XI Política macroeconómica con tipo de cambio flexible

Tamaño: px
Comenzar la demostración a partir de la página:

Download "XI Política macroeconómica con tipo de cambio flexible"

Transcripción

1 XI Políti moeonómi on tipo de mio flexile Modelo sin juste de peios En este so ptiul, el tipo de mio nominl E es un vile endógen y no está más fijd po l utoidd moneti. Reodemos ls expesiones [1], [3] y [5], onvenientemente modifids: = (, ) + (, ) (, ) + [1] = (, ) [3] = (, ) (, ) + ( ). [5] Teniendo en uent que ho el tipo de mio E es vile, ls expesiones de ls difeeniiones sufen ietos mios. Podemos veifi que nte un umento del tipo de mio, el efeto pevisile seá: Desplz l l deeh. Poque disminuiá el peio de ls expotiones y ésts se inementán, y umentá el peio de ls impotiones y ésts disminuián, on lo que há un mejo de l lnz omeil que impliá un umento de. Todo ésto, si se umple l ondiión de Mshll-Lene, que estlee que l sum de ls elstiiddespeio de ls expotiones y ls impotiones se myo que l unidd (µx + µm > 1). Desplz l hi jo o hi l deeh. Poque el impto del umento del tipo de mio mejoá l uent oiente, y llí donde ntes hí equiliio, ho há un supeávit exteno. O lo que es lo mismo, el equiliio de l lnz de pgos podá otenese on tipos de inteés doméstios menoes, y/o ents myoes en todos los sos. Políti fisl expnsiv ) Movilidd moded de pitles L funión se desplzá en téminos onvenionles hi l deeh, osionndo un supeávit exteno si l es más pln que l LM, y un défiit exteno si oue lo ontio. En el pime so, se oiginá un tendeni l peiión de l moned lol (disminuión de E), lo que povoá un desplzmiento de l funión hi l izquied, y un desplzmiento de l funión hi i; los esultdos se pein en el gáfio: LM LM disminuión induid de E umento induido de E Cso de on pendiente meno LM Cso de on pendiente myo LM Gáfio 8.5 Políti fisl En el pime so, l disminuión induid en el tipo de mio (peiión de l moned lol) po el supeávit exteno geneá un nuevo equiliio en el punto, situdo l izquied de l soluión de eonomí ed. En el segundo so, el umento induido en el tipo de mio po el défiit exteno geneá un nuevo equiliio ts de inteés más lt, en el punto, situdo l deeh de l soluión onvenionl de eonomí ed.

2 Puede notse que l efetividd ompd de l políti fisl es myo unto meno es l movilidd de pitles. ) Movilidd pefet de pitles P el so extemo de movilidd pefet, el impto es nulo. Esto es deido que, on un ts de inteés inten fij y detemind po el medo intenionl, l LM peiión induid en E tendá un efeto omeil que ompensá extmente l expnsión fisl iniil. L soluión finl es un etono l punto., * ) Movilidd nul de pitles Gáfio 8.6 Movilidd pefet P el so extemo de movilidd nul, el impto es máximo. Esto se dee que l expnsión iniil de gene un LM défiit de lnz omeil, que dd l inexisteni de uent pitl po l nul movilidd, gest un depeiión en el tipo de mio que povo un movimiento hi l deeh de l funión vetil. Esto povo un despl- zmiento diionl de l funión hst. L soluión finl se hll en el punto. Políti moneti Gáfio 8.7 Movilidd nul ) Movilidd moded de pitles L funión LM se desplzá en téminos onvenionles hi l deeh, osionndo en todos los sos un défiit exteno que induiá un umento del tipo de mio (devluión de l moned lol): LM LM LM LM umento induido de E umento induido de E Cso de on pendiente meno LM Cso de on pendiente myo LM Gáfio 8.8 Políti moneti En el pime so, l soluión finl se hllá en el punto finl. Est soluión se epite p el so en que l movilidd de pitles fuese meno. Puede peise en estos sos que l efetividd de l políti moneti seá myo, unto myo se l movilidd de pitles. Esto impli que los puntos de equiliio finl se hlln l deeh de ls soluiones de eonomí ed si l es más plnd que l LM y se hlln l izquied de quells, si l es más empind que l LM.

3 ) Movilidd pefet de pitles Fente l inopeni expuest p el so de tipo de mio fijo, e dest que l políti moneti es más efiz on tipo de mio flexile. Po ot pte, si l movilidd de pitl es pefet, l políti moneti tiene su efii máxim jo tipo de mio flexile. Esto se dee que, fente un ts de inte- LM LM és domind po el medo exteno, el umento induido en e stá l funión hst el nuevo punto de equiliio. L expnsión moneti no es tn efiz jo tipo de mio fijo, ddo que un pte de l expnsión se filt l exteio omo défiit de l uent oiente. ) Movilidd nul de pitles Gáfio 8.9 Movilidd pefet Po ot pte, si l movilidd de pitl es nul, l políti moneti no tiene ningun efii jo tipo de mio flexile. Esto se dee que, fente un ts de inte- LM LM és domind po el medo exteno, el umento induido en E stá l funión hst el nuevo punto de equiliio. Gáfio 8.10 Movilidd nul Modelo on juste de peios En este so ptiul, el tipo de mio e es un vile endógen y no está más fijd po l utoidd moneti, po lo que sus viiones lteán los peios intenos y el nivel genel de peios, que es un pomedio pondedo de los peios de ienes no tnsles, peios intenos de expotles y peios intenos de impotles, tl omo se vio l pinipio. Vemos ls expesiones de los medos, deivds de [10], [12] y [14], onvenientemente dptds: =, +,,,, + [10] =, [12] =,,, + ( ). [14] Adiionmos ello un euión uxili que efiee los peios: = + + ; + + =1 [16] Teniendo en uent que ho el tipo de mio E es vile, ls expesiones de ls difeeniiones sufen ietos mios. Podemos veifi que nte un umento del tipo de mio, el efeto pevisile seá: Desplz l l deeh. Poque disminuiá el peio de ls expotiones y ésts se inementán, y umentá el peio de ls impotiones y ésts disminuián, on lo que há un mejo de l lnz omeil que impliá un umento de. Todo ésto, si se

4 umple l ondiión de Mshll-Lene, que estlee que l sum de ls elstiiddespeio de ls expotiones y ls impotiones se myo que l unidd (ηx + ηm > 1). Desplz l LM l izquied. Poque si se podue el umento en ntiipdo, l demnd moneti se inement, enfentándose un ofet fij. Esto es válido si l elstiidd-ent de l demnd moneti es meno l unidd (0 < L < 1). Desplz l hi jo. Poque el impto del umento del tipo de mio mejoá l uent oiente, y llí donde ntes hí equiliio, ho há un supeávit exteno. O lo que es lo mismo, el equiliio de l lnz de pgos podá otenese on tipos de inteés doméstios menoes en todos los sos. Ptiendo de un supuesto equiliio iniil, ls distosiones que povoí un inemento en el tipo de mio (depeiión de l moned lol) se muestn ontinuión: LM Gáfio 8.11 Efetos de un inemento en el tipo de mio (depeiión) En sentido ontio, un disminuión en el tipo de mio (peiión de l moned lol) poduiá los efetos invesos: LM Políti fisl expnsiv Gáfio 8.12 Efetos de un disminuión en el tipo de mio (peiión) ) Movilidd moded de pitles L funión se desplzá en téminos onvenionles hi l deeh, osionndo un supeávit exteno si l es más pln que l LM, y un défiit exteno si oue lo ontio. En el pime so, se oiginá un tendeni l peiión de l moned lol (disminuión de E), uyos esultdos se pein en el gáfio:

5 LM LM LM LM d d disminuión induid de e umento induido de e Cso de on pendiente meno LM Cso de on pendiente myo LM Gáfio 8.13 Políti fisl En el pime so, l disminuión induid en el tipo de mio (peiión de l moned lol) po el supeávit exteno geneá un nuevo equiliio en lgún punto del tiángulo, po ejemplo, en el punto d. En el segundo so, el umento induido en el tipo de mio po el défiit exteno geneá un nuevo equiliio ts de inteés más lt, en el punto d. Puede notse que l efetividd ompd de l políti fisl es meno unto myo es l movilidd de pitles. ) Movilidd pefet de pitles P el so extemo de movilidd pefet, el impto es nulo. Esto es deido que, on un ts de inteés inten fij y detemind po el medo intenionl, l LM peiión induid en e tendá un efeto deflionio que ompensá extmente l expnsión fisl iniil.,d * Políti moneti ) Movilidd moded de pitles Gáfio 8.14 Movilidd pefet L funión LM se desplzá en téminos onvenionles hi l deeh, osionndo en todos los sos un défiit exteno que induiá un umento del tipo de mio (devluión de l moned lol). LM LM LM LM LM LM d d umento induido de e umento induido de e Cso de on pendiente meno LM Cso de B on pendiente myo LM Gáfio 8.15 Políti moneti

6 En el pime so, l soluión finl se hllá en lgún punto intemedio del tiángulo, p temin en el punto finl d. Est soluión se epite p el so en que l movilidd de pitles fuese meno. Fente l inopeni expuest p el so de tipo de mio fijo, e dest que l políti moneti es más efiz on tipo de mio flexile. ) Movilidd pefet de pitles Po ot pte, si l movilidd de pitl es pefet, l políti moneti tiene su efii máxim jo tipo de mio flexile. Esto se dee que, fente un ts de inte- LM LM és domind po el medo exteno, el umento induido en e stá l funión hst el nuevo punto de equiliio. Compión de polítis Gáfio 8.16 Movilidd pefet L políti moneti esult más efiz jo ondiiones de tipo de mio flexile. L políti moneti esult medinmente efiz jo ondiiones de tipo de mio fijo on esteilizión. L políti moneti esult inefiz jo ondiiones de tipo de mio fijo sin esteilizión. L políti fisl esult más efiz jo ondiiones de tipo de mio fijo sin esteilizión. L políti fisl esult medinmente efiz jo ondiiones de tipo de mio fijo on esteilizión. L políti fisl esult inefiz jo ondiiones de tipo de mio flexile on lt movilidd o movilidd pefet de pitles. Biliogfí espeífi Mtien-Mntel, An Eonomí Intenionl Moneti, Cp. VI (Editoil Mhi)

XI Política macroeconómica con tipo de cambio flexible

XI Política macroeconómica con tipo de cambio flexible XI Políti mroeonómi on tipo de mio flexile Modelo sin juste de preios En este so prtiulr, el tipo de mio nominl E es un vrile endógen y no está más fijd por l utoridd monetri. Reordemos ls expresiones

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

x y z 3 x y z x y z x y z 5 0 3

x y z 3 x y z x y z x y z 5 0 3 leto Enteo onde Mite González Jueo MTEMÁTIS II Deteminntes. Soluiones z. Siendo que, lul n desoll el vlo de los guientes deteminntes: z z z z z z z z z z z z en en z z z z z z + Segundo método evit ls

Más detalles

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta)

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta) Digms en Bloques Un sistem de ontol puede onst de iet ntidd de omponentes. P most ls funiones que eliz d omponente se ostum us epesentiones esquemátis denominds Digm en Bloques. Este tipo de digms emple

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

VIII - Políticas macroeconómicas con tipo de cambio fijo

VIII - Políticas macroeconómicas con tipo de cambio fijo VIII - Polítics mcroeconómics con tipo de cmio ijo Modelo sin juste de precios Se un modelo representtivo del mercdo de ienes: c c c C = F,r + X E, @ EM E, + G 0 gsto privdo exportciones importciones gsto

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. CONVOCATORIA JUNIO DÍA: 25 de Mayo de 2001 PRIMERA SEMANA HORA: 11,30

INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. CONVOCATORIA JUNIO DÍA: 25 de Mayo de 2001 PRIMERA SEMANA HORA: 11,30 INGENIERÍA TÉCNICA EN INFORÁTICA DE GESTIÓN GESTIÓN FINANCIERA I CONOCATORIA JUNIO DÍA: de yo de PRIERA SEANA HORA:, ATERIAL AUXILIAR: Cluldo DURACIÓN: hos. Expli zondmente el signifido y ls foms de obtene

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL INTRODUCCIÓN L CÁLCULO VECTORIL 1.- MGNITUDES ESCLRES Y VECTORILES. Mgnitudes esles: son ls que quedn pefetmente definids po el vlo de l medid. Mgnitudes vetoiles: son ls que p definils pefetmente es peiso

Más detalles

X - Políticas macroeconómicas con tipo de cambio fijo

X - Políticas macroeconómicas con tipo de cambio fijo X - Polítics mcroeconómics con tipo de cmio fijo Modelo sin juste de precios Se un modelo representtivo del mercdo de ienes: =, +,, + [1] En el modelo precedente, los símolos representn lo siguiente: Y

Más detalles

Capítulo 7: El Modelo de OA-DA

Capítulo 7: El Modelo de OA-DA Cpítulo 7: El Modelo de OA-DA Jesús Rodríguez López Universidd Pblo de Olvide Sevill, 2009-2010 Jesús Rodríguez () Cpítulo 7: El Modelo de OA-DA Sevill, 2009-2010 1 / 41 7.1 L ofert gregd L relción de

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Razón Trigonométrica (R.T) Propiedades Fundamentales. 54 Trigonometría Und. 2 R.T. de Ángulos Agudos A.

Razón Trigonométrica (R.T) Propiedades Fundamentales. 54 Trigonometría Und. 2 R.T. de Ángulos Agudos A. Luego estbleemos que:.o = Longitud del teto opuesto. RAZÓN TRIGONOMÉTRIA NOTAIÓN EFINIIÓN RAZÓN.A = Longitud del teto dyente. H = Longitud de l hipotenus. En físi es de gn impotni l pliión de los vetoes

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto:

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto: 3..- Ciculción del cmpo eléctico Tem 3..-- ottenciill ellécttiico q = e (Cmpo centl consevtivo) n efecto: e d q e d q d q d= = = = q q = = ( ) = 4 πε L ciculción del cmpo ente dos puntos es independiente

Más detalles

EL MERCADO DE BIENES Y LOS MERCADOS FINANCIEROS EN ECONOMÍAS CON SISTEMA BANCARIO DOLARIZADO Waldo Mendoza Bellido Pedro Herrera Catalán Junio, 2004

EL MERCADO DE BIENES Y LOS MERCADOS FINANCIEROS EN ECONOMÍAS CON SISTEMA BANCARIO DOLARIZADO Waldo Mendoza Bellido Pedro Herrera Catalán Junio, 2004 6 L MRCDO D BINS Y LOS MRCDOS FINNCIROS N CONOMÍS CON SISTM BNCRIO DOLRIZDO Wlo Menoz Bellio Pero Herrer Ctlán Junio, DOCUMNTO D TRBJO 6 http://www.pup.eu.pe/eonomi/pf/ddd6.pf L MRCDO D BINS Y LOS MRCDOS

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

Ángulos tetraedrales

Ángulos tetraedrales poblems Poblem 1. Ángulos tetedles. Los ángulos ente ls uniones tetedles de l estutu dimnte son igules los que existen ente ls digonles de un ubo. He un nálisis vetoil p hll el vlo del ángulo. z u u 1

Más detalles

Capitulo 3 Parámetro Capacitivo de Líneas de Transmisión Parte 2

Capitulo 3 Parámetro Capacitivo de Líneas de Transmisión Parte 2 ELC-074 Línes de Tnsmisión I Cpitulo Pámeto Cpitivo de Línes de Tnsmisión Pte Pof. Fniso M. Gonzlez-Longtt fglongtt@ieee.og http://www.giele.og/fglongtt/lt.htm . Cpitni de un Conduto Cilíndio Plelo l Plno

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0.

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0. Capítulo 13 MODELO DE OFERT DEMND GREGD DE PLENO EMPLEO. L SÍNTESIS NEOCLÁSIC 1. Dadas las siguientes ecuaciones: Mecado de bienes C C + b d I I - h G G X x 1 * + x 2 e M m 1 d - m 2 e e e - ( - * T t

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell leiidd y Mgneismo / uiones geneles Modelo de Mxwell noduión Fuenes de mpo: Cg eléi. Coiene eléi. uión de oninuidd. Definiión del mpo eleomgnéio. uiones de Mxwell. Fom negl. Fom difeenil. uiones de esdo.

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integción 7 Integles imois Hst quí, l efeinos l integl definid en un intevlo cedo Œ; b, el cul tiene un longitud finit b f / considemos que f es un función continu Es deci, l integl

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

BENEFICIOS FLEXIBLES: UN MODELO QUE EVOLUCIONA LA MANERA DE OFRECER BENEFICIOS A LOS EMPLEADOS

BENEFICIOS FLEXIBLES: UN MODELO QUE EVOLUCIONA LA MANERA DE OFRECER BENEFICIOS A LOS EMPLEADOS ENEFIIOS FLEXILES: UN MODELO QUE EVOLUION L MNER DE OFREER ENEFIIOS LOS EMPLEDOS SOLUIONES DEFINIR, DISEÑR, Y DR (ENTREGR).2013 GEND 1. VISIÓN TUL EN OLOMI SORE ENEFIIOS EMPLEDOS 2. GENERIONES, INTERESES

Más detalles

Fuerzas Magnéticas entre distribuciones de corriente.

Fuerzas Magnéticas entre distribuciones de corriente. Electicidd y Mgnetismo / Mgnetostátic efinición. El potencil vecto mgnético. Medios indefinidos. Popieddes. Ley de iot y Svt. Ley de Ampèe. Cmpo en puntos lejdos. Momento mgnético. Compotmiento en el infinito.

Más detalles

. b) El módulo de cada uno de los vectores y un vector unitario en la dirección y sentido definidos por cada uno de ellos. c) a

. b) El módulo de cada uno de los vectores y un vector unitario en la dirección y sentido definidos por cada uno de ellos. c) a RELCIÓN DE PROBLEMS Nº 1 VECTORES Y CINEMÁTIC Poblem 1: Ddos los etoes: i + j 4k, b 5i 7 j k, 4i j + 6k Clul: ) + b + y b. b) El módulo de d uno de los etoes y un eto unitio en l dieión y sentido definidos

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

A NOMBRE Y APELLIDOS DNI Fecha: Código asignatura:

A NOMBRE Y APELLIDOS DNI Fecha: Código asignatura: INSRUCCIONES: El tiempo totl p l esoluión del exmen es de os. Se pemite el uso de luldo pogmble o no pogmble. Entegue l oj del enunido mndo on un íulo l espuest oet Cd espuest oet sum punto. Ls espuests

Más detalles

ÁLGEBRA. DETERMINANTES

ÁLGEBRA. DETERMINANTES ÁLGER. DETERMINNTES MT II. DEFINICIÓN Dd un mtiz udd de oden n,... n n......... n n nn e llm deteminnte de l mtiz y e epeent po, l un númeo el que e igul : det( i( ( ( (... n ( n S n E dei, el deteminnte

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Físic Químic º Bch. I.E.S. Elviñ Problems Recuperción del tercer trimestre 8/06/0 Nombre: Tipo A Tipo B. Un muchcho intent hcer psr un pelot sobre un muro situdo 4,0 m de distnci lnzándol con un velocidd

Más detalles

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 0 TALLER Nº: SEMESTRE EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA RESEÑA HISTÓRICA Pitágos. (isl de Smos, ctul Geci, h. 57.C.- h. 97.C.)

Más detalles

Tema 4.- La economía abierta

Tema 4.- La economía abierta Tema 4.- La economía abieta -Intoducción -Los flujos intenacionales de capitales y mecancías -El ahoo y la invesión en una pequeña economía abieta -Los tipos de cambio La economía ceada popociona modelos

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

Tema 3: Juegos dinámicos con información completa. Conceptos de solución. Se dividen en. Las estrategias

Tema 3: Juegos dinámicos con información completa. Conceptos de solución. Se dividen en. Las estrategias Teoí de ls decisiones y de los juegos Tem : Juegos dinámicos con infomción complet Qué ccteiz los juegos dinámicos con infomción complet? Supuestos básicos: Elección secuencil. nfomción complet de pgos,

Más detalles

PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ELABORÓ: LILIA OJEDA TOCHE

PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ELABORÓ: LILIA OJEDA TOCHE DIAPOSITIVAS AUTÓMATAS DETERMINISTAS Y NO DETERMINISTAS (EJERCICIOS) UNIDAD DE APRENDIZAJE: AUTÓMATAS Y LENGUAJES FORMALES PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ESPACIO ACADÉMICO: FACULTAD DE INGENIERÍA

Más detalles

8. Equilibrio químico en. reacciones gaseosas

8. Equilibrio químico en. reacciones gaseosas Tnfomcione químic ndé Cedillo, T-50 cedillo@xnum.um.mx www.fqt.izt.um.mx/cedillo 8. Equiliio químico en eccione geo 8.1. ntecedente 8.. Contnte de equiliio 8.3. Condicione de equiliio 8.4. Cociente de

Más detalles

La energía eléctrica y el potencial eléctrico

La energía eléctrica y el potencial eléctrico L enegí eléctic y el potencil eléctico Leyes de l fuez eléctosttic y gvitcionl Q Q F 2 ˆ 2 2 2 4πε 0 2 Atctiv o epulsiv / 2 muy fuete m m F G 2 ˆ 2 2 2 Siempe tctiv / 2 muy déil 2 Tnto l fuez gvitcionl

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es:

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. SUPERFICIES CUADRICAS 1 SUPERFICIES CUADRICAS En el espio un superfiie uádri es l gráfi de un euión

Más detalles

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI:

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI: AMPLAÓN D FÍSA LTOMAGNTSMO TMPO: ho Septieme 6 Nome: DN: Teoí ( puntos). () Fomule l ley de Guss en el vcío, tnto en su fom integl como difeencil. A pti de est ley justifique po qué ls línes del cmpo eléctico

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Físia Físia COMUNIDAD DE MADRID CONVOCATORIA JUNIO 008 SOLUCIÓN DE LA RUEBA DE ACCESO AUTOR: Tomás Caballeo Rodíguez imea pate Expeienia : Expeienia : A x A x a) En el MAS: x A sen(t 0 ) dx v A os(t 0

Más detalles

41. La función de oferta agregada

41. La función de oferta agregada X Ofert Agregd 41. L funión de ofert gregd L onepión de l funión de demnd gregd, que onstituye un dptión del esquem IS-LM, se bs en el onjunto de supuestos keynesinos er del omportmiento de los merdos.

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11 MATEMÁTICAS II Cónis en oordends olres Curso -.- L Lun es el stélite nturl de l Tierr y tiene un órit elíti on el entro de l Tierr en uno de sus foos. Est órit tiene los siguientes dtos: = 800 km, e=0.05.

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Solución Junio 09 - Primera Semana + A(2.000;1,01) (1+0,06) = 8 0, =(1+0,06) -1=0, , ,029563

Solución Junio 09 - Primera Semana + A(2.000;1,01) (1+0,06) = 8 0, =(1+0,06) -1=0, , ,029563 Esuel Téni Superior de Informáti Convotori de Junio - Primer Semn Mteril Auxilir: Cluldor finnier GESTIÓN FINANCIERA 9 de Myo de 009-18,30 hors Durión: hors 1. Explique rzondmente ómo se obtiene el venimiento

Más detalles

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponda a las uestiones C1 y C Esoja una de las opiones (A o B) y esuelva el poblema P y onteste a las uestiones C3 y C4 de la opión esogida (En total hay que esolve dos poblemas

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS MATEMÁ TTCAS BÁSICAS SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS Ddos números reles l', b l, b, l Y ' l pr de euiones lx + b,y=l Y x + b y = se denomin un sistem linel de dos euiones en ls dos

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Unidd Nº Resoluión de sises edine deerinnes! eáis plids ls Cienis Soiles II. NY Esudi el rngo de ls siguienes ries: ))! Coo h vrios eleenos no nulos el rngo es.! Coo el rngo es.! unque oo, el rngo es,

Más detalles

Problema encadenado 1. Apartado 1

Problema encadenado 1. Apartado 1 Poblema enadenado 1. 1. Dibuja dos iunfeenias de igual adio tangentes ente si y tangentes a los lados del tiángulo del que se onoe: el lado = 120 mm, el ángulo = 700 y la mediana m = 85 mm. De las posibles

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Sistems de Ecuciones Hemients infomátics p el ingenieo en el estudio del lgeb linel SISEMAS DE ECUACIONES LINEALES 1 DEFINICIONES PREVIAS 2 EOREMA DE ROUCHÉ-FROBENIUS MÉODO DE RESOLUCIÓN DE GAUSS 4 MÉODO

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

Índice de habitabilidad en el espacio público

Índice de habitabilidad en el espacio público pln de movilidd y espcio público. VITORIA - GASTEIZ Índice de hbitbilidd en el espcio público MORFOLOGIA - VARIABLES ERGONÓMICAS A pti de los esultdos obtenidos se pude obsev que ls clles de l ciudd pesentn

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

Cantidad de movimiento en la máquina de Atwood.

Cantidad de movimiento en la máquina de Atwood. Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. jogesved@topmil.com. pblo_nuniez2000@yhoo.com. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

Propiedad elipse: la normal en un punto de la elipse es la bisectriz de los segmentos que pasan por los focos

Propiedad elipse: la normal en un punto de la elipse es la bisectriz de los segmentos que pasan por los focos Óits elíptis Euiones elipse: y / x /,,,, ε (exentiidd / Popiedd elipse: l noml en un punto de l elipse es l isetiz de los segmentos que psn po los foos Euión dinámi: El ento de fuezs está en un foo Fuez

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002 FUNDAMENTS FÍSCS DE LA NFMÁTCA TECE EJECC GUP 1P de Myo de 00 Cuestiones 1. ) Enunci el teoem de Ampèe. ) Aplic el teoem de Ampèe p clcul el cmpo mgnético cedo po un conducto ectilíneo indefinido, en un

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

FUNDAMENTOS DE ECONOMIA II

FUNDAMENTOS DE ECONOMIA II UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE ECONOMÍA DPTO ACADEMICO DE ECONOMIA FUNDAMENTOS DE ECONOMIA II Eon. SEGUNDO A. CALLE RUIZ INTRODUCCIÓN MODELO KENESIANO MODELO DE HICKS MODELO DE DEMANDA/OFERTA

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10 1 Repesent el plno que definen l ect R y el punto. 2 Repesent el plno que definen ls ects y s que se cotn en A 3 Hll ls tzs del plno que definen ls ects y s 4 Hll el punto A del plno de cot 16 y lejmiento

Más detalles

TRANSFORMACIONES GEOMÉTRICAS: Inversión.

TRANSFORMACIONES GEOMÉTRICAS: Inversión. PRFESR: FRNCISC MNUEL GLÁN SN JSÉ. TRNSFRMCINES GEMÉTRICS: Invesión. INVERSIÓN siguientes leyes: La invesión es una tansfomaión que se ige po las M' ' 1. Dos puntos invesos y están alineados on un punto

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Ingeniería Económica Finanzas y Negocios Internacionales Parcial 2 Mayo 21 de 2011

Ingeniería Económica Finanzas y Negocios Internacionales Parcial 2 Mayo 21 de 2011 Myo 21 de 211 Nomre Código Profesor: Escri el nomre de sus compñeros Al frente Izquierd Atrás Derech Se puede consultr únicmente los mps conceptules y resúmenes clificdos y originles. No se puede usr fotocopis.

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles