese documeno sirve para comprobar que los parámeros esimados ambién serán ópimos; es decir, serán los que cuenen con la varianza más pequeña de enre odos los insesgados 3. En ercer lugar, se demosrará que los MCO ambién son consisenes. Eso quiere decir que nuesra forma de calcular los parámeros para la esimación daría el resulado exaco de cálculo de los parámeros reales si en vez de uilizar una muesra usáramos el oal de los daos, sin error alguno. Dicho de oro modo, cuando conamos con el oal del universo para realizar la esimación la varianza de los parámeros calculados es nula, ya que coinciden exacamene con los reales. Previamene a realizar esas res demosraciones, se hará una derivación maemáica de la fórmula de cálculo original de los MCO para comprobar que, dicho cálculo, produce unos esimadores que son combinación lineal de las perurbaciones aleaorias. Esa comprobación endrá imporanes consecuencias para poder deerminar a poseriori el inervalo de confianza de los parámeros. Bajo el supueso habiual de normalidad de las 1 La expresión de cálculo es la misma para ambos cuando la función de densidad de las perurbaciones aleaorias se disribuye como una normal. BLUE en inglés y, a veces, MELI en algunas raducciones. 3 Quizá se puedan enconrar formas de esimar los parámeros con un menor inervalo de variación, pero si esos no son insesgados conculcan lo que hemos llamado condición sinequanon para un valor esimado. Podemos ser muy precisos en una esimación, pero si su valor medio o esperanza no coincide con el valor real, la uilidad de la esimación quedará en enredicho.

2 Economería I. DADE Noas de Clase perurbaciones aleaorias, demosrar que los parámeros son una combinación lineal de ésas lleva inmediaamene a conocer en qué forma se disribuyen nuesros coeficienes esimados. Sabiendo cuál es su función de densidad, podremos calcular con facilidad en qué rango o inervalo se mueven ésos e, incluso, podremos diseñar algunos conrases esadísicos para averiguar el grado de significaividad de esos (en qué medida podemos decir que los parámeros son disinos de cero o, dicho de ora forma, en qué grado las variables a las que muliplican dichos parámeros son relevanes para la explicación de la variable endógena del modelo). LINEALIDAD Para comprobar que los parámeros esimados son una combinación lineal de las perurbaciones aleaorias del modelo, basa con susiuir Y en la expresión de cálculo de los mismos por su expresión complea (enre llaves en la expresión de más abajo): β [ X ' X X ' Y { Y Xβ + u } [ X ' X X ' Xβ + [ X ' X X ' u β + [ X ' X β + WU X ' u Los esimadores MCO son una combinación lineal de las perurbaciones aleaorias. Como ya se ha indicado aneriormene, esa comprobación será de especial rascendencia para acomeer la fase de validación del modelo ya que una función lineal de una variable aleaoria que se disribuye como una normal ambién se disribuye como una normal. A parir de esa deducción, podremos deerminar los inervalos de confianza en los que se moverán nuesras esimaciones y podremos realizar hipóesis sobre el valor real de los parámeros a conrasar esadísicamene. INSESGADEZ En ese momeno iene inerés demosrar que el valor esperado del parámero esimado con MCO coincide con el valor real del parámero. Para la demosración, pariremos del resulado obenido en el aparado anerior, cuando escribimos los parámeros como una combinación lineal de las perurbaciones aleaorias: ) β β + ÓPTIMO (EFICIENCIA) β β + [ X ' X X ' U [ X ' X X ' U ) β + [ X ' X X ' U ) { U ) 0} ) β β El valor esperado del esimador coincide con el real. El objeo de esa demosración es comprobar que los parámeros esimados mediane MCO son los que ienen la varianza más pequeña de enre odos los alernaivos posibles de la familia de los insesgados.

3 Economería I. DADE Noas de Clase Para demosrar que el esimador MCO es el esimador ópimo se seguirán cuaro pasos 4 : 1) Se deermina el valor de las varianzas de los esimadores MCO. ) Se propone un esimador alernaivo al MCO cualquiera y se comprueba cuál es la condición necesaria y suficiene para que dicho esimador sea insesgado. 3) Se deerminan las varianzas de esos esimadores alernaivos 4) Se comparan las varianzas de ése con las de los esimadores MCO. 1) Mariz de varianzas-covarianzas de los esimadores Pariendo de la expresión hallada al demosrar la linealidad y sabido que ese esimador es insesgado: β β + X ' X X ' U Y ) β [ β Podemos calcular la mariz de varianzas-covarianzas de los parámeros MCO del siguiene modo: COV E [ VAR( ) β ( β ))( β β ))' β E[ ( β + [ X ' X X ' U β )( β + [ X ' X X ' U β )' [([ X ' X X ' U )([ X ' X X ' U )' E[ X ' X X ' UU ' X [ X ' X { UU ') σ I } σ [ X ' X X ' X [ X ' X σ [ X ' X n COV VAR( ) β σ [ 1 X ' X Poseriormene, comprobaremos las varianzas de los parámeros así esimadas (los elemenos de la diagonal principal de la expresión anerior) son las más pequeñas o no de enre odos los esimadores insesgados posibles. ) Esimador alernaivo insesgado Sumando una mariz P no nula a la expresión del esimador MCO se obiene la expresión general de un esimador cualquiera alernaivo, del que habrá que comprobar qué condiciones ha de cumplir para ser insesgado. En primer lugar, escribimos la expresión de un parámero alernaivo simplemene adicionando a la fórmula de los MCO una mariz P disina de cero. Poseriormene, escribimos ese parámero alernaivo susiuyendo Y por su valor: β [ X ' X X ' + P Y { Y Xβ + U } [ X ' X X ' Xβ + [ X ' X X ' U + PXβ + β + [ X ' X X ' U + PXβ + PU [ PU [ 4 Esa demosración ambién se podría realizar comprobando que la varianza del esimador MCO es la coa de Cramer Râo.

4 Economería I. DADE Noas de Clase Una vez conamos con la expresión de un esimador cualquiera alernaivo, hay que comprobar cuáles son las condiciones que ese debe cumplir para ser insesgado. β ) E[ β + [ X ' X X ' U + PXβ + PU [ X ' X X ' U ) + PXβ + P U ) [ β + PXβ [ β + condición insesgadez β β + PX 0 [ X ' X X ' U + PU En la expresión anerior, efecivamene es necesario verificar la siguiene condición para que no haya sesgo: PX β 0. En esa expresión, los parámeros no pueden conener ningún cero, ya que se supone que la especificación del modelo es correca (no sobra ninguna variable explicaiva). Por ello, la expresión anerior de la insesgadez de los parámeros alernaivos queda reducida a que: PX 0. 3) Mariz de varianzas-covarianzas del esimador alernaivo A coninuación, se calcula la expresión de la mariz de varianzas-covarianzas de esos esimadores que, para ser insesgados, nos permien suprimir de los cálculos cualquier produco en el que inervenga PX 0 (o su ranspuesa). var( β ) E [( β + [ X ' X X ' U + PU β ))( β + [ X ' X X ' U + PU β ))' { β ) 0} E[ ([ X ' X X ' U + PU )([ X ' X X ' U + PU )' E[ X ' X X ' UU ' X [ X ' X + [ X ' X X ' UU ' P' + PUU ' X [ X ' X + PUU ' P' { UU ') σ I } σ ([ X ' X X ' X [ X ' X + [ X ' X X ' P' + PX [ X ' X + PP n { PX 0} σ ([ X ' X var( β ) σ ( 4) Comparación de varianzas + PP') [ X ' X + PP' ) Finalmene, hay que comprobar que efecivamene las varianzas de los esimadores MCO siempre son inferiores a las varianzas de cualquier oro esimador insesgado: var( β ) σ ( [ X ' X + PP') > σ ([ X ' X var( β ) Esa condición se verifica siempre, ya que PP es una mariz por su ranspuesa, luego en su diagonal siempre hay números posiivos y es precisamene la diagonal principal donde en la mariz de varianzas-covarianzas esán las varianzas. ')

5 Economería I. DADE Noas de Clase CONSISTENCIA Por úlimo, se demosrará que los parámeros MCO son consisenes; es decir, que ampliando la muesra al oal de la población, el valor esimado coincide con el real o, dicho de ora forma, que cuando conamos con odos los daos, no con una muesra, el cálculo de MCO da como resulado los parámeros reales, un cálculo exaco, luego con varianza igual a cero. p lim ( ) β β p lim(var( )) β 0 Para demosrar esa siuación, emplearemos la segunda expresión (la de la probabilidad asinóica de la varianza de los esimadores). Susiuyendo esa fórmula por su expresión de cálculo (a la que hemos llegado cuando realizámos la demosración de la eficiencia u opimalidad de los parámeros) enemos: p lim(var( )) β σ σ X ' X n n [ X ' X 0 Lo anedicho, podría inerprearse como que, a medida que vamos aumenando el número de daos en nuesra esimación ( n iende a infinio), el valor del produco sería cada vez más pequeño; es decir, se iría aproximando a cero. En el límie, sería nulo siempre que el segundo valor del produco (la mariz inversa) fuera calculable. COROLARIO En definiiva, después de haber observado que los esimadores MCO cumplen con las cuaro propiedades propuesas (linealidad, insesgadez, opimalidad y consisencia); además de saber que conamos con las esimaciones paraméricas con mayores garanías esadísicas, ambién podemos saber que los coeficienes del modelo se disribuyen como una Normal, con media el verdadero valor del parámero (son insesgados) y varianza COV VAR( ) β σ [ X ' X 1. Es decir: β N( β; σ [ X ' X ) 1 En cualquier caso, esa expresión no será de uilidad para deerminar los inervalos de confianza de los parámeros (para conocer enre qué bandas se moverán los verdaderos valores de los parámeros) salvo que obengamos un méodo para esimar la varianza de las perurbaciones aleaorias que inerviene en esa fórmula σ.

CONTRASTES DE SIGNIFICATIVIDAD INDIVIDUAL DE LOS PARÁMETROS

CONTRASTES DE SIGNIFICATIVIDAD INDIVIDUAL DE LOS PARÁMETROS ECONOMETRÍA I. LADE Página /8 APUNTES DE CLASE Profesor Rafael de Arce rafael.dearce@uam.es CONTRASTES DE SIGNIFICATIVIDAD INDIVIDUAL DE LOS PARÁMETROS. Inroducción. Inervalo de confianza de los parámeros

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR)

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) ESPECIFICACION La meodología VAR es, en ciera forma, una respuesa a la imposición de resricciones a priori que caraceriza a los modelos economéricos keynesianos:

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

TODO ECONOMETRÍA. Autocorrelación

TODO ECONOMETRÍA. Autocorrelación TODO ECONOMETRÍA Auocorrelación Índice Definición Causas Consecuencias Deección Medidas correcivas Definición de la auocorrelación Definición de auocorrelación La perurbación de una observación cualquiera

Más detalles

Estimación puntual ± Margen de error

Estimación puntual ± Margen de error Esimación Punual Para esimar el valor de un parámero poblacional se calcula la caracerísica correspondiene de la muesra, a lo que se le conoce como esadísico muesral. A la media muesral x se le idenifica

Más detalles

Capítulo 20. REGRESORES ESTOCASTICOS

Capítulo 20. REGRESORES ESTOCASTICOS Capíulo 20. REGRESORES ESTOCASTICOS 20.. INTRODUCCIÓN... 860 CONSECUENCIAS SOBRE LA ESTIMACIÓN MCO... 862 DISTRIBUCIÓN CONDICIONADA... 866 CASO A. VARIABLE EXPLICATIVA ENDÓGENA CON RETARDO... 868 CASO

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

Análisis estocástico de series temporales

Análisis estocástico de series temporales Análisis esocásico de series emporales Ernes Pons (epons@ub.edu) Análisis esocásico de Series Temporales Moivación Ejemplos 4500000 8 4000000 6 3500000 4 3000000 2 0 2500000-2 2000000-4 500000-6 000000-8

Más detalles

h + para cualquier m 1, 5.2. Modelo E-GARCH Introducción

h + para cualquier m 1, 5.2. Modelo E-GARCH Introducción 5.2. Modelo E-GARCH Inroducción Los modelos GARCH exponenciales nacen a parir de la publicación de Daniel Nelson (99) sobre heerocedasicidad condicional en los modelos de renabilidad de acivos. Dicho auor

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de 2013 12:00 horas Primer Apellido: Nombre: DNI: Teléfono: Segundo Apellido: Grupo y Grado: Profesor(a): e mail: Preguna 1 A B C

Más detalles

ECONOMETRÍA EMPRESARIAL II ADE

ECONOMETRÍA EMPRESARIAL II ADE 4 Bernardí Cabrer Economería Empresarial II Tema 8 ECONOMETRÍA EMPRESARIAL II ADE TEMA 8 MODELOS LINEALES SIN ESTACIONALIDAD I ( Modelos regulares 4 Bernardí Cabrer Economería Empresarial II Tema 8 8.

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión Comenarios de la Noa Técnica sobre la Deerminación del Incremeno de la Reserva de Previsión Fernando Solís Soberón y Rosa María Alaorre Junio 1992 Serie Documenos de Trabajo Documeno de rabajo No. 3 Índice

Más detalles

Complejidad de modelos: Sesgo y Varianza

Complejidad de modelos: Sesgo y Varianza Complejidad de modelos: Sesgo y Varianza 17 de abril de 2008 Noas de clase. Rolando Belrán A Las medidas de sesgo y varianza son úiles para los modeladores en ano que ayudan a regular la complejidad del

Más detalles

TEMA VI: EL MODELO DE REGRESIÓN LIENAL SIMPLE

TEMA VI: EL MODELO DE REGRESIÓN LIENAL SIMPLE El modelo de regresión lineal simple EMA VI: EL MODELO DE REGREIÓN LIENAL IMPLE VI..- Inroducción. VI..- El modelo de regresión lineal simple. Propiedades. VI.3.- Obención de los esimadores por mínimos

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

PRÁCTICA 2: Ejercicios del capítulo 4

PRÁCTICA 2: Ejercicios del capítulo 4 PRÁCTICA : Ejercicios del capíulo 4. Un psicólogo clínico desea evaluar la eficacia de una erapia para reducir la ansiedad de los ejecuivos que padecen esrés en la oma de decisiones empresariales. Para

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

III EXÁMENES DE ECONOMETRÍA EMPRESARIAL

III EXÁMENES DE ECONOMETRÍA EMPRESARIAL III EXÁMENES DE ECONOMETRÍA EMPRESARIAL 1* a) Indique razonadamene las hipóesis sobre el érmino de perurbación en el modelo lineal básico. b) Suponiendo las hipóesis básicas del aparado a), los residuos

Más detalles

ECONOMETRÍA I. Autocorrelación. Autocorrelación. Lección 4: Autocorrelación. Siga. 1. Qué es un modelo con autocorrelación?

ECONOMETRÍA I. Autocorrelación. Autocorrelación. Lección 4: Autocorrelación. Siga. 1. Qué es un modelo con autocorrelación? ECONOMERÍA I Lección 4: Auocorrelación. jm Auocorrelación.. Qué es un modelo con auocorrelación?. Con qué ipo de daos económicos se suelen presenar modelos auocorrelacionados? Auocorrelación. 3. Qué problemas

Más detalles

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver

Más detalles

E C O N O M E T R I A

E C O N O M E T R I A UNIVERSIDAD NACIONAL DE PIURA FACULAD DE ECONOMIA DPO. DE ECONOMERIA Y MEODOS CUANIAIVOS E C O N O M E R I A I M. Sc. Eco. LUIS A. ROSALES GARCÍA CASILLA, AGOSO DEL 001 CAPIULO I PERURBACIONES AUOCORRELACIONADAS

Más detalles

Departamento de Fundamentos del Análisis Económico. Universidad de Alicante. Curso 2011/12. ECONOMETRÍA I Hoja de problemas del Tema 3

Departamento de Fundamentos del Análisis Económico. Universidad de Alicante. Curso 2011/12. ECONOMETRÍA I Hoja de problemas del Tema 3 Deparameno de Fundamenos del Análisis Económico. Universidad de Alicane. Curso 011/1 ECONOMETRÍA I Hoja de problemas del Tema 3 Noa: En odos los conrases ome como nivel de signi cación el 5%. 1.- Para

Más detalles

Estudio Empírico de la Selección y Estimación de los Modelos de Crecimiento Estadístico

Estudio Empírico de la Selección y Estimación de los Modelos de Crecimiento Estadístico Esudio Empírico de la Selección Esimación de los Modelos de Crecimieno Esadísico S. Amirkhalhali, U.L.G. Rao and S. Amirkhalkhali 1 Resumen: En ese papel se comparan los modelos de crecimieno Lineal Exponencial

Más detalles

4.- Dualidad. Método Dual del Símplex.

4.- Dualidad. Método Dual del Símplex. Programación Maemáica para Economisas 132 4.- Dualidad. Méodo Dual del Símplex. Como ya vimos en el capíulo primero, dado un problema de programación no lineal, donde su lagrangiana oma la forma: se denomina

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N

CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N Los méodos uilizados para la elaboración del Presupueso General de la Nación es uno de los emas acuales

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Normalidad de los errores. Fortino Vela Peón Universidad Autónoma Metropolitana

Normalidad de los errores. Fortino Vela Peón Universidad Autónoma Metropolitana Normalidad de los errores Forino Vela Peón Universidad Auónoma Meropoliana fvela@correo.xoc.uam.mx Ocubre, 00 0/0/0 México, D. F. Inroducción Uno de los supuesos básicos del modelo de regresión lineal

Más detalles

ECONOMETRÍA APLICADA A LA TOMA DE DECISIONES

ECONOMETRÍA APLICADA A LA TOMA DE DECISIONES ECONOMERÍA APLICADA A LA OMA DE DECIIONE EMPREARIALE Lección 4: Auocorrelación. jm Diaposiiva jm e agradece la conribución de los profesores Arranz, uárez y Zamora, cuyos maeriales de clase se han uilizado

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN ESTUDIO DE MERCADO. MÉTODOS DE PROECCIÓN Qué es una proyección? Es una esimación del comporamieno de una variable en el fuuro. Específicamene, se raa de esimar el valor de una variable en el fuuro a parir

Más detalles

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004)

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004) EMA 2 MODELO LINEAL SIMPLE (MLS) Gujarai, Economeria (2004). Planeamieno e inerpreación del modelo economérico lineal simple. Capíulo 2 páginas 36 a 39 2. Hipóesis Básicas del Modelo Capíulo 3 páginas

Más detalles

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD Pronósicos II Un maemáico, como un pinor o un poea, es un fabricane de modelos. Si sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico,

Más detalles

LA BANCA COMERCIAL Y LA COTIZACION DEL DÓLAR EN EL MERCADO PARALELO Rolando Virreira C. 1. INTRODUCCION

LA BANCA COMERCIAL Y LA COTIZACION DEL DÓLAR EN EL MERCADO PARALELO Rolando Virreira C. 1. INTRODUCCION LA BANCA COMERCIAL Y LA COTIZACION DEL DÓLAR EN EL MERCADO PARALELO Rolando Virreira C. 1. INTRODUCCION Mucho se ha comenado en los úlimos años, en senido de que la banca privada ha enido y iene una influencia

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación.

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación. Gráficos con Maple Maple incluye poenes capacidades gráficas que permien realizar represenaciones bidimensionales, ridimensionales e incluso animaciones. El programa es muy flexible en lo que a la enrada

Más detalles

( ) Análisis de la fórmula para la calificación de pruebas tipo test multi-respuesta. J. L. González-Santander y G. Martín

( ) Análisis de la fórmula para la calificación de pruebas tipo test multi-respuesta. J. L. González-Santander y G. Martín ereis Revisa Iberoamericana Inerdisciplinar de Méodos, Modelización y Simulación 3 53-59 Análisis de la fórmula para la calificación de pruebas ipo es muli-respuesa Fecha de recepción y acepación: 9 de

Más detalles

Una aplicación Bayesiana a la Modelización de Mercados

Una aplicación Bayesiana a la Modelización de Mercados Una aplicación Bayesiana a la Modelización de Mercados Maser Oficial en Ingeniería Maemáica Problema planeado por BAYES INFERENCE, S. A. Exposición del problema (I) Se considera un mercado de compeencia

Más detalles

LECTURA 07: PRUEBA DE HIPÓTESIS (PARTE I) TEMA 15: PRUEBA DE HIPOTESIS: DEFINICIONES GENERALES

LECTURA 07: PRUEBA DE HIPÓTESIS (PARTE I) TEMA 15: PRUEBA DE HIPOTESIS: DEFINICIONES GENERALES LECTURA 7: PRUEBA DE HIPÓTESIS (PARTE I) TEMA 15: PRUEBA DE HIPOTESIS: DEFINICIONES GENERALES 1 INTRODUCCION El propósio de análisis esadísico es reducir el nivel de inceridumbre en el proceso de decisiones

Más detalles

ERRORES DE MEDICION Y EL USO DE VARIABLES INSTRUMENTALES

ERRORES DE MEDICION Y EL USO DE VARIABLES INSTRUMENTALES Apnes de eoría Economérica I. Profesor: Viviana Fernández ERRORES DE MEDICION EL USO DE VARIABLES INSRUMENALES I Casos de Errores de Medición En esa sección analizaremos la exisencia de errores de medición

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico Curso 6/7 Economería II Tema : Procesos Esocásicos. Caracerización de los procesos ARIMA. Concepo de proceso esocásico sico. Esacionariedad fuere y débil de los procesos esocásicos. Teoremas de ergodicidad

Más detalles

" CONTRASTES DE EXPECTATIVAS RACIONALES Y NEUTRALIDAD DE LA POLITICA MONETARIA A CORTO PLAZO: EL CASO DE ESPAÑA "

 CONTRASTES DE EXPECTATIVAS RACIONALES Y NEUTRALIDAD DE LA POLITICA MONETARIA A CORTO PLAZO: EL CASO DE ESPAÑA " CONTRASTES DE EXPECTATIVAS RACIONALES Y NEUTRALIDAD DE LA POLITICA MONETARIA A CORTO PLAZO: EL CASO DE ESPAÑA " Ignacio Díaz-Emparanza Herrero INDICE [-------------------------------------------------]

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Notas sobre Análisis de Series de Tiempo: Estacionariedad, Integración y Cointegración

Notas sobre Análisis de Series de Tiempo: Estacionariedad, Integración y Cointegración Noes on Time Series Analysis:\Saionariy, Inegraion and Coinegraion hp://www.personal.rdg.ac.uk/~lessda/lecure3.hm Noas sobre Análisis de Series de Tiempo: Esacionariedad, Inegración y Coinegración Generalidades

Más detalles

Econometría Examen Parcial #1 Cali, Sábado 27 de Febrero de 2010

Econometría Examen Parcial #1 Cali, Sábado 27 de Febrero de 2010 Economería 0616 Examen Parcial #1 Cali, Sábado 7 de Febrero de 010 Profesores: Julio César Alonso C. Carlos Giovanni González Ana Isabel Gallego L. Esudiane: Código: Insrucciones: 1. Lea cuidadosamene

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA Insrucor: Horacio Caalán TEORÍA DE COINTEGRACIÓN Efecos de las propiedades esocásicas de las series en un modelo de regresión

Más detalles

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08 Esadísica Convocaoria de Junio Faculad de Ciencias del ar. Curso 007/08 /07/08 El galludo (Squalus egalops) es una especie de iburón de aguas empladas a ropicales, que habia la plaaforma coninenal exerior

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

Sesión 2 Análisis univariado de series de tiempo

Sesión 2 Análisis univariado de series de tiempo Banco Cenral de Reserva del Perú 55º Curso de Exensión Universiaria Economería Prof. Juan F. Casro Sesión Análisis univariado de series de iempo 4. Series de iempo esacionarias 4.. Qué enendemos por proceso

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

GESTIÓN DE INVENTARIOS Código: M. Docente: Julio César Londoño Ortega

GESTIÓN DE INVENTARIOS Código: M. Docente: Julio César Londoño Ortega GESTIÓN DE INVENTARIOS Código: 760033M Docene: Julio César ondoño Orega 1. Concepos avanzados de pronósicos de demanda 1. CONCEPTOS AVANZADOS DE PRONÓSTICOS DE DEMANDA Medición y análisis de los errores

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión:

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión: MMII_L_C5: Problema de la cuerda finia: Méodos direco y de las imágenes. Guión: En esa lección se esudia el problema de una cuerda finia, por lo ano, es el problema con dos condiciones de conorno. Como

Más detalles

Matemáticas II TEMA 10 La integral indefinida

Matemáticas II TEMA 10 La integral indefinida nálisis. Inegral Indefinida Maemáicas II TEM 0 La inegral indefinida. oncepo de inegral indefinida La derivada de una función permie conocer la asa de variación (el cambio insanáneo) de un deerminado fenómeno

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

Capítulo 19. MINIMOS CUADRADOS NO LINEALES

Capítulo 19. MINIMOS CUADRADOS NO LINEALES Capíulo 9. MINIMOS CUADRADOS NO LINEALES 9. PRUEBA DE LINEALIDAD DEL MODELO... 84 9.. ESPECIFICACIÓN DE MODELOS NO LINEALES... 85 9.3. ESTIMACIÓN POR MCNL... 830 9.4. EVALUACIÓN DE ECUACIONES DE REGRESIÓN

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

Serie Apuntes de Clase ΩΒΓ

Serie Apuntes de Clase ΩΒΓ Serie Apunes de Clase ΩΒΓ N 4 Seiembre del 04 Rafael Busamane Romaní UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Universidad del Perú, DECANA DE AMÉRICA FACULTAD DE CIENCIAS ECONÓMICAS La Serie Apunes de

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

El Índice de Revalorización de las Pensiones (IRP): Propuestas de solución del problema de circularidad

El Índice de Revalorización de las Pensiones (IRP): Propuestas de solución del problema de circularidad Documeno de Trabajo DT/205/ El Índice de Revalorización de las Pensiones (IRP): Propuesas de solución del problema de circularidad Resumen Uno de los objeivos de la reforma de 203 del Sisema de Pensiones

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

COBERTURA DE CARTERAS ÍNDICE DE RENTA VARIABLE CON FUTUROS SOBRE EL IBEX 35

COBERTURA DE CARTERAS ÍNDICE DE RENTA VARIABLE CON FUTUROS SOBRE EL IBEX 35 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES Deparameno de Economía Financiera y Conabilidad III (Economía y Adminisración Financiera de la Empresa) COBERTURA DE CARTERAS

Más detalles

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA)

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA) UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS / ASIGNATURA : Ingeniería de Procesos III (ITCL 4) PROFESOR : Elon F. Morales Blancas UNIDAD 6: CONGELACIÓN DE ALIMENTOS

Más detalles

Objetivos. El alumno planteará, mediante un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo.

Objetivos. El alumno planteará, mediante un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo. Objeivos El alumno planeará, mediane un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo. Al final de esa prácica el alumno podrá: 1. Analizar el problema

Más detalles

1.1 Utilizando sistemas modulares, resolver la ecuación + =.

1.1 Utilizando sistemas modulares, resolver la ecuación + =. 5. 5. 1. Sisemas de la forma: Una ecuación con dos o más variables. 1.1 Uilizando sisemas modulares, resolver la ecuación + =. La ecuación 3 +5 =23 es equivalene a 3 23 ó.5, eso es, planeamos conocer el

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

Modelos de Ecuaciones Simultáneas. donde R y Y son variables endógenas, y M es determinada exógenamente.

Modelos de Ecuaciones Simultáneas. donde R y Y son variables endógenas, y M es determinada exógenamente. 1 Modelos de Ecuaciones Simuláneas Considere el siguiene modelo: R = β + β M + β Y + u (1) 0 1 2 1 Y = α + α R + u (2) 0 1 2 donde R y Y son variables endógenas, y M es deerminada exógenamene. La información

Más detalles

E C O N O M E T R Í A. Guía de trabajos prácticos. Universidad de Buenos Aires Facultad de Ciencias Económicas

E C O N O M E T R Í A. Guía de trabajos prácticos. Universidad de Buenos Aires Facultad de Ciencias Económicas E C O N O M E T R Í A Guía de rabajos prácicos Universidad de Buenos Aires Faculad de Ciencias Económicas Cáedra: Economería Profesor iular Dr. Heribero Urbisaia Profesora Asociada Dra. Juana Z. Brufman

Más detalles

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN Auores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ana López (alopezra@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), MAPA CONCEPTUAL Definición

Más detalles

M O D E L O S D E I N V E N T A R I O

M O D E L O S D E I N V E N T A R I O nvesigación Operaiva Faculad de iencias Exacas - UNPBA M O E L O E N V E N T A O El objeivo de la eoría de modelos de invenario es deerminar las reglas que pueden uilizar los encargados de gesión para

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

Sesión 2 Análisis univariado de series de tiempo. 5. Series de tiempo no estacionarias en media

Sesión 2 Análisis univariado de series de tiempo. 5. Series de tiempo no estacionarias en media Banco Cenral de Reserva del Perú 55º Curso de Exensión Universiaria Economería Prof. Juan F. Casro Sesión 2 Análisis univariado de series de iempo 5. Series de iempo no esacionarias en media La maoría

Más detalles

Econometría de Series de Tiempo 1

Econometría de Series de Tiempo 1 Economería de Series de Tiempo Economería II Prof. Arlee Belran Barco En esa sección, se desarrollará un análisis de la economería de series de iempo que abarcará res grandes emas: el análisis univariado,

Más detalles

VOLATILIDAD DE LA TASA DE CAMBIO PESO DÓLAR: ESTIMACIÓN DE UN INDICADOR PARA LA GESTIÓN DEL RIESGO Y LA PLANEACIÓN DE ESTRATEGIAS DE INVERSIÓN

VOLATILIDAD DE LA TASA DE CAMBIO PESO DÓLAR: ESTIMACIÓN DE UN INDICADOR PARA LA GESTIÓN DEL RIESGO Y LA PLANEACIÓN DE ESTRATEGIAS DE INVERSIÓN VOLATILIDAD DE LA TASA DE CAMBIO PESO DÓLAR: ESTIMACIÓN DE UN INDICADOR PARA LA GESTIÓN DEL RIESGO Y LA PLANEACIÓN DE ESTRATEGIAS DE INVERSIÓN MARCELA CONSTANZA TECANO MOLANO Direcor Ingeniero DIEGO HERNÁNDEZ

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

Modelos de Heteroscedasticidad Condicional

Modelos de Heteroscedasticidad Condicional Modelos de Heeroscedasicidad Condicional El objeivo de ese ema es esudiar algunos méodos esadísicos y modelos economéricos disponibles en la lieraura para modelizar la volailidad del rendimieno de un acivo.

Más detalles

Tema 10 La economía de las ideas. El modelo de aumento en el número de inputs de Romer (1990)

Tema 10 La economía de las ideas. El modelo de aumento en el número de inputs de Romer (1990) Tema 0 La economía de las ideas. El modelo de aumeno en el número de inpus de Romer (990) 0. Endogeneización de la ecnología: un doble enfoque. 0.2 El secor producor de bienes finales. 0.3 Las empresas

Más detalles