Gradiente, divergencia y rotacional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Gradiente, divergencia y rotacional"

Transcripción

1 Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para 2 teemos u campo escalar e el plao, que tedrá la forma (x,y) f (x,y). Para 3 tedremos u campo escalar e el espacio, dado por ua expresió (x, y, z) f (x, y, z). E Física, u campo escalar f : Ω R describe ua magitud co valores escalares, de forma que Ω es ua regió del plao o del espacio y, para cada puto x Ω, f (x) es el valor e el puto x de dicha magitud física. Piésese, por ejemplo, e u campo de temperaturas. Defiició de gradiete. Sea f u campo escalar defiido e u abierto Ω R y sea a (a 1,a 2,...,a ) Ω. Supogamos que f es difereciable e el puto a, co lo que existe las derivadas parciales de f e a: (a) f (a + t e k ) f (a) (a 1,a 2,...,a ) lím t 0 t (k 1,2,...,), dode {e 1,e 2,...,e } es la base stadard de R. Etoces, el gradiete de f e el puto a es, por defiició, el vector f (a) f (a 1,a 2,...,a ) R dado por f (a) (a), (a),..., ) (a) x 1 x 2 x (a 1,a 2,...,a ) e k Si el campo f es difereciable e todos los putos de Ω tedremos ua fució f : Ω R que a cada puto x Ω hace correspoder el vector gradiete e dicho puto, f (x). Es atural etoces escribir: f,,..., ) x 1 x 2 x e k, ua igualdad etre fucioes, válida e todo puto de Ω. 8

2 2. Gradiete, divergecia y rotacioal 9 Gradiete e el plao. Para u campo escalar plao (x,y) f (x,y), que sea difereciable e u puto a (x 0,y 0 ), tedremos f (a) f (x 0,y 0 ) x (a), ) y (a) x (x 0,y 0 ) i + y (x 0,y 0 ) j Cuado f sea difereciable e u abierto Ω R 2 podremos escribir f x, ) y x i + j (e Ω) y Gradiete e el espacio. Aálogamete, si (x,y,z) f (x,y,z) es u campo escalar e el espacio, difereciable e u puto a (x 0,y 0,z 0 ), tedremos f (a) f (x 0,y 0,z 0 ) x (a), y (a), ) z (a) x (x 0,y 0,z 0 ) i + y (x 0,y 0,z 0 ) j + z (x 0,y 0,z 0 ) k y cuado f sea difereciable e u abierto Ω R 3 podremos escribir f x, y, ) z x i + y j + k (e Ω) z Derivadas direccioales. Cosideremos de uevo u campo escalar f defiido e u abierto Ω R y difereciable e u puto a Ω. Fijado u vector u (u 1,u 2,...,u ) R co u 1, sabemos que la derivada direccioal de f e la direcció u viee dada por: f (a + t u) f (a) (a) lím u t 0 t (a) u k f (a) u y mide la rapidez de variació de f al desplazaros desde el puto a e la direcció del vector u. La desigualdad de Cauchy-Schwartz os da (a) f (a) u f (a) u f (a) u f (a) u Si f (a) 0, podemos coseguir que las desigualdades ateriores sea igualdades tomado u f (a) y teemos ua iterpretació física del gradiete de u campo escalar: f (a) f (a) es la máxima rapidez de variació del campo que podemos coseguir al desplazaros desde el puto a; esta máxima variació se produce e la direcció del vector gradiete, más cocretamete, el máximo aumeto se cosigue e el setido del vector gradiete y la máxima dismiució e setido opuesto.

3 2. Gradiete, divergecia y rotacioal Campos vectoriales Campos vectoriales. U campo vectorial e R es ua fució F : Ω R dode Ω es u subcojuto de R que usualmete será abierto. Por tato, u campo vectorial tiee coordeadas, que so campos escalares; cocretamete, para x (x 1,x 2,...,x ) Ω, el vector F(x) R deberá teer la forma: más explícitamete, F(x) ( F 1 (x),f 2 (x),...,f (x) ) F k (x) e k, F(x 1,x 2,...,x ) ( F 1 (x 1,x 2,...,x ), F 2 (x 1,x 2,...,x ),...,F (x 1,x 2,...,x ) ) F k (x 1,x 2,...,x ) e k, o abreviadamete: F (F 1,F 2,...,F ) F k e k (e Ω). Es claro que, para k 1,2,...,, la fució F k : Ω R así defiida es u campo escalar e R. Veamos la otació que suele usarse e los dos casos particulares que os iteresa. U campo vectorial e el plao vedrá dado por ua fució (x,y) F(x,y) defiida e u cojuto Ω R 2 y co valores e R 2. Sus compoetes suele deotarse por P y Q, co lo que, para (x,y) Ω, tedremos: F(x,y) ( P(x,y),Q(x,y) ) P(x,y)i + Q(x,y)j o, abreviadamete: F (P,Q) P i + Q j (e Ω). Es costumbre represetar gráficamete u campo vectorial plao F : Ω R 2 haciedo que, para cada x Ω, el vector F(x) tega su orige e el puto x, obteiédose ua image que sugiere claramete u campo de vectores. Las compoetes de u campo vectorial (x,y,z) F(x,y,z), defiido e Ω R 3 y co valores e R 3 suele deotarse por P, Q y R, de forma que, para (x,y,z) Ω, se tedrá: F(x,y,z) ( P(x,y,z),Q(x,y,z),R(x,y,z) ) P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k o, abreviadamete: F (P,Q,R) P i + Q j + R k. (e Ω) Los campos vectoriales aparece co frecuecia e Física, para represetar magitudes vectoriales: para cada puto x de ua regió Ω e el plao o e el espacio, F(x) es el valor e ese puto de la magitud vectorial descrita por el campo. Piésese por ejemplo e el campo de velocidades de u fluido e movimieto o e campos de fuerzas, como u campo gravitatorio o electromagético.

4 2. Gradiete, divergecia y rotacioal Divergecia de u campo vectorial Sea F u campo vectorial defiido e u cojuto abierto Ω R y cosideremos sus coordeadas F (F 1,F 2,...,F ). Supogamos que F es difereciable e u puto a Ω, lo que sabemos equivale a que todos los campos escalares F k, co k 1,2,...,, sea difereciables e el puto a. De hecho cada vector gradiete F k (a) es la k-ésima fila de la matriz jacobiaa de F e a. Pues bie, la traza de dicha matriz es, por defiició, la divergecia del campo F e el puto a, y se deota por divf(a). Así pues, se tedrá: divf(a) F 1 (a) + F 2 (a) F F k (a) x 1 x 2 x (a). Cuado el campo vectorial F es difereciable e todo puto de Ω teemos ua fució divf : Ω R que e cada puto x Ω toma el valor divf(x) de la divergecia e dicho puto. Teemos etoces la siguiete igualdad etre fucioes, válida e todo puto de Ω: divf F 1 + F F F k x 1 x 2 x Para u campo vectorial plao (x,y) F(x,y) ( P(x,y),Q(x,y) ), que sea difereciable e u puto (x 0,y 0 ), tedremos divf(x 0,y 0 ) P x (x 0,y 0 ) + Q y (x 0,y 0 ) Cuado F sea difereciable e u abierto Ω R 2 podremos escribir divf P x + Q y (e Ω) Aálogamete, si F Pi + Qj + Rk es u campo vectorial e el espacio, difereciable e u puto (x 0,y 0,z 0 ), tedremos divf(x 0,y 0,z 0 ) P x (x 0,y 0,z 0 ) + Q y (x 0,y 0,z 0 ) + R z (x 0,y 0,z 0 ), y cuado F sea difereciable e u abierto Ω R 3 podremos escribir divf P x + Q y + R z (e Ω) Vector simbólico abla. Para operar co las ocioes que estamos estudiado es útil itroducir el simbolismo ( ),,..., e k x 1 x 2 x y maejar como si se tratase de u vector de R.

5 2. Gradiete, divergecia y rotacioal 12 Por ejemplo, si f es u campo escalar defiido e u abierto Ω R y difereciable e u puto a Ω, al multiplicar simbólicamete el vector por el escalar f (a) se obtiee la expresió correcta del vector gradiete: f (a) x 1 (a), x 2 (a),..., x (a) ) (a) e k Cuado f es difereciable e todo puto de Ω podemos hacer el mismo cálculo simbólico co el escalar variable f, que multiplicado por os da f,,..., ) x 1 x 2 x e k, Si ahora F (F 1,F 2,,F ) es u campo vectorial defiido e el abierto Ω y difereciable e el puto a Ω, cuado calculamos simbólicamete el producto escalar del vector por el vector F(a) (F 1 (a),f 2 (a),...,f (a)) obteemos:.f(a) F 1 x 1 (a) + F 2 x 2 (a) F x (a) divf(a). Esto explica que frecuetemete se deote por.f(a) a la divergecia del campo F e el puto a. Cuado F es difereciable e Ω, teemos igualmete.f F 1 x 1 + F 2 x F x divf (e Ω) Co las debidas precaucioes, este cálculo simbólico co el vector resulta útil. Destacamos como siempre los dos casos particulares que os iteresa: ( E el caso 2 teemos x, ) y x i + y j ( Aálogamete, para 3 será x, y, ) z x i + y j + z k 2.4. Rotacioal de u campo vectorial Rotacioal e el espacio. Sea F (P,Q,R) u campo vectorial defiido e u abierto Ω R 3 y difereciable e u puto a Ω. Del mismo modo que la divergecia divf(a) se obtiee como el producto escalar simbólico.f(a), podemos pesar e el producto vectorial, tambié simbólico, F(a). El vector que así se obtiee es, por defiició, el rotacioal del campo F e el puto a y se deota tambié por rot F(a). Así pues: i j k rot F(a) F(a) x y z P(a) Q(a) R(a) ( ) R Q (a) y z (a) i + ( P R (a) z x (a) ) j + ( ) Q P (a) x y (a) k.

6 2. Gradiete, divergecia y rotacioal 13 Cuado F sea difereciable e todo el abierto Ω podremos escribir: i j k rot F F x y z P Q R ( R y Q ) ( P i + z z R ) ( Q j + x x P ) k y (e Ω). Rotacioal escalar e el plao. La oció de rotacioal recié itroducida sólo tiee setido para campos vectoriales e el espacio. Si embargo, a u campo vectorial e el plao puede asociarse de forma atural u campo vectorial e el espacio, como vamos a ver. Sea F (P,Q) u campo vectorial defiido e u abierto Ω R 2. Cosideramos el cojuto Ω {(x,y,z) R 3 : (x,y) Ω}, que es claramete u subcojuto abierto de R 3, y para (x,y,z) Ω, defiimos F(x,y,z) (P(x,y),Q(x,y),0), obteiedo u campo vectorial F : Ω R 3. La relació etre las compoetes de F y F es bastate clara, si poemos F ( P, Q, R), teemos P(x,y,z) P(x,y); Q(x,y,z) Q(x,y); R(x,y,z) 0 ( (x,y,z) Ω ) Si F es difereciable e u puto (x 0,y 0 ) deducimos que F es difereciable e cualquier puto de la forma (x 0,y 0,z) Ω y calculamos fácilmete el rotacioal e cualquiera de esos putos: ( Q rot F(x 0,y 0,z) x (x 0,y 0 ) P ) y (x 0,y 0 ) k. Hemos motivado así la siguiete defiició: Sea F (P,Q) u campo vectorial defiido e u abierto Ω R 2 y difereciable e u puto (x 0,y 0 ) Ω. El rotacioal escalar de F e el puto (x 0,y 0 ) se defie por: rot F(x 0,y 0 ) Q x (x 0,y 0 ) P y (x 0,y 0 ). Si F es difereciable e todo puto del abierto Ω podemos pues defiir rot F : Ω R mediate la igualdad: rot F Q x P y Alguas observacioes adicioales E esta lecció hemos defiido cuatro operadores difereciales que trasforma uos campos e otros. Más cocretamete: Si f es u campo escalar difereciable e u abierto Ω R, etoces su gradiete f : Ω R es u campo vectorial defiido e Ω. Suele decirse que f es u campo de gradietes.

7 2. Gradiete, divergecia y rotacioal 14 Dado u campo vectorial F que sea difereciable e u abierto Ω R, su divergecia.f es u campo escalar defiido e Ω. Cada campo vectorial F que sea difereciable e u abierto Ω R 3 da lugar a rot F, otro campo vectorial defiido e Ω Fialmete, u campo vectorial F que sea difereciable e u abierto Ω R 2 defie u campo escalar rot F. Veamos ahora lo que ocurre al iterar estos procesos, auque o agotaremos todas las posibilidades. Lógicamete los campos a cosiderar deberá teer propiedades de difereciabilidad más restrictivas que las usadas hasta ahora. Rotacioal de u gradiete. Vamos a comprobar si dificultad el siguiete resultado: Si f es u campo escalar dos veces difereciable e u abierto Ω R 3, etoces se verifica que rot ( f ) 0 e Ω. E efecto, de las defiicioes de gradiete y rotacioal se deduce que: rot ( f ) ( 2 f y z ) ( 2 f 2 f i + z y z x ) ( 2 f 2 f j + x z x y ) 2 f k, y x que se aula idéticamete e todo el abierto Ω gracias al Lema de Schwarz, que asegura la igualdad de las derivadas parciales segudas cruzadas de ua fució dos veces difereciable. De forma completamete aáloga podemos obteer el mismo resultado e R 2 : Si f es u campo escalar dos veces difereciable e u abierto Ω R 2, etoces se verifica que rot( f ) 0 e Ω. Divergecia de u rotacioal. El siguiete resultado se comprueba tambié si dificultad: Si F es u campo vectorial dos veces difereciable e u abierto Ω R 3, etoces se verifica que div(rot F) 0 e Ω. El cálculo co el vector simbólico ayuda a recordar los dos resultados ateriores: ( f ) 0 y.( F) 0 E el primer caso podemos pesar que f es u múltiplo escalar del vector y recordar que, para x R 3 y α R, se tiee x (αx) 0. E el segudo caso recordamos que el producto vectorial de dos vectores de R 3 es ortogoal a dichos vectores. Si embargo, el simbolismo o se puede llevar demasiado lejos: cierto que, como se ha dicho, podemos eteder que F es ortogoal a, pero es fácil dar u ejemplo de u campo vectorial F, difereciable e R 3, tal que F o sea ortogoal a F, o icluso que verifique F(x) F(x) 0 para todo x R 3.

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene Existecia. El pricipio de los casilleros. Si queremos colocar 3 bolillas e cajas, es evidete que e algua caja deberemos colocar al meos dos bolillas. Lo mismo ocurre si e lugar de 3 bolillas tuviésemos

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

1. Ley de Grandes Números

1. Ley de Grandes Números La Ley de Grades Números Pablo Lessa 9 de octubre de 2014 1. Ley de Grades Números Te hago ua preguta persoal: Si estás jugado a la ruleta apostado e cada turo por egro o rojo y ves que sale 6 veces seguidas

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

Desigualdades. José H. Nieto (jhnieto@yahoo.com)

Desigualdades. José H. Nieto (jhnieto@yahoo.com) Desigualdades José H. Nieto jhieto@yahoo.com). Itroducció Las desigualdades juega u rol fudametal e matemática. Existe libros completos dedicados a su estudio, y e las competecias iteracioales de problemas

Más detalles

3.1. FUNCIÓN VECTORIAL 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.1. 3.3. DOMINIO DE UNA FUNCIÓN

3.1. FUNCIÓN VECTORIAL 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.1. 3.3. DOMINIO DE UNA FUNCIÓN .1. FUNCIÓN VECTORIAL.. GRAFICA DE UNA FUNCIÓN ESCALAR.1... DOMINIO DE UNA FUNCIÓN.. ESCALAR...4. CONJUNTO DE NIVEL.4..5. LIMITES DE FUNCIONES DE VARIAS VARIABLES.6. CONTINUIDAD.7. DERIVADA DE UNA FUNCIÓN

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013 Matemáticas I E.I.I Tema 2 Aplicacioes Lieales y Matrices Curso 202-203 Itroducció 2 Como requisitos previos para maejar todos lo que e este tema se itroduce se tiee que recordar de cursos ateriores los

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2 LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Introducción a las sucesiones. y series numéricas

Introducción a las sucesiones. y series numéricas UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Itroducció a las sucesioes y series uméricas Ramó Bruzual Marisela Domíguez Caracas, Veezuela

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Tema 2.2: Funciones multiformes elementales. Logaritmos y potencias. Ramas uniformes

Tema 2.2: Funciones multiformes elementales. Logaritmos y potencias. Ramas uniformes Tema 2.2: Fucioes multiformes elemetales. Logaritmos y potecias. Ramas uiformes Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo E esta lecció se hace hicapié e u cocepto que ecierra cierta di

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles