STICA APLICADA stica Multivariada. Contenido

Tamaño: px
Comenzar la demostración a partir de la página:

Download "STICA APLICADA stica Multivariada. Contenido"

Transcripción

1 INSTITUTO MEXICANO DEL PETRÓLEO GEOESTADÍSTICA STICA APLICADA Tema: Geoestadística stica Multivariada Istructores: Dr. Martí A. Díaz Viera Dr. Ricardo Casar Gozález 2004 Coteido Itroducció Mometos cruzados de segudo orde Estimació del covariograma Aálisis estructural multivariado Modelo de corregioalizació lieal Validació del modelo de semivariograma cruzado Cokrigig Ordiario Cokrigig e el caso de fucioes aleatorias itrísecas Cokrigig e el caso o estacioario Cokrigig Colocado Eemplos de Aplicacioes del Cokrigig Dificultades y Aspectos Prácticos del Cokrigig Métodos alterativos al Cokrigig 0/0/2006 CG7-Geoestadística Multivariada 2

2 Itroducció La estimació couta de variables aleatorias regioalizadas, más comúmete coocida como Cokrigig (Krigig Couto) es el aálogo atural del Krigig de ua fució aleatoria. Mietras que el Krigig utiliza la correlació espacial para determiar los coeficietes e el estimador lieal, el Cokrigig utiliza la correlació espacial y la correlació etre fucioes aleatorias al mismo tiempo. 0/0/2006 CG7-Geoestadística Multivariada 3 Itroducció Las aplicacioes multivariadas que ha recibido ua mayor ateció e la geoestadística so los casos dode dos o más variables está muestreadas, pero ua está meos muestreada que las otras o existe la presecia de errores de muestreo. Existe u úmero de dificultades prácticas, la más importate de todas es la ausecia de modelos estádar para las covariazas cruzadas o covariogramas. 0/0/2006 CG7-Geoestadística Multivariada 4

3 Mometos Cruzados de Segudo Orde Estacioaridad de segudo orde para las F.A. Covariaza cruzada Semivariograma cruzado (Covariograma) dode { } Ci h = E Z i x + h mi Z x m { } γ i ( h) = E Zi ( x + h) Zi ( x) Z ( x + h) Z ( x) 2 y mi = E Zi x m = E Z x y Z x Z x valores esperados Cuado i= los mometos cruzados se covierte e la covariaza y e la semivariaza. i 0/0/2006 CG7-Geoestadística Multivariada 5 Estimació del covariograma El método más usual para estimar el semivariograma cruzado es el siguiete: γ N ( h) * i h = [ Zi xk + h Zi xk ] Z xk h Z xk 2 N( h) + k = dode N(h) es el úmero de pares y separados a ua distacia h= h. Es ua geeralizació del estimador del semivariograma simple y por lo tato adolece de los mismos problemas y limitacioes. 0/0/2006 CG7-Geoestadística Multivariada 6

4 Estimació del covariograma Eemplo de covariograma estimado para dos FAs 0/0/2006 CG7-Geoestadística Multivariada 7 Aálisis estructural multivariado El aálisis estructural multivariado que se requiere para el Cokrigig es mucho más compleo y sofisticado que el que demada el Krigig Para modelar los variogramas cruzados de FAs, se debe estimar y modelar (austar) u total de (+)/2 variogramas simples. El uso de modelos de variogramas autorizados o combiacioes de éstos o garatiza que la matriz de covariazas sea positiva defiida. 0/0/2006 CG7-Geoestadística Multivariada 8

5 Aálisis estructural multivariado La maera más aceptada para realizar u aálisis estructural multivariado es mediate u modelo de corregioalizació lieal (Goovaerts, 997). Existe otras metodologías meos difudidas que usa métodos espectrales y está basadas e el teorema de Bocher (Christakos, 992; Wackeragel, 995). 0/0/2006 CG7-Geoestadística Multivariada 9 Modelo de corregioalizació lieal U modelo de corregioalizació lieal está dado por S k = ρ = σ ρ C h V h C h h k k i i k k = 0 k = 0 e térmios de las covariazas S e térmios de las semivariazas. S k ( h) = V ( h) ( h) = ( h) γ γ γ σ γ k k i i k k = 0 k = 0 S 0/0/2006 CG7-Geoestadística Multivariada 0

6 Modelo de corregioalizació lieal Se iterpreta como S+ estructuras aidadas a diferetes escalas. Las matrices de corregioalizació V k so las matrices de covariazas que describe la correlació multivariada a la escala k. Note que a cada escala le correspode ua estructura elemetal o básica Si determiada estructura básica o está presete, se le hace correspoder u coeficiete cero e la matriz 0/0/2006 CG7-Geoestadística Multivariada Modelo de corregioalizació lieal Para establecer u modelo de corregioalizació lieal se debe probar que las matrices de coeficietes V k so positivas semidefiidas. Por defiició, ua matriz es positiva semidefiida (Golub y Va Loa, 989) si T b V b k dode b es u vector cualquiera. Cuado ua matriz es positiva semidefiida sus valores propios y los determiates de ella y de todos sus meores pricipales so o egativos. 0, b 0/0/2006 CG7-Geoestadística Multivariada 2

7 Modelo de corregioalizació lieal Modelo de corregioalizació lieal para dos FAs ( h) ( h) ( h) ( h) 0 0 S S γ γ2 σ σ 2 σ σ 2 = γ S S γ2 γ22 σ2 σ22 σ2 σ22 Para asegurar de que el modelo sea válido es suficiete probar que σ σ > 0 y σ > 0, k = 0,..., S k k 22 σ σ, k = 0,..., S k k k 2 22 ( h)... γ ( h) S 0/0/2006 CG7-Geoestadística Multivariada 3 Modelo de corregioalizació lieal El esquema geeral del Aálisis Estructural Multivariado. Modelar cada semivariograma simple y semivariograma cruzado idividualmete 2. Determiar el úmero de estructuras aidadas de maera que sea míimo (es deseable que sea cuato más tres) 3. Comprobar que todos los determiates de los meores de orde dos so o egativos. 4. Verificar que todas las matrices de corregioalizació sea positivas semidefiidas, e caso cotrario hacer los cambios ecesarios hasta satisfacer la codició o volver al paso 2. 0/0/2006 CG7-Geoestadística Multivariada 4

8 Modelo de corregioalizació lieal Eemplo de auste del variograma cruzado Variables Modelo Nugget Sill-Nugget Alcace AIC L Pluv.- L Radar Esférico /0/2006 CG7-Geoestadística Multivariada 5 Modelo de corregioalizació lieal Eemplo de auste del modelo de corregioalizació lieal Variables Modelo Nugget Sill-Nugget Alcace AIC L Pluv. Esférico L Radar Esférico L Pluv. - L Radar Esférico /0/2006 CG7-Geoestadística Multivariada 6

9 Modelo de corregioalizació lieal Eemplo de auste del modelo de corregioalizació lieal El modelo de corregioalizació lieal resultate de L Pluv. y L Radar es: ( h) γ PR ( h) ( h) γ ( h) γ PP = γ γ + RP RR γ 0 ( h) γ ( h ) ( h) γ ( h) 0 dode es el modelo ugget, y es el modelo esférico co alcace 20 Km. Se puede observar que el modelo es válido, ya que los determiates so positivos: det = 0.0 > 0, det = 0.72 > /0/2006 CG7-Geoestadística Multivariada 7 Validació del modelo de semivariograma cruzado Cosiste e estimar por Cokrigig los valores e los putos muestrales usado el procedimieto de leave oe out. Co los valores estimados y sus correspodietes variazas de la estimació se calcula los criterios covecioales de la validació cruzada para ua variable (error medio, error cuadrático medio, etc,...) Primero validar los semivariogramas simples por separado y luego los cruzados de maera couta. 0/0/2006 CG7-Geoestadística Multivariada 8

10 Cokrigig Ordiario Sistema de ecuacioes: Estimador: = Λ = I, i =,..., = i ( i ) Λ C x x + M = C x x = λ ( ) + λ ( ) Z x Z x Z x * 2 2 = = λ ( ) + λ ( ) Z x Z x Z x * = 0/0/2006 CG7-Geoestadística Multivariada 9 Cokrigig Ordiario Variaza total de la estimació σ = Tr C 0 Tr Λ C x x Tr M 2 CK ( ) = la cual represeta ua variaza acumulada Variaza de la estimació de cada variable ( 0 ) ( ) ( ) σ = C λ C x x + λ C x x µ 2 CK 2 2 = = ( 0 ) ( ) ( ) σ = C λ C x x + λ C x x µ 2 CK = = 0/0/2006 CG7-Geoestadística Multivariada 20

11 Cokrigig Ordiario Ecuacioes del Cokrigig e forma matricial C( x x)... C( x x ) I Λ C( x x) = C( x x)... C( x x ) I Λ C( x x) I... I 0 I Μ C ( x y) C2 ( x y) dode C( x y) = C2( x y) C22( x y) k k k λ λ 2 0 µ µ 2 Λ =, I, k k = λ 0 Μ = µ 2 λ22 2 µ 22 0/0/2006 CG7-Geoestadística Multivariada 2 Cokrigig Ordiario Observacioes prácticas: La matriz de coeficietes es simétrica a pesar de que la asimetría de C x y Todas las etradas so ivertibles (excepto 0) de forma tal que puede ser reducida a ua matriz triagular mediate la operació co matrices de meor dimesió y así simplificar el cómputo. Cuado las FAs o está correlacioadas etoces el sistema se covierte e sistemas de ecuacioes de Krigig separados. 0/0/2006 CG7-Geoestadística Multivariada 22

12 Cokrigig e el caso de fucioes aleatorias itrísecas La hipótesis itríseca es: E Z ( x + h) Z ( x) = 0, i =, 2 i i γ Cov Zi x+ h Zi x, Z x+ h Z x = 2 i h, i, =,2 Etoces la matriz de semivariazas cruzadas sustituye e el sistema de ecuacioes del cokrigig a la matriz de covariazas. γ ( x y) C ( x y) El sistema de ecuacioes resultate es completamete aálogo al caso co estacioaridad de segudo orde 0/0/2006 CG7-Geoestadística Multivariada 23 Cokrigig e el caso o estacioario Cuado las FAs so o estacioarias, etoces las ecuacioes del Cokrigig de la secció aterior puede ser extedidas de forma aáloga al Krigig Uiversal para ua variable. Pero como e el caso de ua variable resulta poco práctico su aplicació debido al o coocimieto a priori de los órdees de las tedecias y los modelos de los covariogramas. Es preferible aplicar u efoque del tipo Krigig Residual a cada FA por separado y luego aplicar el Cokrigig Ordiario a los residuos e couto. 0/0/2006 CG7-Geoestadística Multivariada 24

13 Eemplos de Aplicacioes del Cokrigig Estimació de ua combiació lieal de FAs Existe dos efoques posibles: Estimació directa: Se toma el couto de datos multivariados y formar ua combiació lieal para obteer u uevo couto de datos para la variable costruida, etoces es calculado el variograma muestral, luego modelado y fialmete se le aplica el Krigig. Estimació couta: Cosiste e estimar cada variable y luego costruir la combiació lieal. Este puede ser llevado a cabo mediate la estimació de cada variable por separado o de maera couta co Cokrigig. El problema de variables pobremete muestreadas E cotraste co los problemas dode el iterés es estimar varias fucioes aleatorias simultáeamete mediate el uso del estimador Cokrigig para todas las variables e todas las ubicacioes muestrales, pocas veces los datos muestrales e otras variables es usado para meorar la estimació de la variable primaria o más comúmete para compesar muestras perdidas de la variable primaria. 0/0/2006 CG7-Geoestadística Multivariada 25 Dificultades y Aspectos Prácticos del Cokrigig Estimar varias variables corregioalizadas simultáeamete usado el Cokrigig es el efoque más riguroso y el que se basa e u meor úmero de hipótesis. Requiere que se dispoga de u úmero relativamete elevado de putos muestrales dode esté medidas todas las variables para ua adecuada estimació de los semivariogramas cruzados. Cuado o se cumple este requisito el Cokrigig puede perder su superioridad sobre otros métodos alterativos. 0/0/2006 CG7-Geoestadística Multivariada 26

14 Dificultades y Aspectos Prácticos del Cokrigig La mayoría de los problemas ecotrados e la práctica del Cokrigig so los mismos que los ecotrados e la práctica del Krigig pero quizás magificados por el úmero de variables Exige u tiempo de cálculo cosiderable e la modelació de los semivariogramas cruzados mediate la modelació y validació de múltiples semivariogramas Aumeta la compleidad y el tamaño de los sistemas de ecuacioes a resolver 0/0/2006 CG7-Geoestadística Multivariada 27 Dificultades y Aspectos Prácticos del Cokrigig La mayoría de los problemas ecotrados e la práctica del Cokrigig so los mismos que los ecotrados e la práctica del Krigig pero quizás magificados por el úmero de variables Exige u tiempo de cálculo cosiderable e la modelació de los semivariogramas cruzados mediate la modelació y validació de múltiples semivariogramas Aumeta la compleidad y el tamaño de los sistemas de ecuacioes a resolver 0/0/2006 CG7-Geoestadística Multivariada 28

15 Cokrigig Colocado Es u caso particular del Cokrigig La variable de iterés es coocida e uos pocos putos y la variable auxiliar es coocida e todos los putos de la malla de estimació La vecidad de la variable auxiliar es reducida a u solo puto: el puto de estimació No se requiere del coocimieto del modelo de corregioalizació lieal sio del coeficiete de correlació etre las variables. Es computacioalmete más simple y eficiete comparado co el Cokrigig 0/0/2006 CG7-Geoestadística Multivariada 29 Cokrigig Colocado Es u caso particular de Cokrigig Eemplo: Dos variables Z (x) y Z 2 (x) (porosidad & impedacia acústica) * = = Z x Z x Z x 0 λ λ Porosidad estimada por Cokrigig Porosidad e los pozos Impedacia acústica de la sísmica 0/0/2006 CG7-Geoestadística Multivariada 30

16 COKRIGING Cokrigig Colocado Sistema de ecuacioes grade Requiere variogramas de Z, Z 2, variograma cruzado de Z y Z 2 (Modelo de Corregioalizació Lieal) COKRIGING COLOCADO Sistema de ecuacioes mas simple No requiere Modelo de Corregioalizació Lieal Sólo variogramas de Z, Z 2 y coeficiete de correlació * 0 0 = = λ λ Z x Z x Z x 0/0/2006 CG7-Geoestadística Multivariada 3 Métodos alterativos al Cokrigig Krigig combiado co Regresió Lieal: (Delhomme,976) Cosiste e establecer u modelo de regresió lieal etre dos FAs Z y Y Z ( x) = ay ( x) + b Aplicado la regresió se puede estimar la variable Z e los putos dode hay valores muestrales para la otra variable Y ( ) ( ) Z ˆ x = ay x + b, = l +,..., m Luego se aplica el procedimieto del Krigig a cada ua por separado, el cual es computacioalmete mucho más secillo que el Cokrigig. 0/0/2006 CG7-Geoestadística Multivariada 32

17 Métodos alterativos al Cokrigig Krigig co ua Deriva Extera: Se requiere que el valor esperado de ua FA Z sea ua fució lieal coocida depediete de otra FA Y, como sigue: E Z ( xi ) Y ( xi ) = cy ( xi ) + c2 Se ecesita que la seguda variable Y haya sido muestreada e u gra úmero de putos. Etoces se puede aplicar u Krigig co deriva N = N = N = ( ) = Y ( xk ) λ ɶ γ + µ + µ Y x = ɶ γ, i =,..., N i 2 i ik λ = λ Y x 0/0/2006 CG7-Geoestadística Multivariada 33

GEOESTADÍSTICA APLICADA

GEOESTADÍSTICA APLICADA INSTITUTO MEXICANO DEL PETRÓLEO GEOESTADÍSTICA APLICADA Tema: Geoestadística Multivariada Istructores: Dr. Martí A. Díaz Viera (mdiazv@imp.mx) Dr. Ricardo Casar Gozález (rcasar@imp.mx) 2004 Coteido Itroducció

Más detalles

GEOESTADÍSTICA STICA APLICADA UNIVERSIDAD NACIONAL AUTÓNOMA

GEOESTADÍSTICA STICA APLICADA UNIVERSIDAD NACIONAL AUTÓNOMA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICOM GEOESTADÍSTICA STICA APLICADA Tema: Estimació Espacial Istructores: Dr. Martí A. Díaz Viera (mdiazv@imp.m) Dr. Ricardo Casar Gozález (rcasar@imp.m) 2009 Coteido

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES.

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. E el siguiete ejercicio se tratará de expoer, de forma didáctica, el proceso de solució de u problema de regresió simple. Problema:

Más detalles

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana Las Matemáticas para la Gestió de Carteras co Riesgo. Carteras compuestas por activos co correlacioes estadísticas arbitrarias. El caso e que se fija el redimieto esperado de la cartera Apellidos, ombre

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Identificación de Sistemas

Identificación de Sistemas Idetificació de Sistemas Estimació de Míimos Cuadrados Autor: Dr. Jua Carlos Gómez Estimació de Míimos M Cuadrados para Estructura de Regresor Lieal Se asume que la relació etrada-salida puede ser descripta

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia 1 EL RE SIN LAGRIMAS A. Blasco Istituto de Ciecia y Tecología Aimal Uiversidad Politécica de Valecia El Baby model y i = e i y = X + e = 1 + e dode X = 1 es u vector de uos. La matriz de variazas-covariazas

Más detalles

Métodos de reducción de varianza

Métodos de reducción de varianza Métodos de reducció de variaza Clase ro 1 Curso 010 Métodos de reducció de variaza E la mayoría de las simulacioes, los experimetos tiee por obetivo obteer valores medios de los resultados que se muestrea

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. Cocepto de límite 1.1 Defiició de etoro o vecidad: Si a es u úmero real (supógase que a está e el eje X), etoces, u etoro o vecidad de a de radio es u itervalo

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Priter: Opaque this Métodos de la Miería de Datos Dr Oldemar Rodríguez Rojas 6 de mayo de 2008 ii This is page iii Priter: Opaque this Cotets Elemetos básicos de aálisis de datos exploratorio

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites

Más detalles

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación .. Tormetas putuales Aspectos geerales Se utiliza los datos putuales de altura de precipitació o itesidades máximas de lluvia registradas e ua estació So válidas para áreas cuya extesió este defiida por

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras compuestas por n activos con correlaciones estadísticas arbitrarias

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras compuestas por n activos con correlaciones estadísticas arbitrarias Las Matemáticas para la Gestió del Riesgo e Carteras Fiacieras. Carteras compuestas por activos co correlacioes estadísticas arbitrarias Apellidos, ombre Departameto Cetro Cortés López, Jua Carlos; Navarro

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

REPASO DE ESTADÍSTICA

REPASO DE ESTADÍSTICA Aputes IN 56B; Profesor: Viviaa Ferádez I. Coceptos de Probabilidad A. Variables Discretas REPASO DE ESADÍSICA. E el mudo existe estados posibles (evetos), e algua fecha futura. Ejemplo: u eveto es el

Más detalles

17.3 Intervalos de predicción para el promedio de m observaciones futuras

17.3 Intervalos de predicción para el promedio de m observaciones futuras 4 7.3 Itervalos de predicció para el promedio de m oservacioes futuras Para reducir la icerteza de las prediccioes o alcaza co aumetar idefiidamete el tamaño de la muestra e la que se asa el ajuste. Si

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

El estimado bootstrap ideal del sesgo se obtiene sustituyendo F por su distribución empírica Fˆ está dado por

El estimado bootstrap ideal del sesgo se obtiene sustituyendo F por su distribución empírica Fˆ está dado por Estimació del sesgo por bootstrappig El Sesgo de u estimador θˆ es otra medida de precisió. Sea x=(x,x, X ) ua muestra aleatoria de ua variable aleatoria que tiee distribució F y sea θ=t(f) u parámetro

Más detalles

TEMA 6.- INTERVALOS DE CONFIANZA

TEMA 6.- INTERVALOS DE CONFIANZA TEMA 6.- INTERVALOS DE CONFIANZA 6.1. Distribucioes asociadas a la Normal 6.1.1. Distribució Chi cuadrado de Pearso o Gi dos 6.1.. Distribució t de Studet 6.. Itroducció a itervalos de cofiaza 6.3. Método

Más detalles

MODELO DE RESPUESTAS. Lim n. Lim

MODELO DE RESPUESTAS. Lim n. Lim Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175) FECHA PRESENTACIÓN: 08-11-008 MODELO DE RESPUESTAS OBJ 7 PTA 7 Dadas las sucesioes de térmios

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA Uiversidad Nacioal del Litoral Facultad de Igeiería Ciecias Hídricas ESTADÍSTICA Igeierías RH-Amb-Ag TEORÍA Mg. Susaa Valesberg Profesor Titular INFERENCIA ESTADÍSTICA TEST DE HIPÓTESIS INTRODUCCIÓN Geeralmete

Más detalles

Representaciones irreducibles y carácter de una representación: * = corresponde al elemento i,k de la matriz asociada a la

Representaciones irreducibles y carácter de una representación: * = corresponde al elemento i,k de la matriz asociada a la epresetacioes irucibles y carácter de ua represetació: Gra teorema de la ortooalidad (GTO): Sea y dos represetacioes irucibles de dimesioes, : ik ( ) jl ( ) = ( ) ij kl dode ik () correspode al elemeto

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

VII. Sistemas con múltiples grados de libertad

VII. Sistemas con múltiples grados de libertad VII. Sistemas co múltiples Objetivos: 1. Describir que es u sistema de múltiples grados de libertar. 2. Aplicar la seguda ley de Newto y las ecuacioes de Lagrage para derivar las ecuacioes de movimieto.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL Revisió, Cambios y Ampliació: Ig. José Alejadro Marí Fuete Primaria: Ig. César Augusto Zapata Urquijo 1. M U E S T R E O S I S T E M

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

4 Métodos de Colocación

4 Métodos de Colocación 4 4. Clasificació Como ya se mecioó e el capítulo aterior, el método de colocació es ampliamete coocido por ser u procedimieto altamete eficiete y preciso para la solució umérica de ecuacioes difereciales

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

Métodos de Regresión

Métodos de Regresión Métodos de Regresió Ciecias Técicas Estadísticas Solucioes ejercicios: Regresió Lieal Simple Versió 3 Emilio Letó. Demostrar ue jcov (X ; X )j D (X ) D (X ) ue jbs j bs bs. Sea la fució m () V [X + X ]

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT UIVERSIDAD TÉCICA FEDERICO SATA MARÍA DEPARTAMETO DE ELECTRÓICA LECTURA 5 TRASFORMADA RÁPIDA DE FOURIER FFT CURSO LABORATORIO DE PROCESAMIETO SIGLA ELO 385 DIGITAL DE SEÑALES PROFESOR PABLO LEZAA ILLESCA

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global . Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

Tema 1: Inferencia Estadística

Tema 1: Inferencia Estadística ETADÍTICA II Notas e Clases Tema : Iferecia Estaística LUI NAVA PUENTE Itroucció Geeralmete las poblacioes so emasiao graes como para poer ser estuiaas e su totalia. Por lo tato es ecesario tomar e la

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA FACULTAD DE INGENIERÍA INFERENCIA ESTADÍSTICA Iree Patricia Valdez y Alfaro Estimació de parámetros ireev@servidor.uam.mx Ua clasificació de estadística Descriptiva Calculo de medidas descriptivas Costrucció

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles