Oscilaciones. Raúl Rechtman. 2 de mayo de Oscilador armónico amortiguado. 2γ = c m, ω = m, (3)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Oscilaciones. Raúl Rechtman. 2 de mayo de Oscilador armónico amortiguado. 2γ = c m, ω = m, (3)"

Transcripción

1 Oscilaciones Raúl Rechman de mayo de. Oscilador armónico amoriguado mẍ = k cẋ, () Con ẍ + c mẋ + k =. () m γ = c m, ω = k m, (3) ẍ + γẋ + ω =. (4) Para enconrar la solución de la Ec. (4) proponemos una solución de la forma De aquí Hay que esudiar res casos. () = e λ. (5) λ = γ ± γ ω. (6).. Movimieno sobre amoriguado, γ > ω con La solución general es () = e γ ( Ae α + Be α), (7) ẋ() = e γ ( ( γ + α)ae α B(γ + α)e α), (8) Con la condición inicial () =, ẋ() = α = γ ω. (9) A = (α + γ), B = (α γ), () α α por lo que la solución paricular es () = α e γ ( (α + γ)e α + (α γ)e α). ()

2 .8 Caso Caso Caso Figura : Los res casos de movimieno armónico amoriguado... Movimieno criicamene amoriguado, γ = ω La solución general es () = e γ (A + B) () Con las condiciones iniciales () =, ẋ() = () = e γ ( + (γ )) (3).3. Movimieno sub amoriguado, γ < ω () = e γ (A sin λ + B cos λ) (4) con λ = ω γ (5) Con las condiciones iniciales () =, ẋ() = () = e γ sin λ (6)

3 Figura : El caso sub amoriguado.. Oscilador armónico no amoriguado con forzamieno periódico En ese caso, la segunda ley de Newon es mẍ = k + f() (7) con f( + T ) = f() y T el período. Proponemos f() = cos ω con ω = π/t la frecuencia. Enonces, ẍ + ω = cos ω (8) con ω = k/m la frecuencia naural de oscilación del resore, i.e la frecuencia de oscilación en ausencia de forzamieno. La ecuación del oscilador armónico es ẍ + ω =. (9) Como anes proponemos una solución como la de la Ec. (5) por lo que λ = ± iω. () Para una de las dos soluciones, ano la pare real como la imaginaria son soluciones, por lo que la solución general es de la forma () = A cos ω + B sin ω o () 3

4 Para enconrar la solución de la Ec. (8) escribimos esa ecuación como ẍ + ω = e iω. () Buscamos la pare real de la solución. Suena razonable proponer como una solución paricular a p = ae iω. Eso se conoce como el méodo de los coeficienes indeerminados. Enonces, Al comparar con la Ec. (), por lo que ẍ p + ω p = a(ω ω )e iω (3) a = /(ω ω ) (4) p () = eiω ω = (cos ω + i sin ω). (5) ω ω Como solo nos ineresa la pare real, la solución paricular buscada es p () = ω ω por lo que la solución general de la Ec. (8) es () = A cos ω + B sin ω o + Con la condición inicial () =, ẋ() = por lo que A = () = Esa solución se puede escribir como la pare real de ω Para simplificar esa solución, definimos cos ω. (6) ω ω cos ω. (7) ω, B = (8) ω ω ω (cos ω cos ω ). (9) () = a ( e iω e iω) (3) de donde La solución paricular es α = ω + ω, β = ω ω, (3) ω = α + β ω = α β. (3) ( p () = a e i(α+β) e i(α β)) (33) = ae iα ( e iβ e iβ). (34) 4

5 De aquí y la solución que buscamos es la pare real de Es decir, () = are[e iα (i sin β)] e iβ e iβ = i sin β (35) () = ae iα (i sin β) (36) = are[(cos α + i sin α)(i sin β)] = are[ sin α sin β + i cos α sin β] = a sin α cos β ( ) ( ) (ω + ω ) (ω ω ) = a sin sin = ( ) ( ) (ω + ω ) (ω ω ) ω sin sin. (37) ω En el úlimo paso usamos la Ec. (4). En la Fig. 3 mosramos los resulados para algunos valores de ω y ω. Vemos que la ampliud cambia lenamene y es con la frecuencia (ω ω )/ que es la envolvene en rojo en las Figs. 3 (b) y (c). La ampliud máima esá dada por el érmino /(ω ω) que mosramos en la Fig. 3 (d). Dado que la ampliud máima es disconinua en ω, vemos ese caso apare... Solución general en el caso resonane Buscamos la solución general de ẍ + ω = cos ω. (38) o, lo que es lo mismo, la pare real de la solución general de ẍ + ω = e iω. (39) La solución general esá dada por la Ec. () como anes. La solución paricular no es p () = ae iω pues ésa es una solución del oscilador no forzado. Proponemos como solución a p () = ae iω. Enonces, por lo que ẋ p = a ( e iω + iω e iω), ẍ p = a ( iω e iω ω e iω), (4) ẍ + ω = a ( iω e iω ω e iω) + aω e iω = aiω e iω. (4) 5

6 (a) (b) (c) (d) Figura 3: Movimieno armónico con forzamieno periódico. en odos los casos ω =. (a) ω =.4, (b) ω =.8 y (c) ω =.9.(d) Ampliud máima de la oscilación. 6

7 Al comparar las Ecs. (39) y (4) y a = iω = i ω (4) p () = i ω (cos ω + i sin ω ) = ω (sin ω i cos ω ). (43) Dado que nos ineresa la pare real, La solución general de la Ec. (38) es () = A cos ω + B sin ω o + ω sin ω. (44) Cualquier solución oscila con la freecuencia naural ω que en ese caso es ambién la frecuencia de forzamieno para iempos coros, la solución asemeja a la de un oscilador no forzado. Para iempos largos, la solución es dominada por el úlimo érmino de la solución general y crece linealmene con. Con la condición inicial () = ẋ(), A = B = y () = En la Fig. 4 mosramos esa solución. ω sin ω. (45) 3. Oscilador armónico amoriguado con forzamieno periódico Buscamos la solución de que escribimos como ẍ + γẋ + ω = cos ω (46) ẍ + γẋ + ω = e iω (47) y buscamos la pare real de lasolución. Suponemos que γ < ω por lo que la solución de la ecuación homogénea es un movimieno armónico sub amoriguado dado por la Ec. (4) con λ dado por la Ec. (5). Proponemos una solución paricular de la forma Al susiuir en la ecuación diferencial de arriba p () = ae iω. (48) ẍ + γẋ + ω = a( ω + iγω + ω )e iω. (49) 7

8 Figura 4: ω =. Al comparar las Ecs. (47) y (49) a = ω ω + iγω = ω ω iγω (ω ω ) + 4γ ω (5) (5) La solución paricular es ( ω p () = ω ) iγω (ω ω ) + 4γ ω (cos ω + i sin ω) [ = (ω (ω ω ) + 4γ ω ω ) cos ω + γω sin ω+ i [ (ω ω ) sin ω γω cos ω ]]. (5) Nos ineresa solo la pare real, por lo que la solución general es () =e γ (A sin λ + B cos λ) + (ω ω ) cos ω + γω sin ω (ω ω ) + 4γ ω. (53) 8

9 (a) (b) p p Figura 5: ω =, γ =.. (a) ω =.5, (b) ω =.9. La solución de la ecuación diferencial homogénea va a cero como e γ por lo que para iempos largos la solución es p () que mosramos en la Fig. 5. Se puede simplificar el reulado dado por la Ec. (53) como sigue. Usando la Ec, (5) a = /b con b = ω ω + iγω, b = (ω ω ) + 4γω. (54) Enonces a = / b, a = a e φ con φ la fase y la solucón paricular se puede escribir como p () = a e i(ω+φ). (55) Dado que ab =, b = b e iφ con ( ) γω φ = an ω. (56) ω De aquí y la pare real de la solución paricular es ( ) γω φ = an ω ω (57) p () = cos(ω + φ). (58) (ω ω ) + 4γω con φ dado por la Ec. (57). Para iempos largos, la solución de la ecuación homogénea va a cero y la solución esá dada por la solución paricular p de la Ec, (58). Hay reonacia cuando b, el denominador del érmino derecho de esa Ec. va a cero. En la Fig. 6 mosramos b para disinos valores del amoriguamieno γ. Para cada valor de γ, la resonancia se presena cuando b =. Para γ =, la resonancia se presena cuando ω = ω =. De la Fig. vemos que solo hay resonancia si γ < γ c = /4. 9

10 .5.5 γ =. γ =.5 γ =. γ =. γ =.5 γ =.3 b ω Figura 6: ω =.

Sistemas de primer orden

Sistemas de primer orden Sisemas de primer orden Raúl Rechman Insiuo de Energías Renovables UNAM 9 de ocubre de 8. Modelo de Loka-Volerra El modelo de Loka-Volerra esudia la ineracción enre R presas F depredadores de acuerdo a

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs 1. Movimieno rmónico Simple (MS. Oscilaciones moriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS 3.1 Oscilaciones forzadas 3. Esado ransiorio y esado esacionario

Más detalles

ESQUEMA DE DESARROLLO

ESQUEMA DE DESARROLLO Movimieno oscilaorio. Inroducción ESQUEM DE DESRROLLO 1.- Inroducción..- Cinemáica del movimieno armónico simple. 3.- Dinámica del movimieno armónico simple. 4.- Energía de un oscilador armónico. 5.- Ejemplos

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-4-M-2-00-2017 CURSO: Maemáica Inermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Examen

Más detalles

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido 1. Pequeñas oscilaciones 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido: Tema 02 1. Pequeñas oscilaciones 1.1 Oscilador armónico 1.2 Oscilador armónico

Más detalles

1. Oscilador Armónico simple

1. Oscilador Armónico simple 1. Oscilador Armónico simple La ecuación de un oscilador armónico simple es una Ecuación Diferencial Ordinaria (EDO) lineal y tiene la forma: ÿ = ω 2 0 y (1) y(0) = y 0 ;ẏ(0) = v 0 (2) Donde y es la posición

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Tema II: Dinámica en el espacio de fases

Tema II: Dinámica en el espacio de fases Tema II: Dinámica en el espacio de fases 1. Las ecuaciones de Hamilton Para sistemas autónomos en los que H no depende de t, es una constante del movimiento por lo que H(p, q = α (1.1 Esta ecuación determina

Más detalles

Ejercicios de Ecuaciones Diferenciales con Matlab: Sistemas de ecuaciones diferenciales

Ejercicios de Ecuaciones Diferenciales con Matlab: Sistemas de ecuaciones diferenciales Ejercicios de Ecuaciones Diferenciales con Malab: Sisemas de ecuaciones diferenciales de abril de 9. Un circuio elécrico RLC esá modelado por la ecuación (oscilador armónico) L d () d + R d() d + () C

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

A.- Sistema electromagnético básico: Circuito R L C.

A.- Sistema electromagnético básico: Circuito R L C. E OSCIADOR AMORTIGUADO a experiencia nos dice que cualquier oscilador real pierde paulainamene y sin cesar energía y al cabo de un inervalo de iempo más o menos largo la oscilación acaba, eso se debe a

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

TEMA 6 Movimiento oscilatorio

TEMA 6 Movimiento oscilatorio TEMA 6 Movimiento oscilatorio 1.- Movimiento armónico simple (M.A.S.).- Oscilaciones amortiguadas 3.- Oscilaciones forzadas. Resonancia 1.- Movimiento armónico simple 1.1.- Estudio dinámico del M.A.S.

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Resolución de Ecuaciones de Primer Orden

Resolución de Ecuaciones de Primer Orden 1 Resolución de Ecuaciones de Primer Orden 1.1 Desinegración Radiaciva Si las moléculas de ciero ipo ienen endencia a desinegrarse en moléculas más pequeñas a un rimo que no se ve afecado por la presencia

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden Ejercicios de Ecuaciones Diferenciales con Malab: Ecuaciones diferenciales de primer orden 8 de marzo de 9. Consideremos la ecuación diferencial ẋ = f(x, λ). Calcular los punos de bifurcación y dibujar

Más detalles

Fundamentos de espectroscopia: Vibraciones

Fundamentos de espectroscopia: Vibraciones Fundamentos de espectroscopia: Vibraciones Jesús Hernández Trujillo Facultad de Química, UNAM Agosto de 2017 Vibraciones/JHT 1 / 28 Oscilador armónico Movimiento oscilatorio: Una partícula describe un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos En parte Según Cap.1 Libro Levanuyk+Cano Antes de tratar aplicación de método Fourier para sistemas continuos http://www.youtube.com/watch?feature=endscreen&nr=1&v=no7zppqtzeg => Consideramos sistemas

Más detalles

() t = A c. mt () g ANG. ω i. () t ) () t = PM φ i. t + k p. g PM. g FM. FM f i

() t = A c. mt () g ANG. ω i. () t ) () t = PM φ i. t + k p. g PM. g FM. FM f i Tipos de Modulación Angular Modulación Angular : La señal de información m () modifica el ángulo de la poradora m () Señal Poradora: MODULADOR g ANG c () cosπf c. () cos( f [ m ()]) ω i () Fase insánanea:

Más detalles

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Índice. 1. Introducción. 2. Movimiento Oscilatorio Armónico Simple. 3. Oscilaciones amortiguadas. 4. Oscilaciones

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs. Movimieno rmónico Simple (MS. Oscilaciones amoriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS. Cinemáica y dinámica del MS. Sisema muelle-masa.3 Péndulos.4

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

PLANTEAMIENTO DEL PROBLEMA

PLANTEAMIENTO DEL PROBLEMA I4. ESTUDIO DE LA AMPLITUD DE LAS OSCILACIONES ARMÓNICAS AMORTIGUADAS Y FORZADAS RESUMEN Los movimientos oscilatorios ideales están libres de fuerzas de rozamiento y oscilan indefinidamente, los cuales

Más detalles

Analogías electromecánicoacústicas

Analogías electromecánicoacústicas cceso Digibug: hp://hdl.handle.ne/048/47659 cceso Serie F C DIEGO PBLO RUIZ PDILLO Profesor del Deparameno de Física plicada de la Universidad de Granada. Coordinador del Laboraorio de cúsica y Física

Más detalles

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz Pregunta 1 Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz El oscilador amortiguado masa-resorte de la figura tiene masa m = 10[Kg] y K =

Más detalles

MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5 MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Modelos lineales: Problemas con valores iniciales 5.. Sisemas resore /masa: Movimieno libre no amoriguado 5.. Sisemas resore /masa: Movimieno

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. NOTA: En odos los ejercicios se deberá jusificar la respuesa eplicando el procedimieno seguido en la resolución del ejercicio. CURSO 10-11 JUNIO CURSO 10 11 1 Aplicando ransformadas de Laplace, hallar

Más detalles

Serie 1 Fundamentos de Espectroscopía

Serie 1 Fundamentos de Espectroscopía Serie Fundamentos de Espectroscopía Prof. Isaac L. Huidobro Meezs 28 de agosto de 208 Fecha de entrega: 8 de septiembre de 208. Un objeto de masa 50 g está sujeto a un resorte. El resorte se estira y se

Más detalles

TEORÍA. FÍSICA APLICADA. EXAMEN FAp1. 08/03/ Escribir la ecuación del M.A.S. representado en la gráfica. (2 puntos)

TEORÍA. FÍSICA APLICADA. EXAMEN FAp1. 08/03/ Escribir la ecuación del M.A.S. representado en la gráfica. (2 puntos) FÍSICA APLICADA. EXAMEN FAp. 8/3/ TEORÍA. Escribir la ecuación del M.A.S. represenado en la gráfica. ( punos) elongación (c) 8 - -. Explicar si la siguiene afiración es verdadera o falsa ( puno): Cuando

Más detalles

Movimiento Amortiguado y Forzado

Movimiento Amortiguado y Forzado Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Matemática Avanzada. Clase Nro. 15

Matemática Avanzada. Clase Nro. 15 Matemática Avanzada Clase Nro. 15 Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata 1 / 23 Definiciones Previas y Métodos Elementales de de Resolución de Ecuaciones

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Capítulo 4. Movimiento oscilatorio Oscilador armónico

Capítulo 4. Movimiento oscilatorio Oscilador armónico Capítuo 4 Movimiento osciatorio 4.1. Osciador armónico E osciador armónico, es quizás a entidad física a a cua se recurre con mayor frecuencia ya sea a nive macroscópico o microscópico. E movimiento armónico

Más detalles

1.7.MOVIMIENTO ARMÓNICO SIMPLE

1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.1. La gráfica elongación-iempo de un movimieno vibraorio armónico (M.A.S.) iene la forma de la figura. Luego, la expresión de su velocidad será: a) v = A. ω cosω b) v

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum Dinámica: Cineica Impulso y Momenum Dinamica Curso de Verano 25 Cineica: Ecuaciones de Impulso y Momenum ITESM Campus Monerrey Deparameno de Ingenieria Mecanica Documeno preparado por: Ing. Jovanny Pacheco

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Sistemas de ecuaciones diferenciales ordinarias

Sistemas de ecuaciones diferenciales ordinarias Sistemas de ecuaciones diferenciales ordinarias Sistema de ecuaciones diferenciales ordinarias Un sistema de ecuaciones diferenciales ordinarias de primer orden (SEDO) es un conjunto de n ecuaciones diferenciales

Más detalles

+ V yy. = 0 Subíndices indican derivadas

+ V yy. = 0 Subíndices indican derivadas 1.9 ECUACIONES DIFERENCIALES (1.9_CvR_T_61, Revisión: 4-1-6, C11, C1, C13) 1.9.1. INTRODUCCIÓN - Una ecuación diferencial es una ecuación que coniene derivadas o diferenciales. - Clasificación: Ordinarias

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones El sistema homogéneo: ẋ a 11 x + a 12 y (1) ẏ a 21 x

Más detalles

Ejercicios: Estimando π con métodos Monte Carlo y cálculo del mayor autovalor de una matriz

Ejercicios: Estimando π con métodos Monte Carlo y cálculo del mayor autovalor de una matriz Ejercicios: Estimando π con métodos Monte Carlo y cálculo del mayor autovalor de una matriz 6 de marzo de 05. Cálculo de π con métodos Monte Carlo El objetivo de este ejercicio consiste en estimar el valor

Más detalles

Guia 4: MOVIMIENTO OSCILATORIO,, Cátedra Leszek Szybisz

Guia 4: MOVIMIENTO OSCILATORIO,, Cátedra Leszek Szybisz Guia 4: MOVIMIENTO OSCILATORIO,, Cáedra Lesze Szybisz - Considere una parícula de asa suspendida del echo por edio de un resore de consane elásica y loniud naural l 0. Deerine cóo varía la posición con

Más detalles

1 Separación de fases en el fluido de van der Waals

1 Separación de fases en el fluido de van der Waals 1 Separación de fases en el fluido de van der Waals La energía libre de van der Waals está dada por [ ( ) ] V Nb F (N, V, ) = N ln + 1 an N Nλ 3 V. (1) donde λ = h/ πm es la longitud de onda de Broglie.

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

Capítulo 1. Conceptos de Cálculo Variacional. Acción en Mecánica Clásica: Todo se reduce a seguir sólo un camino.

Capítulo 1. Conceptos de Cálculo Variacional. Acción en Mecánica Clásica: Todo se reduce a seguir sólo un camino. Capítulo 1 Acción en Mecánica Clásica: Todo se reduce a seguir sólo un camino. L as leyes de Newton nos permiten describir de forma precisa a fenómenos físicos estudiados por la mecánica clásica, por ejemplo,

Más detalles

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido 4. Modelos lineales oscilatorios 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido: Tema 04 4. Modelos lineales oscilatorios 4.1 Oscilaciones:

Más detalles

Ma-841 : Ecuaciones Diferenciales

Ma-841 : Ecuaciones Diferenciales Ma-84 : Ecuaciones Diferenciales Tarea No : Referencias Bibliográficas.- Visie la Biblioeca del Campus seleccione 7 libros de Ecuaciones Diferenciales, publicados en los úlimos 0 años, que a su crierio

Más detalles

Mecánica II Tema 1 Movimiento rectiĺıneo

Mecánica II Tema 1 Movimiento rectiĺıneo Mecánica II Tema Movimiento rectiĺıneo Manuel Ruiz Delgado 8 de febrero de Mecánica I y II............................................................ Referencias...............................................................

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

Tema III: Sistemas Hamiltonianos: Variables acción

Tema III: Sistemas Hamiltonianos: Variables acción Tema III: Sistemas Hamiltonianos: Variables acción ángulo 1. Transformaciones canónicas Sea Hq, p, t) un hamiltoniano tal que ṗ = H q q = H p Una transformación en el espacio de fases Q = Qq, p) es canónica,

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es:

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es: Prácica S4: Especro de Fourier 1. Objeivos Los objeivos de la prácica son: 1.- Uilizar el simulador Pspice para el esudio de la respuesa en frecuencia de circuios elécricos pasivos, aplicando la serie

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez Sisemas y Señales I Ecuaciones de Esado Auor: Dr. Juan Carlos Gómez Variables de Esado Definición: Las Variables de Esado son variables inernas del sisema, cuyo conocimieno para odo iempo, juno con el

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

Álgebras de Boole. Tema Álgebras de Boole

Álgebras de Boole. Tema Álgebras de Boole Tema 5 Álgebras de Boole 5.1 Álgebras de Boole 5.1.1 Álgebras de Boole Definición 5.1.1. Un álgebra de Boole es una erna (A,, ) donde A es un conjuno y, : A A A son dos operaciones binarias inernas con

Más detalles

AJUSTE NUMÉRICO DEL PIB PER CÁPITA DE BRASIL, MÉXICO Y CHINA USANDO FUNCIONES HIPERBÓLICAS

AJUSTE NUMÉRICO DEL PIB PER CÁPITA DE BRASIL, MÉXICO Y CHINA USANDO FUNCIONES HIPERBÓLICAS ISSN 007-957 AJUSTE NUMÉRICO DEL PER CÁPITA DE BRASIL, MÉXICO Y CHINA USANDO FUNCIONES HIPERBÓLICAS Ana María Islas Cores Insiuo Poliécnico Nacional, ESIT amislas@ipn.mx Gabriel Guillén Buendia Insiuo

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D o de Economía Aplicada Cuaniaiva I Basilio Sanz Carnero PROCESO PURAMENTE ALEATORIO (RB) Es el proceso esacionario puramene aleaorio es concepualmene el más sencillo de odos y ambién en el que se basan

Más detalles

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Héctor Lomelí y Beatriz Rumbos 8 de marzo de 4 a X t C e t + C e 4t b X t C e c X t C d X t C + t + C e 4t 4 + C e t t + C e 4 a

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

1 DEFINICION. INTEGRALES INMEDIATAS

1 DEFINICION. INTEGRALES INMEDIATAS DEFNCON. NTEGRALES NMEDATAS CAMBO DE VARABLE NTEGRACON POR PARTES SUSTTUCONES TRGONOMETRCAS 5 NTEGRACÓN POR RECURRENCA 6 NTEGRACÓN DE FUNCONES RACONALES. METODO DE HERMTE 7 NTEGRACÓN DE FUNCONES RRACONALES

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María 1 Mecánica Clásica - II Semestre 2014 Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María Problema 1. Una barra rígida (de altura despreciable)

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Metodología de la estimación de los ingresos anuales y mensuales

Metodología de la estimación de los ingresos anuales y mensuales Meodología de la esimación de los ingresos anuales y mensuales En cumplimieno con lo esablecido en la fracción III, inciso a), del Arículo 41 de la Ley Federal de Presupueso y Responsabilidad Hacendaria,

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

Múltiples representaciones de una señal eléctrica trifásica

Múltiples representaciones de una señal eléctrica trifásica Múliples represenaciones de una señal elécrica rifásica Los analizadores de poencia y energía Qualisar+ permien visualizar insanáneamene las caracerísicas de una red elécrica rifásica. Represenación emporal

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

S3: Números complejos, números reales

S3: Números complejos, números reales S3: Números complejos, números reales Cada número complejo se corresponde con un punto en el plano. Este punto puede estar definido en coordenadas cartesianas (figura 1) o en coordenadas polares (figura

Más detalles

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES LECCIÓN : INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES Problema Calcula el sisema de primer orden equivalene a la ecuación + = 0, dibuja suficienes vecores del campo vecorial como

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1 Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

Apuntes de Análisis de datos sismológicos

Apuntes de Análisis de datos sismológicos Apuntes de Análisis de datos sismológicos - 513513 1. Sismómetros La superficie de la Tierra esta bajo oscilaciones permanentes que podemos detectar gracias a un sismómetro. Un sismómetro es el instrumento

Más detalles

Problema PTC Datos: L= 10mH, C=100nF. Solución PTC

Problema PTC Datos: L= 10mH, C=100nF. Solución PTC Problema PTC0004-3 Se dispone de un circuio como el de la figura. Calcular: a) El especro de ampliud del sisema (en escalas lineal y logarímica). b) El especro de fase del sisema (en escalas lineal y logarímica).

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles