Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2. Tema 2: Aproxim mación de funciones por po olinomios"

Transcripción

1 Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites 6.Aplicació al cálculo aproimado 1

2 Aproimació de fucioes por poliomios Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Itroducció A veces, para estudiar el comportamieto de ua fució e las proimidades de u puto a, se sustituye la fució dada por otra mas secilla, más fácilmete maejable. Si la fució objeto de estudio tiee las propiedades adecuadas, se la podrá aproimar, para cercao a a, mediate poliomios epresados como potecias de -a, que se llama poliomios de Taylor, de forma que al aumetar el grado del poliomio mejora la aproimació.

3 Orde de cotacto Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Si f y g so fucioes derivables hasta el orde e u etoro del puto a, etoces: 1) Si f(a) = g(a) se dice que f y g tiee u cotacto de orde 0 e el puto a. 1) Si f(a) = g(a), f (a) = g (a) se dice que f y g tiee u cotacto de orde 1 e el puto a. 1) Si f(a) = g(a), f (a) = g (a), f (a) = g (a) se dice que f y g tiee u cotacto de orde e el puto a. 4) E geeral, se dice que f y g tiee u cotacto de orde si f(a) = g(a), f (a) = g (a), f ) (a) = g ) (a). 3

4 Orde de cotacto f() = e y T 0 () = 1,tiee u cotacto de orde cero el puto P(0, 1). Itroducció al Cálculo Ifiitesimal Tema : Aproimació de fucioes por poliomios 4 f(0) = T 0 (0) =1

5 Orde de cotacto f() = e y T 1 () = 1+,tiee u cotacto de orde uo el puto P(0, 1). Itroducció al Cálculo Ifiitesimal Tema : Aproimació de fucioes por poliomios 5 f(0) = T 1 (0) =1 f (0) = T 1 (0) = 1

6 Orde de cotacto Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios f() = e y T () = 1++ /,tiee u cotacto de orde dos e el puto P(0, 1) f(0) = T (0) = 1 f (0) = T (0) = 1 f (0) = T (0) =1 6

7 Orde de cotacto Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios f() = e y T 3 () = 1++ /+ 3 /6, tiee u cotacto de orde tres e el puto P(0, 1) f(0) = T 3 (0) = 1 f (0) = T 3 (0) = 1 f (0) = T 3 (0) = 1 f (0) = T 3 (0) =1 7

8 Orde de cotacto Represetamos cojutamete las fucioes ateriores: y = e y = 1++ / Itroducció al Cálculo Ifiitesimal Tema : Aproimació de fucioes por poliomios 8 y = 1+ y = 1 y = 1++ /+ 3 /6

9 Poliomios de Taylor Cocretemos los coceptos: Si f es ua fució veces derivable e a R, etoces llamamos poliomio de Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Taylor de f, de orde (o grado ) y e el puto a, que deotamos por T (f,a)() (o bie T () ), al poliomio Teorema T (f,a)() f (a) f (a) f (a) =f(a)+f (a)(-a)+ (-a) + (-a) (-a) 3!! ) 3 Si f admite poliomio de Taylor de grado e el puto a etoces: ) ) T (a)=f(a), T (a)=f (a), T (a)=f (a),...,t (a)=f (a). Por tato f y T () tiee u cotacto de orde e el puto a. Al sustituir la fució f por su poliomio de Taylor se comete u error, que e valor absoluto, viee dado por f()-t (). Llamamos resto o termio complemetario a la diferecia f()-t (), que simbolizamos por R (f, a)(), o bie R (), luego 9 R (f, a)() = f()-t ()

10 Teorema de Taylor Teorema El resto R () es u ifiitésimo de orde superior a (-a), e = a, es decir Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 10 f()-t () lim =0 a (-a) El resultado aterior se idica simbólicamete así: Teorema de Taylor (Fórmula de Taylor) Si las fucioes tal que R ()=o((-a) ). +1 f, f, f,..., f está defiidas e [a, ], etoces eiste t (a, ) f (a) f (a) f (t) f()=f(a)+f (a)(-a)+ (-a) (-a) + (-a)! (+1)! ) +1) +1) A esta epresió se la cooce como fórmula o desarrollo limitado de Taylor e el puto a. Luego e este caso +1) f (t) R ()= (-a) (+1)! Lagrage. Como el úmero t o está determiado, esta +1, que se cooce como resto e forma de. R () tampoco lo está, aú así, epresió del resto es útil e muchas ocasioes para acotar el error cometido al cosiderar e lugar de la fució su poliomio de Taylor.

11 Desarrollo de McLauri Fórmula de McLauri Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Si es posible tomar a = 0, la fórmula de Taylor toma la forma siguiete que se cooce como fórmula de McLauri: f (0) f (0) f (t) f()=f(0)+f (0) ! (+1)! ) +1) +1 +1) f (t) Como t es u valor idetermiado, llamado α=, que tambié estará idetermiado, la fórmula de McLauri se (+1)! escribe f (0) f (0) f()=f(0)+f (0) α! ) +1 más fácil de escribir y suficiete e muchas aplicacioes, como por ejemplo el cálculo de límites. 11

12 Desarrollo de McLauri Alguos desarrollos de McLauri Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1 Calculemos alguos desarrollos de McLauri de frecuete utilizació. Desarrollo de McLauri de orde de f() = Calculamos las derivadas sucesivas de e, e : f ()=e, f ()=e,..., f ()=e ) ) 0 f(0)=f (0)=f (0)=...=f (0)=e =1, luego sustituyedo e la fórmula queda e = α 3!! siedo α u valor idetermiado Desarrollo de McLauri de orde de f() = cos : Calculamos las derivadas sucesivas de cos : ) π f ()=-se, f ()=-cos, f ()=se,...,f ()=cos (+ ) Luego: f ( 0) = 1, f ( 0) = 0, f ( 0) = 1, f ( 0) = 0,..., por tato sustituyedo e la fórmula 4 +1 cos = (-1) +α 4! ()! siedo α u valor idetermiado.

13 Desarrollo de McLauri Alguos desarrollos de McLauri Desarrollo de McLauri de orde de f() = se Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 13 Procediedo de forma aáloga al caso aterior se obtiee: se = ( 1) + α 3! 5! ( 1)! siedo α u valor idetermiado. Observemos que el poliomio de Taylor de cos solo tiee potecias de co epoete par, siedo cos ua fució par. Aálogamete el poliomio de Taylor de se solo tiee potecias de co epoete impar, siedo se ua fució impar Desarrollo de McLauri de orde de f() = log (1+) Calculamos las derivadas sucesivas de log (1+) 1 f ()= =(1+), f ()=-(1+), f ()=(1+), f ()=-3.(1+) 1+ ) +1 - Luego debe ser f ()=(-1) (-1)!(1+), y haciedo = 0 queda ) -4 f = + = f = f = f = f = Sustituyedo e la fórmula y simplificado queda: log (1+)= (-1) +α 3 siedo α u valor idetermiado. ) + 1 ( 0) = log ( 1+ 0) = 0, ( 0) = 1, ( 0) = 1, ( 0) =,... ( 0) = ( 1) ( 1)!

14 Desarrollo de McLauri Alguos desarrollos de McLauri Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 14 Desarrollo de McLauri de orde de Calculamos las derivadas sucesivas de k f()=(1+), siedo k k (1+) R k-1 k- ) k- f ()=k(1+), f ()=k(k-1)(1+),..., f ()=k(k-1)...(k-+1)(1+). Haciedo = 0 ) f(0)=1, f (0)=k,f (0)=k(k-1), f (0)=k(k-1)(k-),..., f (0)=k(k-1)...(k-+1) Sustituyedo e la fórmula se obtiee: k k(k-1) k(k-1)(k-) k(k-1)...(k-+1) +1 (1+) = 1+k α 3!! siedo α u valor idetermiado. Esta fórmula se cooce como fórmula del biomio y represeta ua geeralizació de la fórmula del biomio de ewto para epoete atural, ya que se puede geeralizar el cocepto de úmero combiatorio co umerador u úmero real cualquiera k: k k(k-1)(k-)...(k-+1) =! ( -1)( -) - -5 Por ejemplo = =. 3! 16 3 Luego la fórmula del biomio puede escribirse así: k (1+) = m=0 k +α m m +1

15 Desarrollo de McLauri Alguos desarrollos de McLauri Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 15 Para obteer desarrollos de Taylor (o McLauri) de ciertas fucioes, además del procedimieto utilizado e los casos ateriores, se puede usar desarrollos ya coocidos. Veamos alguos ejemplos 1) Obteer el desarrollo de McLauri de orde dos de la fució Se tiee: e =1++ +α, se =- +β , sustituyedo e se f()=e se f()=e se se f()=e = =1+se + +αse =1+(- +β )+ (- +β ) +α(- +β ) = = 1++ +γ ) Obteer el desarrollo de McLauri de orde cuatro de la fució f()= 1- Como 1 1 = ( 1 ), podemos utilizar la fórmula del biomio tomado 1 k=, y sustituyedo por.recordemos la fórmula del biomio de orde dos: ( -1) k k(k-1) (1+) =1+k+ +α (1- ) =1- + -α = α. 8

16 Aplicació al cálculo de límites Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 16 Los desarrollos de Taylor (McLauri) so ua herramieta eficaz e el cálculo de límites: el procedimieto cosiste e sustituir la fució por su desarrollo correspodiete. Lo más fácil es sustituir las fucioes que o so poliomios por sus desarrollos de McLauri. Como estos desarrollos so limitados, a priori, podemos deteeros dode queramos. Si el resultado del cálculo vuelve a dar otra idetermiació tedríamos que tomar más térmios e los desarrollos utilizados. Ejemplo Calcular log (1+)- lim 0 1-cos Es ua idetermiació del tipo 0. Los desarrollos que ecesitamos ya ha sido obte- 0 idos: log (1+)=+α, cos =1+β sustituyedo: +α - -α lim = lim β 0 β que es ua idetermiació pues α y β está idetermiados. Tomemos más térmios e los desarrollos: 3 3 log (1+)=- +α, cos =1- +β α - - +α Sustituyedo: lim = lim = β -β

17 Aplicació al cálculo de límites Ejemplo Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 17 Calcular lim 0 3 ( 1--1) 1-1- Tambié es ua idetermiació del tipo 0. Las dos raíces que aparece so casos 0 particulares de la formula del biomio. Para orde dos se tiee: k k(k-1) 3 (1+) =1+k+ +α ( -1) Tomado k= 1- =(1-) = α = α ( -1) Tomado k= 1- =(1- ) =1- + -β = β. 8 Sustituyedo: (1- - -α -1) - - -α - -α lim 3 9 = lim 3 9 = lim 3 9 = β + +β + +β 8 8 8

18 Aplicació al cálculo de límites Ejemplo Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios cos(se )-cos Calcular lim 0 4 Es ua idetermiació de la forma 0. Utilizamos los desarrollos coocidos: se se 5 cos =1- + +α, se =- +β cos(se )=1- + +αse. 4! 3! 4! Sustituyedo queda: (- +β ) (- +β ) α(- +β ) -(1- + +α ) lim 4! 6 4!. 0 4 Por tato la potecia de mas pequeña que aparece es 4, es decir, se tiee: [( + ) + - ] lim 6 6 4! 4! = lim( + ) =

19 Aplicació al cálculo de límites Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Ejercicio Comprobar los siguietes resultados, utilizado desarrollos de Taylor- McLauri. 1) ) e cos lim = e lim 0 a - cos (a) - se (a) = a, siedo a u úmero real o ulo. 19

20 Aplicació al cálculo aproimado Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios Apliquemos ahora los desarrollos de Taylor al cálculo del valor aproimado de ua fució e u puto, es decir, sustituimos el valor de la fució por el de su poliomio de Taylor e el puto e cuestió, por lo que ua cota del error cometido se obtedrá acotado el valor absoluto del resto. Ejemplo Utilizado el desarrollo de McLauri de e, obteer 3 e co error meor que ua diezmilésima. E este caso usamos el desarrollo de McLauri e forma de Lagrage: t +1 e e = , t (0, )! (+1)! t e ( ) t 1 1 e Como 3 3 e = e, = 0<t< ;se debe acotar R = 3 = (+1)! 3 (+1)!, y siedo 1 1 t t 3 3 e =e <e <3 < R < 3 +1 (+1)! 0 luego se puede tomar tal que <.10 <3 (+1)! (+1)! 10 desigualdad que será cierta desde u cierto valor de e adelate. 4 5 Dado valores a, comprobamos que se cumple a partir de = 4:.10 <3.5!= Por lo tato el valor pedido se obtiee tomado el poliomio de orde 4, para =, es de- 3 cir: ( ) ( ) ( ) e=e = =

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Tema. ALICACIONES DE LAS DERIVADAS: RERESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos de crecimieto

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Brook Taylor GUSTAVO A. DUFFOUR

Brook Taylor GUSTAVO A. DUFFOUR La aproimació de ua fució por u poliomio es ua de las ideas más atiguas e el aálisis umérico y es ua de las más usadas aú e la actualidad. Las razoes más importates para ello so posiblemete que: ) Los

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

Como una breve introducción presentamos un pequeño problema de células ideales, resuelto afortunadamente. El cual dice lo siguiente:

Como una breve introducción presentamos un pequeño problema de células ideales, resuelto afortunadamente. El cual dice lo siguiente: Límite de ua sucesió umérica. Como ua breve itroducció presetamos u pequeño problema de células ideales, resuelto afortuadamete. El cual dice lo siguiete: Demostrar que al año habrá () células, sabiedo

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010 Sucesioes 6º Ig, Mat A - Liceo Nº 3 - Profs.:Sergio Weiberger - Marcelo Valezuela 200 Itroducció: Así como f es ua fució y f(x) = 2x es la image de cada x, dode f(0) = 0 y f(3) = 6, e ua sucesió la aotaremos:

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

PRÁCTICA SOLUCIÓN DE ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES

PRÁCTICA SOLUCIÓN DE ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES Objetivos El alumo coocerá aplicará diversos métodos para la resolució de sistemas ecuacioes difereciales, implemetado programas orietados a objetos. Al fial de esta práctica el alumo podrá: Resolver ecuacioes

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Límite de una función en un punto

Límite de una función en un punto Límite de ua ució e u puto Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c ( tiede a c por la izquierda ): toma valores cada vez más cercaos a c, pero meores

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

Introducción básica a series

Introducción básica a series Itroducció básica a series Gearo Lua Carreto * 2 Noviembre de 206, 8 pm. Series: u caso particular de sucesió Supoga que tiee ua sucesió cualquiera a. Explicaremos la forma de geerar ua sucesió s, muy

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

R = a) En el caso de la primera serie, 1/n sines impar a n = 0 sines par

R = a) En el caso de la primera serie, 1/n sines impar a n = 0 sines par 298 Series de potecias y fucioes elemetales 8.4. Ejercicios 8.4.. Ejercicios resueltos 8.4. Calcule las sumas de las siguietes series: a) x + x3 3 x5 5 +x7 7... b) x 3 3 x5 3 5 + x7 5 7 x9 7 9... Solució:

Más detalles

SERIES. Problema 5.1. Halla el radio de convergencia de las series. (2n)! (n!) 2 zn, (a) (i) (e) z 2n, (n + a n )z n (a C), (j) (f) cos(in)z n, z n!

SERIES. Problema 5.1. Halla el radio de convergencia de las series. (2n)! (n!) 2 zn, (a) (i) (e) z 2n, (n + a n )z n (a C), (j) (f) cos(in)z n, z n! Capítulo 5 SERIES Problema 5.. Halla el radio de covergecia de las series a b c d!!,!, a a C, α α R, e f g + a a C,!, a a C, h + αα + α + ββ + β +!γγ + γ + α, β, γ R, γ / Z, i j k, cosi, 3 +. Solució:

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles