Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)"

Transcripción

1 Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio permite aproimar el valor de ua fució para u puto e cocreto y acotar el error cometido e dicha aproimació. Si f es cotiua e [a,] y derivable e (a,), eiste c (a,) tal que f f(a) f '(c) f f(a) + f '(c)( a). a Dar ua cota del valor utilizado el teorema del valor medio. Defiimos f que es ua fució cotiua y derivable e R +, e particular lo es e el itervalo [,]. Aplicado el teorema del valor medio e este itervalo, se obtiee f () f () + () + co c (,), es decir, <c< co lo c c cual < c < < <, 5, por cosiguiete, c c + < +, 5, 5 c E geeral, buscamos u poliomio que coicida co f e u puto dado a y que sea aproimadamete igual e las cercaías de dicho puto (etoro del puto). La aproimació más secilla correspode a la recta tagete a f e a: y-f(a)f '(a)(-a) f f (a) + f '(a)( a) Dar ua aproimació de l(.9) utilizado la recta tagete. La fució a utilizar es fl e el puto a, puesto que se cooce f()l, obteiedo: f(.9)l(.9)f(a)+f (a)(-a)f()+f ()(,9-)-., ya que f /. U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía

2 E u puto próimo a a el error al utilizar la recta tagete e lugar de la epresió de la fució, será: Ef-f(a)-f (a)(-a) Costrucció del poliomio Buscamos u poliomio tal que f(a) (a), f (a) (a),, f ) (a) (a). El método debe ser cosistete, es decir, si cosideramos f la aproimació o debe producir igú error. Sea el poliomio de grado : segú las potecias de -a resulta: a + a + a a a que ordeado b b ( a) b ( a)... b ( a) b ( a) co (a)b o para calcular el resto de los coeficietes b calculamos las derivadas sucesivas del poliomio: ' b ( a) b ( a)... b ( a) b ( a) ;' (a) b '' b... ( )b ( a) ( )b ( a) ;'' (a) b.. i) i i) + i i ( )...( i )b ( a) ; (a) b i!.. ) ) ( )( ) b ; (a) b! ) (a) E cosecuecia los coeficietes ha de ser: b y el poliomio queda:! (a) (a)! Ordear segú las potecias de -. ara e a resulta ()8 y las sucesivas derivadas: ' ;' () 9 '' 3 + 4; '' () 74 ''' 3; ''' () 3 U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía

3 que sustituyedo e la epresió aterior: 3 ' '' 3 (a) (a) (a) (a) 3 ( a) (a) + ( a) + ( a) + ( a)!!! 3! ( ) + ( ) + ( ) 8 + 9( ) + 37( ) + 5( )!! 3! Defiició: Dada ua fució yf co derivadas hasta u cierto orde e u puto a, se deomia poliomio de Taylor de grado de f e a: f (a)! f"(a)! f (a)! ) f (a) + ( a) + ( a) ( a) o abreviadamete T [ f,a] ) f (a) ( a)! Determiar el poliomio de Taylor de grado 3 de fl e a. Calculamos las derivadas sucesivas e a: f l f() l f' / f'() f '' f ''() 3 f ''' f '''() [ ] T 3 f l,a 3 ) 3 f () ( ) ( ) ( ) f () + f '()( ) + f ''() + f '''()!! 3! ( ) ( ) ( ) ( ) + ( ) + ( ) +! 3! Defiició: ara el valor cocreto de a el poliomio de Taylor se dice oliomio de MacLauri: T [ f,] ) f ()! Determiar el poliomio de Maclauri de grado de fch. Calculamos las derivadas sucesivas e a: f ch f() ch f' sh f'() sh f '' ch f ''() U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 3

4 [ ] T f ch,a ) f () ( ) f () + f '() + f ''() + +!!!! Usar el poliomio de Maclauri de grado 4 para dar ua aproimació del úmero e. E este caso utilizaremos la fució fe para la cual f()e: T 4 f e,a 4 ) f () ( ) f () + f '() + f ''() + f '''() + f ''''() !! 3! 4!! 3! 4! ara resulta e , 78! 3! 4! 4 Defiició: Sea f ua fució para la cual eiste el oliomio de Taylor de orde e el puto a, se defie resto de orde de f e a: R [ f,a] f T [ f,a] 3 Cálculo del resto: Q R f,a (a) ( + )! + Busquemos ua fució Q tal que sea ( ) Como f T [ f,a] R [ f,a] +, etoces: f (a) f "(a) f (a) Q f f(a) + ( a) + ( a) ( a) + ( a)!!! ( + )! Sea fijo. Utilizamos la fució auiliar: ) + f (t) f "(t) f (t) Q F(t) f f(t) ( t) ( t)... ( t) ( t)!!! ( + )! ) + t [a,]. F verifica las hipótesis del Teorema de Rolle, ya que: ) f(a) f"(a) f (a) Q + F(a) f f(a) ( a) ( a)... ( a) ( a)!!! ( + )! ) f f " f Q + F f f ( ) ( )... ( ) ( )!!! ( + )! Luego, F(a)F. Además F(t) es cotiua e [a,] y derivable e(a,) siedo:. defiida e U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 4

5 + ) ) f "'(t) f "(t) f (t) f (t) F'(t) f '(t) f ''(t)( t) + f '(t) ( t) + ( t)... ( t) + ( t) +!!!! Q f "'(t) + ( + )( t) F'(t) f '(t) f ''(t)( t) + f '(t) ( t) + f ''(t)( t)... ( + )!! + ) ) + ) f (t) f (t) Q f (t) Q.. ( t) + ( t) + ( t) ( t) + (t)! ( )!!! ()! Etoces, c (a,) tal que F (c), es decir, + ) f (c) Q + ) F'(c) ( c) + ( c) Q f (c)!! resultado que el resto -ésimo es: [ ] [ ] R f,a f T f,a ( + )! + ) f (c) ( a) + co a<c< ó <a<c epresió que se cooce como el resto de Lagrage o térmio complemetario. 4 Acotació del error: Al aproimar f T [ f,a] se comete u error: [ ] E R f,a + ) f (c) ( a) + ( + )! yf T ( f,a) f( R ( f,a) T ( f( ),a) a U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 5

6 Si f +) es ua fució acotada e u etoro de a (por ejemplo, si es cotiua) f (c) ( a) ( a) ( a) má f (c) + ) ) ( + )! c [ a,] ( + )! ( + )! odemos aproimar f por e u etoro de a co la precisió deseada si más + ( a) que tomar suficietemete grade ya que para cada fijo, lim. ( + )! 5 Fórmula de Cauchy para el térmio complemetario o resto: Otra forma equivalete del resto se obtiee escribiedo c a +θ( a) siedo <θ< f (c) f (a +θ(a)) R ( a) ( a) ( + )! ( + )! + ) + ) + + E particular, si a: R + ) f (a+θh) h + + ) f ( θ) ( + )! ( + )! + siedo h-a 6 Fórmula de Taylor: Sea f ua fució derivable hasta el orde +, co derivadas cotiuas hasta el orde e u etoro del puto a, etoces, eiste c (a, ) tal que: ) f (a) f"(a) f (a) f f (a) + ( a) + ( a) ( a)!!! Si a se obtiee la fórmula de Maclauri: f () f f () + +! f"()! ) f () ! + ) f ( θ) + ( + )! + ) f (c) + ( a) ( + )! + + co < θ < Qué error se comete al adoptar 65/4 como valor del úmero e? Teemos: fe ; a; 4 y (véase el ejemplo aterior) y el error + ) 5 f ( θ) + θ E R e ( + )! 5! θ E() R 4() e < e < 3, 5 5! 5! 5! 4 ya que la fució epoecial es creciete y el valor de e lo podemos acotar por 3, pues segú el poliomio de Maclauri que e uestro caso da 65/4 es mayor que. U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 6

7 COMENTARIOS A LA FÓRMULA DE TAYLOR Notació: T [ f,a] oliomio de Taylor de f de grado e a. Cuado o haya cofusió posible, por simplificar epresioes, podremos simplemete T. ) ara cada fijo qué ocurre cuado? Es decir, a medida que crece el grado del poliomio de Taylor va siedo mejor la aproimació f T? + ( a) + ) Esto ocurrirá cuado R, es decir, cuado f (c). ( + )! + ( a) Como, para cada fijo, puede demostrarse que, basta que ( + )! fució acotada e u etoro de a para que se cumpla. a + ) Y, e este caso, será R M, siedo M sup f (z). ( + )! z (a,) + ) f + sea ua Ejercicio: Aplicado lo aterior, es fácil probar que el resto e las series de Maclauri de las fucioes se, cos y e, tiede a cero cuado tiede a ifiito (precisamete por que sus derivadas de orde +: se para próimos a cero). ) ara cada fijo qué ocurre cuado a? ( π π ), cos ( ), y , so fucioes acotadas e a) R es u ifiitésimo e a, es decir, lim R E efecto: lim R lim [ f - T ] f (a) T (a) f (a) f (a) fucioes cotiuas e a.., por ser f y T b) R es u ifiitésimo e a de orde mayor que. E efecto: ara, ( a) f f (a) f '(a)( a) f ''(a) R lim lim! ( a) ( a)? U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 7

8 L`Hôpital lim f ' f '(a) f ' '(a) ( a) ( a)! L`Hôpital lim f '' f ' '(a) f '' es cotiua e a ara 3, se haría eactamete igual, pero, aplicado la regla de L Hôpital tres veces e lugar de dos. ara, se aplicaría la regla de L Hôpital veces, llegado al mismo resultado: R lim. ( a) Notació: A veces se escribe, e el desarrollo de Maclauri, f T + O( + idicado co O( ) u ifiitésimo de orde mayor ó igual que + (que o es otro que el resto R ). E geeral, e a: + ) f T + O(( a) + ) c) E el caso particular de que f sea u ifiitésimo cuado a, al ser R otro ifiitésimo e a y verificarse que f T R, se tiee que: + c ) T f R es tambié u ifiitésimo e a (por ser resta de dos ifiitésimos ). Además, por ser ) lim T f(a) f '(a) f ''(a) f (a) lim ( a) - - ( - a) ( - a)!( - a)!( - a) ( a) lim T se deduce que T es u ifiitésimo de orde meor que, y por tato, de meor orde que R. c ) Como cosecuecia de lo aterior y aplicado que la suma de ifiitésimos es u ifiitésimo equivalete al sumado de meor orde, se verifica: es decir, f y poliomio ulo. f T + R T T so ifiitésimos equivaletes e a, para u tal que o sea el T U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 8

9 c 3 ) Si g es otro ifiitésimo e a que cumple las hipótesis de la fórmula de Taylor, se verifica: lim f g T lim T m [ f,a] [ g,a] supoiedo T [ f,a] y T [ g,a] e u etoro de a (se toma y m los meores m que lo verifica, pudiedo ser y m distitos etre sí). Esta igualdad de límites se obtiee aplicado la propiedad de que u ifiitésimo e a que aparezca como factor o divisor e ua epresió de la que se quiera calcular su límite cuado a, puede sustituirse por otro ifiitésimo equivalete y el límite o varía. Álgebra de los oliomios de Taylor. ara obteer el oliomio de Taylor de ua fució compuesta, muchas veces es preferible desarrollar por separado las fucioes compoetes y sumar, restar o multiplicar los poliomios de Taylor de las respectivas fucioes. 3) Si f y g so dos fucioes que cumple las hipótesis de la Fórmula de Taylor e u etoro de a, llamado T (f ) y T (g) a los respectivos poliomios de Taylor de grado e a, se verifica: a) T (f ± g) T (f ) ± T (g) + + b) T (f g) T (f ) T (g) térmios e,,...,. 4) Fórmula de Taylor para la fució compuesta f a ϕ b c F f ϕ Si coocemos los desarrollos de Taylor de las fucioes y ϕ e a, y de y f e ϕ(a) b: + () ϕ c + c( a) + c ( a) c ( a) + O [( a) ] + () f a + a ( b) + a ( b) a ( b) + O [( b ] etoces, se verifica: ) (3) F f ( ϕ) b [ a ] + b( a) + b ( a) b ( a) + O ( ) estos coeficietes b i de la siguiete forma:, obteiédose U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía 9

10 E () se sustituye por ϕ y luego se sustituye ϕ por su desarrollo (), efectuado las correspodietes operacioes matemáticas y coservado solo los térmios e la forma b ( a, co,,...,. ) E el caso particular: m ϕ ( ) A y f a + a + a a O( ) etoces: + f ( ϕ ) a + a (A ) + a (A ) a (A ) m m m Si h es la fució derivada de f etoces T [ h,] ( T [ f, ] ) Si h es ua fució primitiva de f etoces: T [ h,] T [ f (t),] Fórmulas de MacLauri de alguas fucioes: dt c e e co c, o bie c,! 3! 4!!! ( + ) ( ) ( ) (+ ) l( + ) ( ) + ( ) ( + c) c, o bie c, ( ) ( ) π π s e s e + s e c + + 3! 5! 7!!! ( ) ( + ) ( ) ( ) c, o bie c, π π cos cos + cos c + +! 4! 6!!! + ( ) + ( ) ( + + ) ( ) ( )... ( )! 3!! 35 + ( ) co c (, ) o bie c (,)! c ( ) ( + ) c (, ) o bie c (, ) U. D. de Matemáticas. ETSI e Topografía, Geodesia y Cartografía

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2 LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 7

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 7 E esta práctica se aalizará la aproximació de ua ució mediate su poliomio de Taylor estimado esta aproximació. Los coceptos y resultados que se utilizará so los siguietes: Supogamos que ( x ) es ua ució

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

TEMA IV INTEGRALES INDEFINIDAS

TEMA IV INTEGRALES INDEFINIDAS Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II

CALCULO DIFERENCIAL E INTEGRAL II CALCULO DIFERENCIAL E INTEGRAL II TEMA 5 (Última modificació 8-7-015) TEOREMA DEL VALOR MEDIO TEOREMA DEL VALOR MEDIO O DE LAGRANGE O DE LOS INCREMENTOS FINITOS PARA FUNCIONES DE UNA VARIABLE INDEPENDIENTE.

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Tema. ALICACIONES DE LAS DERIVADAS: RERESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos de crecimieto

Más detalles

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles de agosto del ESCUELA DE MATEMÁTICA Segudo Eame Parcial Cálculo I PROYECTO MATEM Tiempo Probable: horas Solucioario. Use

Más detalles

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Funciones, límites y continuidad.

Funciones, límites y continuidad. Fucioes, límites y cotiuidad. Guillermo Sáchez () Departameto de Ecoomia e Hª Ecoómica. Uiversidad de Salamaca. Actualizado : -- Sobre el estilo utilizado Mathematica las salidas (Ouput) por defecto las

Más detalles

Material interactivo con teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguientes enlaces una vez dentro de la asignatura

Material interactivo con teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguientes enlaces una vez dentro de la asignatura E el Aula Virtual se ecuetra dispoible: Material iteractivo co teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguietes elaces ua vez detro de la asigatura Pagia Pricipal >Aputes>4.

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

UNIVERSIDAD POLITÉCNICA DE CARTAGENA UNIVERSIDAD POLITÉCNICA DE CARTAGENA MATERIA: FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA CUADERNO DE PRÁCTICAS DE INGENIERÍA MECÁNICA CURSO 009/0. (Segudo cuatrimestre) Prof. Pedro Luís Gómez Sáchez Prof.

Más detalles