ESTABILIDAD III CAPITULO VI: LINEAS DE INFLUENCIA Pág 102. para una carga P = η

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTABILIDAD III CAPITULO VI: LINEAS DE INFLUENCIA Pág 102. para una carga P = η"

Transcripción

1 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 0 6. CONSIDERCIONES GENERLES 6 LÍNES DE INFLUENCI S ben en e tratamento de tema, por smpcdad nos refermos a casos de vgas, a generazacón a otros tpos de estructuras es cas nmedata y no requere de nuevos conceptos a os necesaros en nuestro tratamento. La posbdad de cargas móves mpca a necesdad de obtener: a) as soctacones, deformacones, etc., que produce una carga (o un estado de cargas) para dstntos puntos de apcacón de a msma. b) E estado más desfavorabe de apcacón de a carga, que trae aparejada as mayores soctacones o deformacones, y con as cuaes tene que ser evauada una seccón dada Estas dos necesdades deben ser tendas en cuenta en todas as seccones de a vga, o por o menos, en varas seccones característcas según as crcunstancas. E trazado de dagramas o Líneas de Infuenca nos permte una adecuada respuesta a as dos necesdades y su utzacón es cas mprescndbe en e caso de estudos de puentes, puentes grúa, etc., donde as cargas móves (p) tenen una certa mportanca con respecto a peso propo o carga permanentes (g). 6. DEFINICIÓN DE LÍNES DE INFLUENCI Defnremos como íneas de nfuenca de una soctacón (o deformacón), en a seccón -, a un dagrama ta, que su ordenada en un punto mda, en una determnada escaa, e vaor de a soctacón en a seccón - (o de a deformacón), cuando en e punto de referenca actúa una carga de vaor untaro. En e caso de a fgura, dremos que f() es a Línea de Infuenca de momento fector en, s se cumpe que a P = ordenada δ representa e vaor de momento fector en para una carga P = δ f apcada en e punto. () f () = δ * (escaa de L. de I.) para P = apcada en S P se cumprá: f () = P * δ * (escaa de L. de I.) Esto msmo puede apcarse para otros estados de carga y otras soctacones, reaccones, deformacones, etc. 0

2 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 0 6. LINES DE INFLUENCI EN SISTES ISOSTÁTICOS Recordemos agunos eementos báscos apcados en sstemas sostátcos smpes a fn de aprecar as smtudes y dferencas con e tratamento que daremos a as vgas hperestátcas. Nada mejor para esto que a apcacón de Prncpo de os Trabajos Vrtuaes, en e método de a Cadena Cnemátca en una vga sostátca de dos tramos para dstntos casos de soctacones, o étodo naítco. 6.. LÍNE DE INFLUENCI DE UN RECCIÓN Deseamos a L. de I. de R que denomnamos con R. Emnamos e apoyo, coocamos e esfuerzo correspondente a víncuo suprmdo, y damos un despazamento en e apoyo a mecansmo formado. Por apcacón de P.T.V.: R. + tn. 0 R S P = R P = B / / 6.. LÍNE DE INFLUENCI DEL OENTO FLECTOR C R = tn. R = R = Donde vemos que R es proporcona a a coordenada o sea que en una determnada escaa puede representar e vaor de R para una carga untara apcada en, dónde se puede ncorporar como factor de escaa. f P = (+) P = B (-) C f Deseamos a L. de I. de f en a seccón. Para eo emnamos e víncuo que transmte e momento en dcha seccón ntroducendo una artcuacón. a cadena cnemátca formada, doy un despazamento vrtua y apco e P.T.V después de expctar e f en a seccón (+ traccón abajo). f. + tn. = 0 tn. f = f = Con as msmas condcones anterores podemos decr que e dagrama cnemátco es en una determnada escaa a ínea de nfuenca buscada. 0

3 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág LÍNE DE INFLUENCI DEL ESFUERZO DE CORTE P = B C Para e esfuerzo de corte Q emnamos un víncuo a ntroducr en - un mecnsmo como e sguente: (+) (-) (-) Q Q Q Q + Q pcando e P.T.V.: Q. tn. = 0 tn. Q = Q = 6.. LÍNE DE INFLUENCI DEL ESFUERZO NORL a α N x B N P C RC En este caso se ntroduce un mecansmo que no transmte esfuerzos normaes: N (+) traccón N C R N ' (+) a cos α a cos α (-) L C Se pueden haar os centros de rotacón, y e depazamento de en a dreccón de N por apcacón de P.T.V. y a teoría de Cadena Cnemátca. nacémoso a este caso en forma anaítca, que permte una buena vsuazacón de probema: R = t * ( x ) x = t para P = t entre 0 x a = t R cos N N = t ( ) α x * cos α x = 0 N x = a N = 0 = a cosα para P = t entre a x = R cos α N N x t cos α x = a N = = x = N = 0 a ( ) cosα 04

4 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 05 étodos anáogos a os probemas sostátcos aparecen en os casos hperestátcos, con agunas varantes. Desarroaremos aguno de estos métodos en os próxmos puntos LÍNE DE INFLUENCI EN SISTES IPERESTÁTICOS nacemos por dstntos métodos, una vga contnua de cuatro tramos (grado de hperestatcdad) ÉTODO POR PUNTOS Es un método cuya expcacón es nmedata, basada en a apcacón de a defncón de L. de I. Supongamos que a L de I de omento fector en - ( f ). Dvdamos cada tramo de a vga en partes guaes (cuyo argo dependerá de a precsón requerda) que en nuestro caso es gua a 6 partes ' ' ' ' 4' 5' 6' ' 8' 4' Cooquemos P = tn en e punto. Cacuamos e f para esa carga ( ) y a vaor (en una determnada escaa) o dbujamos debajo de punto ('). Corremos P = tn a punto. Cacuamos e f para esa carga ( ) y a vaor o dbujamos debajo de punto ('), y así sucesvamente para todos os puntos (, 4,...,, 4). Unmos os puntos 0', ', '..., ', 4' medante curvas o pogonaes, y por a forma de su construccón esta curva o pogona es a L de I buscada ( f ). E método puede ser argo, según e número de puntos eegdos, pues para cada uno es necesaro resover un hperestátco. Dchos cácuos se pueden factar con a utzacón de computadora, utzacón de a matrz para os dstntos estados de carga, o a utzacón de condcones de smetría, s a estructura fuera smétrca ÉTODO DE ÜLLER-BRESLU (pcacón de Bett - axwe) a Línea de nfuenca de deformacones Sea a vga de a fgura, y queremos cacuar ϕ B (Línea de Infuenca de a rotacón de nudo B). Para eo apcamos en e nudo B a carga correspondente con a deformacón cuya L de I se busca, en este caso un momento untaro =. Resovemos a vga y con as soctacones haamos a eástca para ese estado de cargas. Demostraremos que esta eástca es a L de I de a rotacón ϕ B ( ϕb ). Para eo apcamos P = en un punto genérco, haamos a eástca y a rotacón ϕ B para este estado de carga. 05

5 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 06 = B C D E f ϕb P = (eástca) pcamos e teorema de axwe entre estos dos estados de carga:. ϕ ; sendo = tnm y P = tn B = P. tn ϕ B =. tnm ϕ ϕ B [ Escaa de L. de ] = B B =. I. ϕ Es decr que en una escaa determnada, a prmer eástca representa ϕ B para cada punto, o sea es su Línea de Infuenca. P* = B C D Como un segundo ejempo anacemos en a sguente vga a L de I de descenso en e punto D ( δd ). f δ (eástca) P = B C D Sguendo os msmos pasos, apco en D a carga P*=, correspondente con δ D. Cacuamos e dagrama de omentos y haamos su eástca. pcamos P = en e punto, hao a eástca y δ D y por e teorema de axwe: (eástca) δ D 06

6 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 07 P * δ D δ D = P. = [ Escaa de L. de I] = δd b Línea de nfuenca de una Reaccón Deseamos a L. de I. de a reaccón R ( R ). Emnamos e apoyo y apcamos en ese punto una carga P* =. aamos as soctacones y a eástca, que demostraremos es a L. de I.de R ( R ). R B C D E P* = R pcamos ahora un segundo estado de cargas P = en un punto, junto con e verdadero vaor de a reaccón R para esta carga, por o cua e descenso debe ser gua a cero. P = (eástca) R B C D E = 0 (eástca) pcando e teorema de axwe: tn P *. = R. + P. = 0 R = R = Esc. de L. de I. = R [ ] c Línea de nfuenca de una Soctacón Sea a vga con una seccón - en a cua queremos a L. de I. de momento fector en ( f ). En emnamos e víncuo que resste e momento fector, es decr coocamos una artcuacón, y además apcamos un par de momentos =. aamos as soctacones y a eástca, que demostraremos es a L. de I.. f Para eo apcamos en un punto genérco una carga P = y e vaor de verdadero f que corresponde a a vga orgna para dcha carga. La vga con a carga P = y f se 07

7 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 08 P = f = f (eástca) comportará como a orgna, que por no tener en una artcuacón, no sufrrá en dcho punto una rotacón reatva y por o tanto ϕ = 0. pcando e Teorema de axwe:. = P. f. 0 f ϕ = f tn = [ Esc. de L. de ] = f = I. (eástca) Q P = ϕ = 0 Q = Q Q = Q = 0 (eástca) (eástca) Veamos ahora en a msma seccón a L. de I. de esfuerzo de corte Q ( Q ). pcamos en e mecansmo de 6.., con un par de Q =. aamos as soctacones y a eástca será a L. de I. buscada ( Q ). pco P = en y en e verdadero vaor de Q con o cua e despazamento reatvo norma a eje de a barra en a seccón será nuo ( = 0). pcando e Teorema de axwe: Q*. = P. Q. = 0 tn Q = Q = Esc. de L. de I. = [ ] Q d Línea de Infuenca por superposcón de efectos (atrz b) Para aprender este método vamos a trabajar con una vga contnua que posee cuatro tramos, o sea con tres ncógntas hperestátcas; en forma genérca ndcamos que esa vga tene un apoyo fjo y os demás móves. X X X 08

8 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág 09 Por e método de as fuerzas, en funcón de sostátco fundamenta adoptado, en una seccón genérca, e momento vene dado por a expresón: 0 = + X + X + X S quséramos conocer dependen de estado de cargas. Eos son:, deberíamos dentfcar en a expresón que factores 0, X,X y X. Será entonces: = 0 + X + X + X Para obtener as íneas de nfuenca de as ncógntas hperestátcas utzamos as propedades de os coefcentes vstos en e Capítuo en e tema de atrz. Recordemos que: X = δ0 +δ δ dónde: n0 n = X : ncógnta hperestátca δ j0 : térmno que depende de as cargas exterores. j = j : coefcente ndependente de as cargas exterores. S queremos a ínea de nfuenca X = δ δ0 δ0 n j= δ j0 X en nuestra vga nacemos por etapas as dstntas L. de I. que pueden aparecer en nuestra estructura j Línea de nfuenca de térmno o d j0 Defnmos e sostátco fundamenta con as ncógntas X, X, X (momento en os apoyos ntermedos) apcando artcuacón en os apoyos, y. parecen os δ j0, rotacones reatvas en e apoyo j (corrmentos correspondentes con X j ). De acuerdo con a para a L. de I. de δ 0 ( δ0 ) debo cacuar a eástca para a carga X =. En forma smar se procede para δ0 y δ0. 09

9 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág P X X X P= δ 0 δ 0 X = δ0 X = δ0 X = δ0 Línea de nfuenca de una ncógnta X De acuerdo con o vsto: X X X = + + X δ0 δ0 δ 0 = + X δ0 δ0 δ 0 = X δ0 δ0 δ 0 Dónde os dagramas X, X y X son combnacones neaes de os δ0, δ0, y δ0. Línea de nfuenca de una soctacón (f) aaremos a L. de I. de momento fector en e punto ( Sabemos de Captuo II: f ) de hperestátco. f 0 = + X + X + X 0

10 ESTBILIDD III CPITULO VI: LINES DE INFLUENCI Pág y por o tanto será: f = 0 + X + X + X Donde serán: : L. de I de en e sostátco fundamenta 0, y : L. de I de as ncógntas hperestátcas ( X, X y X ) X X X, y : omento en seccón de sostátco para cargas X = ; X = ; X =, respectvamente. : ínea de nfuenca de f de hperestátco; que es una combnacón nea de 0, f X, X, X de acuerdo con a expresón antes vsta. náss smares se pueden reazar para as reaccones de apoyo, os esfuerzos N y Q o deformacones. X X = 0 X f

ESTABILIDAD III CAPITULO VI: LINEAS DE INFLUENCIA Pág 1

ESTABILIDAD III CAPITULO VI: LINEAS DE INFLUENCIA Pág 1 ESTIIDD III CPITUO VI: INES DE INFUENCI Pág ÍNES DE INFUENCI 6. CONSIDERCIONES GENERES S ben en el tratamento del tema, or smlcdad nos refermos a casos de vgas, la generalzacón a otros tos de estructuras

Más detalles

PRINCIPIO DE MINIMA ENERGIA POTENCIAL COMPLEMENTARIA. Principio de Mínima Energía Potencial Complementaria

PRINCIPIO DE MINIMA ENERGIA POTENCIAL COMPLEMENTARIA. Principio de Mínima Energía Potencial Complementaria Apéndce A Prncpo de Mínma Energía Potenca Compementara A- ntroduccón epresón: Se defne como energía potenca compementara * para sstemas eástcos a a * W * R U (Ec A) *: Es una funcón cuyas varabes son fuerzas

Más detalles

FUNDAMENTOS DEL CÁLCULO DE ESTRUCTURAS MODERNO

FUNDAMENTOS DEL CÁLCULO DE ESTRUCTURAS MODERNO FUNDAMENTOS DEL CÁLCULO DE ESTRUCTURAS MODERNO MÉTODO DIRECTO DE LA RIGIDEZ (DESPLAZAMIENTOS INCOGNITA) EMSAMBLAJE DE ELEMENTOS EN PUNTOS PLANTEAMIENTO ENERGÉTICO (ESTRUCTURA GLOBAL) ORGANIZACIÓN ADECUADA

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

APLICACIÓN DEL MÉTODO DE LAS FUERZAS RESOLUCIÓN DE ESTRUCTURAS HIPERESTÁTICAS

APLICACIÓN DEL MÉTODO DE LAS FUERZAS RESOLUCIÓN DE ESTRUCTURAS HIPERESTÁTICAS APLICACIÓN DEL ÉTODO DE LAS FUERZAS RESOLUCIÓN DE ESTRUCTURAS HIPERESTÁTICAS Ing. CLAUDIO F. PERNICE DIEGO J. CERNUSCHI Auxlares Docentes de la Cátedra INTRODUCCION Resolver una estructura mplca conocer

Más detalles

ANEXO C: Estimación del Orden de Error de Colocación TH en una Dimensión

ANEXO C: Estimación del Orden de Error de Colocación TH en una Dimensión Estmacón de Orden de Error de Coocacón TH en una Dmensón ANEXO C: Estmacón de Orden de Error de Coocacón TH en una Dmensón Sean û ŵ as aproxmacones de u w, respectvamente. Además, defnmos ex ( ) ux ( )

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

Es un método de segmentación. Se basa en determinar una región dada a partir de las características de un pixel determinado. Una vez elegido el

Es un método de segmentación. Se basa en determinar una región dada a partir de las características de un pixel determinado. Una vez elegido el Es un método de segmentacón Se basa en determnar una regón dada a partr de as característcas de un pxe determnado Una vez eegdo e pxe, se determna a característca y se especfca un error A contnuacón se

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

ESTABILIDAD III A (64 07) ESTABILIDAD III (84 06)

ESTABILIDAD III A (64 07) ESTABILIDAD III (84 06) FACUTAD DE INGENIERIA UNIVERSIDAD DE BUENOS AIRES ESTABIIDAD III A (64 07) ESTABIIDAD III (84 06) ÍNEAS DE INFUENCIA (Introduccón Teórca y Ejerccos) AUTOR: ING. EDUARDO ROFRANO. J.T.P Depto. ESTABIIDAD

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍ DE ESTRUTURS TEM 3: LÍNES DE INFLUENI EN ESTRUTURS ISOSTÁTIS DEPRTMENTO DE INGENIERÍ MEÁNI - MEKNIK INGENIERITZ SIL ESUEL TÉNI SUPERIOR DE INGENIERÍ DE ILO UNIVERSIDD DEL PÍS VSO EUSKL HERRIKO UNIERTSITTE

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas . Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo

Más detalles

Números de Bernoulli y números de Stirling

Números de Bernoulli y números de Stirling Números de Bernou y números de Strng Aexey Beshenov (cadadr@gma.com 2 de Marzo de 27 Dgresón combnatora: os números de Strng Nuestro próxmo objetvo es obtener agunas expresones para os números de Bernou

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS Problemas elosías TEM : PROBLEMS RESUELTOS DE ELOSÍS.. La fgura muestra una celosía formada por dversas barras de un msmo materal, un acero de módulo de elastcdad E= GPa. La seccón de las barras del cordón

Más detalles

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales. Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX) Introduccón (I) Qué es un

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

5.- ESTRUCTURAS ARTICULADAS PLANAS

5.- ESTRUCTURAS ARTICULADAS PLANAS 5.- ESTRUCTURS RTICULDS LS 1 5.1 DEFIICIOES Y COCETOS Una estructura se dce artculadada o trangulada cuando está formada por barras conectadas entre s medante artculacones perfectas (rótulas). En la fgura

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

+ x+ (19) expresión que puede ser vista como. : Prima neta nivelad del seguro continuo temporal a n-años

+ x+ (19) expresión que puede ser vista como. : Prima neta nivelad del seguro continuo temporal a n-años eserva Matemátca bajo e concepto de varabe aeatora y su nve de Sufcenca de seguro sobre una soa vda, (Propuesta de Modeo Actuara) (segunda parte) Oscar Aranda M UNAM, Fac. Cencas Dc 0 Por a gnoranca se

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π EQUILIBRIO DE FASES Reglas de las fases. Teorema de Duhem S consderamos un sstema PVT con N especes químcas π fases en equlbro se caracterza por: P, T y (N-1) fraccones mol tal que Σx=1 para cada fase.

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

CORRIENTE Y RESISTENCIA

CORRIENTE Y RESISTENCIA COIENTE Y ESISTENCI ELECTODINMIC Es una parte de a eectrcdad que se encarga de estudo de os dferentes fenómenos producdos cuando exsten cargas eéctrcas en movmento CONDUCTO Es un matera en que os portadores

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Clase Auxiliar #1: Teoría de Juegos

Clase Auxiliar #1: Teoría de Juegos UNIVERSIDAD DE CHILE FAC DE CIENCIAS FÍSICAS Y MATEMÁTICAS Departamento de Ingenería Industral Curso: IN5A Economía Industral Semestre: Prmavera 7 Profesor: Ronald Fscher Auxlares: Klaus Kaempfe Sofía

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Carnet: Nombre: Practca Calfcada de C++ Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Practca Calfcada - Programacón en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introduccón... 1 1.1 Ejercco

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Tema 2: TEOREMAS ENERGÉTICOS

Tema 2: TEOREMAS ENERGÉTICOS ema : EORES ENERGÉICOS Supongamos que las cargas aplcadas al sóldo crecen, progresvamente, desde cero hasta su valor fnal de una manera contnua. En ese caso, el trabajo W realzado por todas las cargas

Más detalles

Cálculo de momentos de inercia

Cálculo de momentos de inercia Cálculo de momentos de nerca Cuando el cuerpo es homogéneo y unforme el cálculo de momento de nerca es una ntegral - Dvdmos el cuerpo en elementos de masa nfntesmal dm, todos a la msma dstanca r del eje

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A'

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A' Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - El Tensor de Deformacón Introdccón Además de descrbr los

Más detalles

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2 Tema 1 : PDEO L (1) () π. E. I = L Problemas resueltos Pro.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.SL.) - 8 1.1.- Un plar, de 3 m de longtud, se encuentra sometdo a una carga F de compresón centrada.

Más detalles

ESTRUCTURAS DE PÓRTICOS ESPACIALES

ESTRUCTURAS DE PÓRTICOS ESPACIALES ÁLULO ATRAL DE ESTRUTURAS ESTRUTURAS DE PÓRTOS ESPAALES Barra en e espaco en coordenadas ocaes P z m z P y m y m x P x P z mz P y m y m x P x Los esfuerzos y despazamento en coordenadas ocaes serán Px

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

El Tensor de Deformación

El Tensor de Deformación Comportamento Mecánco de Sóldos Capítlo IV Tensor de deformacón 4.. Introdccón El Tensor de Deformacón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

DISEÑO DE ELEMENTOS ESTRUCTURALES DE SECCIÓN VARIABLE ESTRUCTURAS HIPERESTATICOS DE SECCIÓN VARIABLE

DISEÑO DE ELEMENTOS ESTRUCTURALES DE SECCIÓN VARIABLE ESTRUCTURAS HIPERESTATICOS DE SECCIÓN VARIABLE DISEÑO DE ELEENTOS ESTRUCTURALES DE SECCIÓN VARIABLE ESTRUCTURAS HIPERESTATICOS DE SECCIÓN VARIABLE DETERINACIÓN DEL PERALTE Y DE LA LONGITUD DE ACARTELAIENTO Para determnar e perate (dd ) y a ngtud de

Más detalles

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general.

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general. Método De Lazos (contendo) Ecuacones de Lazo Teoría y Prncpos Establecmento general Fuentes de voltajee y resstencas solamente Con fuentes de voltaje dependentes Con fuentes de corrente Reduccón Fundamentos

Más detalles

Sistemas con Capacidad de Reacción Química 5 de mayo de 2009 Cuestiones y problemas: Cuest: 9.2, 4, 6, 10, 19. Prob: 4.16.

Sistemas con Capacidad de Reacción Química 5 de mayo de 2009 Cuestiones y problemas: Cuest: 9.2, 4, 6, 10, 19. Prob: 4.16. Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIEO Sstemas con Capacdad de Reaccón Químca 5 de mayo de 2009 Cuestones y problemas: Cuest: 9.2, 4, 6, 0, 9. Prob: 4.6. subrayados y en negrta

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO Concepto de equlbro físco Sstema Fase Componente Solubldad Transferenca Equlbro Composcón 2 Varables de mportanca en el equlbro de fases:

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UIVERSIDAD ACIOAL EXPERIMETAL POLITECICA ATOIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMETO DE IGEIERÍA QUÍMICA Ingenería Químca Undad II. Balance de matera con reaccón químca Clase º6 Autor:

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

la variable aleatoria relativa a esa indemnización 1 T( x) ( 0, n] será 2 : [ ] n t = (2) t x T x

la variable aleatoria relativa a esa indemnización 1 T( x) ( 0, n] será 2 : [ ] n t = (2) t x T x Modeo Actuara de 99.5% de sufcenca de a prma neta únca de seguro sobre una soa vda bajo e concepto de varabe aeatora (prmera parte) Oscar Aranda M UNAM, Fac. Cencas Novembre, If you are out to descrbe

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA FISICOQUÍMICA FARMACÉUTICA (008) UNIDAD. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA Mtra. Josefna Vades Trejo 06 de agosto de 0 Revsón de térmnos Cnétca Químca Estuda la rapdez de reaccón, los factores que

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles