EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD"

Transcripción

1 EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg Comprueb: sec + cos ec ( sen cos ( sen + cos + tg cos cos x tg sen x x + tg x - Hllr ls restntes rzones trigonométrics del ángulo α en los siguientes csos: cosα tgα y α > 90º 5 7π 4- Sin utilizr clculdor hll: sen 5º, sen 0º, tg (-45º, sen 6 5π 5- Clculr cot g sec( 50º + sen(40º + cos( Simplific l siguiente expresión: π sen ( π + α cos α tg( π + α senα cos α sen( α ( sec sen 7- Simplific l siguiente expresión: cosec tg cos 8- Clculr ls restntes rzones trigonométrics: α II cudrnte cosα α IV α II cudrnte, cudrnte, cosec(π α sec( π α 4 9- Se un ángulo del curto cudrnte y cos clculr 5 cos( 90, sen(80 +, cos ec(80, sec( 0- El coseno de uno de los ángulos gudos de un triángulo rectángulo vle 5 y su hipotenus mide 5 cm. Clculr cuánto miden los otros ldos.

2 - Resolver el triángulo rectángulo en A del que sbemos m y - Demostrr que en un triángulo rectángulo ABC (A 90º se verific: senb + cosc bc tgb senb sen B + sen C cos B + senc (Solución: Recuerd B + C 90º, C 90 B - Tres puntos A,B y C están unidos por crreters. L distnci de A B es 6 km, l distnci de B C es 9 km y el ángulo de AB con BC es 0º Cuál es l distnci de A C? π π 4- De un triángulo conocemos A, B y 00 cm. Clculr el resto de los ldos y 6 4 el ángulo. 5- Dos coches que vn 60 km/h y 50 km/h tomn dos crreters que se bifurcn con un ángulo de 70º Qué distnci hbrá entre ellos los 0 minutos de vije? 6- Desde un vión se divisn dos poblciones A y B. Ls visules desde el vión dirigids A y B formn un ángulo de 5º. Grcis l rdr, sbemos que l distnci del vión A es de 50 km. y l distnci B es de 00 km. Qué distnci hy entre A y B? Qué ángulo form l líne que une A y B con l visul de A? 7- Dos individuos A y B trtn de loclizr un emisor. El individuo A sbe que dich emisor está 0 Km. de él, y el individuo B sbe que el ángulo que formn ls línes que le unen l emisor y A es de 0 º. Si ellos se encuentrn un distnci de 8 km. A qué distnci de B se encuentr l emisor? 8- Hllr los ángulos de un triángulo isósceles cuyos ldos igules miden 5 m y el desigul 75 m. 9- En el triángulo ABC, AD es l ltur correspondiente l ldo BC. Clcul ls rzones trigonométrics de los ángulos Bˆ y Ĉ y hll l medid de los ángulos ABC sbiendo que AB cm, AD cm y CD 4, cm. 0- Uno de los ldos de un triángulo es doble del otro y el ángulo comprendido mide 60º. Hll los otros ángulos. B C - Resuelve el triángulo ddos los siguientes dtos: A ˆ 55º, Bˆ 98º, 7,5cm. - En un triángulo se conocen: A ˆ 5º, b 0cm, c 4cm. Resuelve el triángulo. - Resuelve un triángulo del que se conocen 7 cm, b 4 cm, c 68 cm. 4- En un cmpo de fútbol, se coloc el blón en un punto situdo 5 m y 8 m de cd uno de los postes de l porterí, cuyo ncho es de 7 m. Bjo qué ángulo se ve l porterí desde dicho punto? 5- Sbiendo que en un triángulo se verific sen B sen C, sen A sen C y b 8 cm. Hllr los otros dos ldos y el ángulo C..

3 SOLUCIONES HOJA TRIGONOMETRÍA I - (Solución: 5 / - (Solución: sen α / 5, tgα / sen α - cosα - - (Solución: 4- (Solución: + 5- (Solución: cosα 6- (Solución: + cosα - d (Solución: sen α, tgα senα - tg α 7 senα tgα (Solución: - - d (Solución: b 9 cm, c cm 0- (Solución: B 0º, C 60º, b 56m c 56 m - (Solución: d ( A, C 7 km - (Solución: C 05º, b 00 c 00 sen05º - (Solución: 0,608 km 4- (Solución: d 49,69 A 0,6º 5- (Solución: 6,0954 km 6- (Solución: A 0º, B C 0º 7- (Solución: senc 0,49 cosc 0,908 cos B 5 / senb / 8- (Solución: A 0º, C 90º 9- (Solución: b 9, , C 7º, c 4, ,7645, C 4,645º, B 0,755 - A 8,57, B,85, C 8,668 ó A 8,57, B 90,5, C 6, - (Solución: A 60º - (Solución: c 8 /, 56 /, A 90º, C 0º, B 60º

4 TRIGONOMETRÍA II. Comprueb ls siguientes igulddes: cos( cos( + tg b sen( + + sen( tg sen + tg. Demuestr que cos x + sen x tg(45º + α tg(45º α tg α cos x + sen x cos x sen x. Sbiendo que tg( + 4 y que tg -. Clculr tg b y tg( (Solución: tg b, tg( 9 4 π π 4. Si y b son dos ángulos tles que tg y cos b, < y < b < π. 5 7 Clculr sen(-, cos b, sen y tg ( +. (Solución: sen (, cos b, sen, tg( Resuelve ls siguientes ls siguientes ecuciones: x 4sen + cos x (Solución: 60º + 60k, 00º + 60k cosx 5 6cos x (Solución: 0º, 50º, 0º, 0º + 60k 4sen(x 0º cos(x 0º (Solución: k, k d sen x+ cos x+ cosx 0 (Solución: 80º e tgx cos x (Solución: 45º, 5º f senx + cos x 0 (Solución: 40º + 60k, 00º + 60k, 90+80k 6. Demostrr que en un triángulo culquier: A + C B tg( A + B + tgc 0 Tg Cotg d cos A + cos( B + C 0 e sena sen( B + C (Solución: Recuerd A + B + C 80º 7. Comprueb que sen b.cos( + cos b.sen( sen cos( A B cosc cos A cos B 8. Siendo tg α, cosα < 0, clculr sin utilizr clculdor: senα sen(0º + α α sen (Solución: Resuelve el triángulo del que se conocen los siguientes dtos:, b, Aˆ Bˆ. (Solución: ˆ ˆ ˆ A 60º, B 0º, C 90º, c

5

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

PLANTEL Iztapalapa V

PLANTEL Iztapalapa V Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +

Más detalles

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5.

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5. Mtemátics Bchillerto? Solucionrio del Libro Trigonometrí 07 Actividdes. Clcul ls rzones trigonométrics de un ángulo del segundo cudrnte, si. De sen cos se obtiene cos sen 9. Como está en el tercer cudrnte,

Más detalles

Unidad 5-. Trigonometría II 1

Unidad 5-. Trigonometría II 1 Unidd - Trigonometrí II ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Sbiendo que sen - / y tg b /7, y que 70 < < 0 y 80 < b < 70, clcul: sen ( b bb cos ( b cc tg ( b Hllmos el resto de rzones trigonométrics

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm. TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones

Más detalles

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m? º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo

Más detalles

Unidad 5 Trigonometría II

Unidad 5 Trigonometría II Unidd 5 Trigonometrí II PÁGINA 111 SOLUCIONES 1. Ls tres igulddes son flss. Pr probrlo bst con utilizr l clculdor.. Clculmos el áre del octógono circunscrito y le restmos el áre del octógono inscrito obteniendo

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA) RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de

Más detalles

Unidad 5 Trigonometría II

Unidad 5 Trigonometría II Unidd Trigonometrí II PÁGINA SOLUCIONES. Ls tres igulddes son flss. Pr probrlo bst con utilizr l clculdor.. Clculmos el áre del octógono circunscrito y le restmos el áre del octógono inscrito obteniendo

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet Funciones trigonométricas (en el triángulo) c B a A α b C Funciones trigonométricas (en el triángulo) Algunas consideraciones sobre el triángulo rectángulo Sea un triángulo rectángulo cualquiera ABC Se

Más detalles

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo

Más detalles

1. Comprueba que la siguiente expresión trigonométrica es cierta: 4sen π 6 + 2cos π 4 +cosπ = 2

1. Comprueba que la siguiente expresión trigonométrica es cierta: 4sen π 6 + 2cos π 4 +cosπ = 2 1. Comprueba que la siguiente expresión trigonométrica es cierta: sen π 6 + cos π +cosπ =. Comprueba que la siguiente expresión trigonométrica es cierta: 3 sen π 3 + sen π 6 sen π = 3 3. Sin usar la calculadora,

Más detalles

Distancia de la Tierra a la Luna

Distancia de la Tierra a la Luna ASTRONOMÍA: Cálculo del rdio de l Tierr, distnci de l Tierr l Lun, distnci de l Tierr l Sol, predicción de eclipses, confección de clendrios... CARTOGRAFÍA: Elborción del mp de un lugr del que se conocen

Más detalles

Algunos Ejercicios de Trigonometría

Algunos Ejercicios de Trigonometría Algunos Ejercicios de Trigonometrí. Cuál es el vlor de sec00?. A qué es equivlente l expresión α sec( 90 α ) tn α tn( 90 α ) sec α cosα. Si en un triángulo rectángulo cos α = Cuál o cules proposiciones

Más detalles

Unidad 4 Trigonometría I

Unidad 4 Trigonometría I Unidad 4 Trigonometría I PÁGINA 87 SOLUCIONES 1. Sabemos que cosα = 0, y que 90º < α < 180º. Utilizando la fórmula hallamos senα = 0,98. Por otro lado quedaría: sen α + cos α = 1 senα tgα = = 4,9 cosα.

Más detalles

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés TRIGONOMETRÍA (Primer prte) Relizdo por Mª Jesús Arruego Bgüés INTRODUCCIÓN Trigonometrí signific, etimológicmente, medid de triángulos. En los trbjos topográficos y de l construcción es necesrio conocer

Más detalles

BOLETÍN Nº5. TRIGONOMETRÍA

BOLETÍN Nº5. TRIGONOMETRÍA BOLETÍN Nº5. TRIGONOMETRÍA 1. Completa la tabla:. Halla las restantes razones trigonométricas del ángulo α: 3. Expresa en función de ángulos del primer cuadrante, los senos y cosenos de los siguientes

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

BLOQUE 3: TRIGONOMETRÍA. Resolución de triángulos. Funciones y fórmulas trigonométricas.

BLOQUE 3: TRIGONOMETRÍA. Resolución de triángulos. Funciones y fórmulas trigonométricas. BLOQUE : TRIGONOMETRÍA Resolución de triángulos Funciones y fórmulas trigonométricas. 6 . RESOLUCIÓN DE TRIÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Recordamos las razones trigonométricas (seno,

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA -Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60.

Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60. ACTIVIDADES a) b) c) π x 0π π = x = = rad 60 10 60 18 π x 70π π = x = = rad 60 15 60 π x 10π π = x = = rad 60 60 60 a) 60 x 60 π = x = = 10º π π 6π b) 60 x 60 = x = = 171,88º π π c) 60 x 60 π = x = = 0º

Más detalles

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II)

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIERÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

AMPLIACIÓN DE TRIGONOMETRÍA

AMPLIACIÓN DE TRIGONOMETRÍA Alonso Fernández Glián 1. EL TEOREMA DEL SENO AMPLIACIÓN DE TRIGONOMETRÍA 1.1. OTRA DEMOSTRACIÓN DEL TEOREMA DEL SENO 1.. MEDIDA DE UN ÁNGULO INSCRITO EN UNA CIRCUNFERENCIA 1.3. UN COROLARIO DEL TEOREMA

Más detalles

Ejemplos: 2) Pasar 84º a rad: Lo expresamos en forma incompleja y obtenemos aproximadam. 84,43º 180º rad 84, 43 84, 43º x rad 180

Ejemplos: 2) Pasar 84º a rad: Lo expresamos en forma incompleja y obtenemos aproximadam. 84,43º 180º rad 84, 43 84, 43º x rad 180 1.- RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Medid de ángulos Pr medir ángulos se usn principlmente dos sistems de medid: - El sistem sexgesiml que us como unidd de medid el grdo sexgesiml, que es 1/90

Más detalles

Resolución de triángulos cualesquiera tg 15 tg 55

Resolución de triángulos cualesquiera tg 15 tg 55 Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,

Más detalles

EXAMEN DE TRIGONOMETRÍA

EXAMEN DE TRIGONOMETRÍA 1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Senx a) 0 b) 1 c) 2 d) 2

Senx a) 0 b) 1 c) 2 d) 2 EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).

Más detalles

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx REPASO DE TRIGONOMETRÍA.- Calcula las demás razones trigonométricas del ángulo α utilizando las relaciones fundamentales: (sin calcular el valor del ángulo α y trabajando con valores eactos) a) sen α,

Más detalles

Trigonometría Resolución de triángulos.

Trigonometría Resolución de triángulos. Trigonometría Resolución de triángulos. Razones trigonométricas de un ángulo agudo. Consideraremos el triángulo rectángulo ABC tal que A = 90º Recordemos que en triángulo rectángulo cualquiera se cumplía

Más detalles

Como el ángulo es mayor que 360º lo tratamos del siguiente modo:

Como el ángulo es mayor que 360º lo tratamos del siguiente modo: MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60

Más detalles

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es :

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es : Unidd Resolución de triángulos generles! 1 RESUELVE TÚ (!!") () Aplicndo el teorem de Pitágors en el triángulo rectángulo PQR de l figur djunt, verific que l ltur y del pistón en el instnte t es : y OQ

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

T R I G O N O M E T R Í A

T R I G O N O M E T R Í A T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

TRABAJO PRÁCTICO 5. 4) Un edificio de 100 m de altura proyecta una sombra de 120 m de longitud. Encontrar el ángulo de elevación del sol.

TRABAJO PRÁCTICO 5. 4) Un edificio de 100 m de altura proyecta una sombra de 120 m de longitud. Encontrar el ángulo de elevación del sol. TRABAJO PRÁCTICO 5 Matemática Preuniversitaria 01 Módulo. Trigonometría. Triángulos rectángulos. Relaciones trigonométricas. Resolución de triángulos. Algunas identidades trigonométricas. Teorema del seno

Más detalles

RADIANES. CÍRCULO Y CIRCUNFERENCIA. 2. La siguiente figura muestra un círculo de centro O y radio r cm, a) Halle la longitud del arco ABC.

RADIANES. CÍRCULO Y CIRCUNFERENCIA. 2. La siguiente figura muestra un círculo de centro O y radio r cm, a) Halle la longitud del arco ABC. C URSO: º BACHILLERATO RADIANES. CÍRCULO Y CIRCUNFERENCIA. 1. La siguiente figura muestra un círculo de centro O y radio 40 cm, Los puntos A, B y C pertenecen a la circunferencia del círculo y AOC = 1,9

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1) Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes

Más detalles

Guía - 2 de Funciones: Trigonometría

Guía - 2 de Funciones: Trigonometría Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:

Más detalles

Problemas Tema 2 Solución a problemas de Trigonometría - Hoja 5 - Problemas 1, 2, 3, 4, 5, 6

Problemas Tema 2 Solución a problemas de Trigonometría - Hoja 5 - Problemas 1, 2, 3, 4, 5, 6 página 1/11 Problemas Tema 2 Solución a problemas de Trigonometría - Hoja 5 - Problemas 1, 2, 3, 4, 5, 6 Hoja 5. Problema 1 Resuelto por Víctor J. López Marín (noviembre 2014) 1. Calcula: a) cos(arcsen(

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Ejercicios propuestos

Ejercicios propuestos INGRESO ESCUELA NAVAL MILITAR TRIGONOMETRIA Ejercicios propuestos 1. La superficie de un triángulo cuyos lados miden: a = 482,66 m ; b = 4,26 m ; c=24,28m, es aproximadamente: a) 41,6 m² b) 41,6 m² c)

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA EJERCICIOS DE TRIGONOMETRÍA. Sabiendo que cot g y que, determina: a. cos d. sec cot g b. sen e. c. tg f. cos. Hallar el valor de las siguientes expresiones: sen / x cos x sen x a. cos x sen x b. c. tgx

Más detalles

DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes

DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se genera por la rotación de un rayo desde una posición inicial hasta otra posición final, siempre alrededor de un punto fijo llamado vértice.

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O. 4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García . MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

= + = 1+ Cuarta relación fundamental

= + = 1+ Cuarta relación fundamental 1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)

Más detalles

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados. Tema : TRIGONOMETRÍA PLANA..1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.. Razones trigonométricas del ángulo doble y del ángulo mitad..3 Teoremas del coseno

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente: ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)

Más detalles

TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4.

TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4. TRIGONOMETRÍA Trigonometría(pendientes 1ºBach.) 1.- Existe un ángulo "x" tal que sen x =1/ y cos x =1/4? Puede valer el seno de un ángulo 1/8?. Sol: no, si..- Calcula sen x, tg x, sec x, cosec x, y cotg

Más detalles

ORIENTACIONES PARA RECUPERAR LA MATERIA EN LA CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE

ORIENTACIONES PARA RECUPERAR LA MATERIA EN LA CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE Colegio Diocesno Sgrdo Corzón de Jesús Deprtmento de Mtemátics ORIENTACIONES PARA RECUPERAR LA MATERIA EN LA CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE ASIGNATURA MATEMÁTICAS CURSO º ESO B Y C LA FECHA

Más detalles

EJERCICIOS DE MATEMÁTICAS I

EJERCICIOS DE MATEMÁTICAS I EJERCICIOS DE MATEMÁTICAS I NOTAS REPASAR TODAS LAS DEMOSTRACIONES DE LOS TEMAS, Y ESTE TRABAJO NO ES OBLIGATORIO.. Efectúa: a) 6 6 b) 5 6 50. Racionaliza:. Epresa en forma de una potencia única 5 6..

Más detalles

19. Indica la medida de todos los ángulos x tales que se verifiquen :a) senx=- ; b)cosx=0;

19. Indica la medida de todos los ángulos x tales que se verifiquen :a) senx=- ; b)cosx=0; Boletín II trigonometría 1. Existe un ángulo "x" tal que senx=1/ y cosx=1/? Razona tu respuesta. Puede valer el seno de un ángulo 9/8? Razona tu respuesta. Existe algún ángulo que cumpla senx=1/ y tgx=1/9?

Más detalles

b)1 sena cosa = cosa 1+sena

b)1 sena cosa = cosa 1+sena Ejercicio 1.- Deducir y memorizar las razones trigonométricas de los ángulos de: 0, 30, 45, 60, 90, 180, 70, y 360. Ejercicio.- Expresar en radianes los siguientes ángulos dados en grados: 30, 45, 80,

Más detalles

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA.

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. CUADERNILLO DE VERANO. º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. Te preguntrás Qué pretendemos? OBJETIVOS:.- Reforr contenidos de opertori ásic..- Fomentr en el lumno el espíritu de superción frente contenidos

Más detalles

Colegio Sor Juana Inés de la Cruz Sección Preparatoria. Academia de Ciencias Exactas Ing. Jonathan Quiroga Tinoco

Colegio Sor Juana Inés de la Cruz Sección Preparatoria. Academia de Ciencias Exactas Ing. Jonathan Quiroga Tinoco Colegio Sor Jun Inés de l Cruz Sección Preprtori Acdemi de Ciencis Excts Ing. Jonthn Quirog Tinoco Mteril Didáctico: Guí de preprción pr el Exmen Extrordinrio Mtemátics II Segundo Semestre Ciclo Escolr:

Más detalles

MATEMÁTICAS I Modalidad Ciencias y Tecnología

MATEMÁTICAS I Modalidad Ciencias y Tecnología CUADERNO DE ACTIVIDADES CURSO 016/017 MATEMÁTICAS I Modalidad Ciencias y Tecnología 1º curso de Bachillerato I.E.S. Victoria Kent (Marbella) Departamento de Matemáticas Bloque de Aritmética y álgebra Ejercicio

Más detalles

Trigonometría. Guía de Ejercicios

Trigonometría. Guía de Ejercicios . Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas

Más detalles

Inyectivas, Suprayectyivas, Biyectivas. Funciones Trigonométricas

Inyectivas, Suprayectyivas, Biyectivas. Funciones Trigonométricas Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos θ Abcisa dep sen θ Ordenada dep Si S es el mismo ángulo medido en radianes y S

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

a ) x x y x y b) x x x : x x x x x x x x x d ) x x x : x x 2x - 3x + x + 8 :

a ) x x y x y b) x x x : x x x x x x x x x d ) x x x : x x 2x - 3x + x + 8 : EJERCICIOS MATEMÁTICAS B 4º E.S.O. JUNIO 05..- Clcul simplific: 6 6 4 5 4 7 4 5 4 5 4 6 5 5 7 5 ) b) c) d ) :.- Ddos los polinomios: P ( ), Q ( ), R()= - Clculr: 4 ) P( ) Q ( ) R( ) b) P( ) Q( ) R( ).-

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados? TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes

Más detalles

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA 2x x + 30 x 2x x + 20 5x 2x x -2 x 3x + 18 x 4. Rects prlels cortds por un trnsversl. lculr los vlores de x e y en cd cso y fundmentr ls relciones estblecids Ejercicio 1 Ejercicio 2 3x -20º y 2x x + y

Más detalles

UNIDAD 4: TRIGONOMETRÍA

UNIDAD 4: TRIGONOMETRÍA UNIDAD 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palara tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

FICHA BLOQUE 2. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. 1. Resuelve las siguiente ecuaciones:

FICHA BLOQUE 2. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. 1. Resuelve las siguiente ecuaciones: FICHA BLOQUE. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. Resuelve las siguiente ecuaciones: a) sen 6sen b) sen sen 0 5 8 8 5 6 6 69 6 60 9 k k k k 60 80 siendo 60 56" 0' 08 60 " 9' 5 8 5 Z c) 0 d)

Más detalles

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia

Más detalles

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente

Más detalles

Presionand o este botón se borra la

Presionand o este botón se borra la ACTIVIDAD CON EL GRAFICADOR Tema: GRAFICAR FUNCIONES TRIGONOMETRICAS Introducción: En el GRAFICADOR que usarán a continuación, el objetivo es graficar las diferentes funciones trigonométricas. Presionando

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Unidad 7. Trigonometría

Unidad 7. Trigonometría Págin Resuelve. ) Rzon que l estc y su sombr formn un triángulo rectángulo. Ocurre lo mismo con cd árbol y su sombr? b) Por qué se hn de dr pris en señlr los etremos de ls sombrs? Rzon que todos los triángulos

Más detalles

De la proporcionalidad de los lados de dos triángulos semejantes, obtenemos la definición de las razones trigonométricas de la siguiente forma:

De la proporcionalidad de los lados de dos triángulos semejantes, obtenemos la definición de las razones trigonométricas de la siguiente forma: TEMA 1: TRIGONOMETRÍA PLANA. 1.1. Conceptos Elementales de la trigonometría. 1.. Resolución de triángulos. 1.. Resolución de Ecuaciones. 1.1. Conceptos Elementales de la trigonometría. La palabra trigonometría

Más detalles

Unidad 4 Trigonometría I

Unidad 4 Trigonometría I Unidad 4 Trigonometría I PÁGINA 87 SOLUCIONES 1. Sabemos que cos 0, y que 90º 180º. Utilizando la fórmula hallamos sen 0,98. Por otro lado quedaría: sen cos 1 sen tg 4,9 cos. La discusión quedaría: a)

Más detalles

Módulo 6. Trigonometría

Módulo 6. Trigonometría Seminrio Universitrio Mtemátic Módulo 6 Trigonometrí L mtemátic compr los más diversos fenómenos y descubre ls nlogís secrets que los unen Joseph Fourier ÁNGULO ORIENTADO Pr comenzr trbjr con trigonometrí

Más detalles

Funciones y Procesos Infinitos: Trigonometría

Funciones y Procesos Infinitos: Trigonometría Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Funciones y Procesos Infinitos: Trigonometría Nombre: Curso: Fecha:

Más detalles

Problemas Tema 2 Solución a problemas de Trigonometría - Hoja 11 - Todos resueltos

Problemas Tema 2 Solución a problemas de Trigonometría - Hoja 11 - Todos resueltos Problemas Tema : Solución a problemas de Trigonometría - Hoja 11 - Todos resueltos página 1/6 Problemas Tema Solución a problemas de Trigonometría - Hoja 11 - Todos resueltos Hoja 11. Problema 1 1. Demuestra

Más detalles

Semejanza y trigonometría (I)

Semejanza y trigonometría (I) Semejanza y trigonometría (I) Al final de los enunciados tienes las soluciones finales. 1.- Halla la altura de un edificio que proyecta una sombra de 5 m. a la misma hora que un árbol de 1 m. proyecta

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles