En donde x representa la incógnita, y a, b y c son constantes.
|
|
- Irene Rivero Ayala
- hace 2 años
- Vistas:
Transcripción
1 FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti. Definiión. L funión definid por l euión f()== ++ se llm funión udráti. En donde represent l inógnit,, son onstntes. es el oefiiente del término udrátio, 0. es el oefiiente del término linel. es el término independiente. GRÁFICAS QUE SE PRODUCEN EN UNA FUNCIÓN CUADRÁTICA. L gráfi que se produe en un funión udráti es un óni llmd práol, que se re sore el eje. Vértie = Cundo es positivo, l práol se re hi rri. =- Cundo es negtivo, l práol se re hi jo. = =4 El vlor numério de indi que tn iert o errd es l práol.
2 = + = - Si el oefiiente del término linel es positivo l práol se desplz hi l izquierd si es negtivo se desplz hi l dereh. = ++ = +- El oefiiente del término independiente, nos indi en qué punto tiene interseión l práol on el eje. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA. En l gráfi de un funión udráti se pueden identifir lgunos puntos importntes, los ules se presentn ontinuión: Vértie, se enuentr un punto máimo de l funión. Ríes Vértie, se enuentr un punto mínimo de l funión. Ríes
3 EL VÉRTICE. El vértie es un punto que form prte de l práol, el ul tiene omo ordend (vlor de ) ) el vlor mínimo o máimo de l funión. En ese punto se puede trzr un eje imginrio que he simétri l gráfi de l funión, el ul es llmdo eje de simetrí. El vértie l ser un punto que form prte de l práol se represent por medio de un oordend V(h, k), donde: V represent l vértie. h represent el vlor de su sis (vlor de ). k represent el vlor de su ordend (vlor de ). El vlor de h se puede lulr on l fórmul h==. El vlor de k se dee otener sustituendo el vlor de h en l funión k= = ++. MÁXIMOS Y MÍNIMOS EN UNA FUNCIÓN CUADRÁTICA. Eiste un punto máimo en un funión undo l urv ps de reiente dereiente. Eiste un punto mínimo en un funión undo l urv ps de dereiente reiente. Se die que un funión es reiente en un intervlo I, si pr d pr de vlores, que perteneen l intervlo I, donde <, se tiene f( )<f( ). Se die que un funión es dereiente en un intervlo I, si pr d pr de vlores, que perteneen l intervlo I, donde <, se tiene f( )>f( ). Punto máimo. Eje de simetrí L urv ps de reiente dereiente. Punto mínimo. L urv ps de dereiente reiente.
4 CEROS O RAÍCES DE UNA FUNCIÓN. Le llmmos eros o ríz de un funión los vlores de que umplen o stisfen que l euión udráti se hg ero. Ls ríes representn los puntos en los que l gráfi ort l eje Un funión puede o no tener ríes, el número de ríes que h en un funión depende diretmente de grdo del polinomio, omo se muestr ontinuión. Sin ríz, no ort l eje. ríz, =- ríz, =0 ríes =-.73 =.73 3 ríes; =-.95, =-. 3 = ríes; = -.5, = -0.33, 3 = =.7
5 CEROS O RAÍCES DE UNA FUNCIÓN CUADRÁTICA. Ls euiones udrátis se lsifin, según sus oefiientes en: Inomplets. Si en l euión ++=0 el vlor de /o entones, se trt de un euión udráti inomplet. son nulos (es ero), Ejemplos: =0 =0 =0 +=0 =0 +3=0 =0 Complets. Si en l euión ++=0 el vlor de, ó entones se trt de un euión udráti omplet. son distintos de ero, Ejemplos: ++4=0 +-3=0 3-4+=0 RAÍCES DE UNA ECUACIÓN CUADRÁTICA INCOMPLETA. Pr otener ls ríes de un euión udráti inomplet tenemos tres sos: Cso. Cundo l euión udráti tiene l form =0 Pr que l euión se hg ero se requiere usr un número que l ser multiplido por otro distinto ero (en este so por ), nos dé omo produto ero. El vlor pr que ondue esto es únimente el ero, sí que: Pr ulquier euión de l form =0 tiene omo úni ríz o soluión: =0 Esto se puede oservr gráfimente omo ontinuión se muestr: Ríz =0 Ríz =0 = =-3
6 Cso. Cundo l euión udráti tiene l form +=0. Pr enontrr ls ríes h que onsiderr lo siguiente: Como en el primer segundo término de l euión pree, se dee ftorizr l euión nos qued omo: (+)=0 El primer miemro de l euión tiene dos ftores, +. El produto de estos dos ftores dee ser igul ero, pr que esto se umpl es neesrio que ulquier de estos dos ftores se ero, es deir: =0 ó +=0 Si =0 l euión se stisfe por lo tnto es un ríz o soluión. Si +=0, l euión tmién se stisfe, sólo st determinr uál es el vlor de pr el que +=0. Este vlor se determin despejndo de l epresión +=0, quedndo despejdo de l siguiente mner: = Por lo tnto, ls ríes de un euión udráti de l form +=0 son: =0 = Esto se puede oservr gráfimente omo ontinuión se muestr: =0 =0 =- =.5 = +=0 =- +3=0 +=0 +=0 Al omprr ls euiones = = Al omprr ls euiones =- =3 = = = - =0 =0 = = 3 = +.5 -
7 Cso 3. Cundo l euión udráti tiene l form +=0 Ls ríes se otienen l despejr de l euión +=0, quedndo de l siguiente mner: = smos ríz udrd =+ = - siempre que 0 Esto se puede oservr gráfimente omo ontinuión se muestr. =- =+ =+ = +=0 +=0 Al omprr ls euiones = = = omo no es 0 L euión no tiene ríes o soluión. =4 -=0 +=0 Al omprr ls euiones =4 =- = ± = ± = ± = ± 4 4 =+ =-
8 Ejemplos resueltos. Ejemplo. Construir l gráfi de l siguiente funión =f()= -3, estleiendo su dominio, rngo, ls oordends de su vértie sus ríes. Soluión = -3 (, ) -3 ( -3 ) -3= 9-3= 6 (-3,6) - (- ) -3= 4-3= (-,) - (- ) -3= -3= - (-,-) 0 (0 ) -3= 0-3= -3 (0,-3) ( ) -3= -3= - (,-) ( ) -3= 4-3= (,) 3 ( 3 ) -3= 9-3= 6 (3,6) Dominio + Rngo 3 L euión de l funión es que; =, =0 = =0, l omprr on l euión del tipo +=0, tenemos El vértie V(h, k) 0 h== = = 0 () Pr enontrr k= + k= -3 sustituimos el vlor de, por lo que k=()(0) -3= -3 Por lo que ls oordends del Vértie son (0,-3). Pr enontrr sus ríes. Se trt del so 3. Cundo l euión udráti tiene l form +=0 =+ =+ 3 = 3 =+.73 = - = -.73 Reordemos que los vlores =.73 =-.73, son los puntos que stisfen l euión, en l gráfi representn los puntos donde l urv ort on el eje.
9 Ejemplo. Un lón de fútol merino es ptedo por un jugdor, de mner que l tretori desrit por el lón está representd por l funión f(t)= -t +5t, donde t es el tiempo de vuelo en segundos. Elor l gráfi de l funión f(t)= -t +5t, estleiendo su dominio, rngo, punto máimo que lnz el lón los puntos donde se pteo ó el lón. t f(t)= -t +5t ( t, f(t) ) - -(-) + 5(-)= -4-0= (-) + 5(-)= --5= - 6 ( -,-4) ( -,-6) 0 -(0) + 5(0)= 0 ( 0,0 ) -() + 5()= -+5= 4 (, 4 ) -() + 5()= -4+0= 6 (, 6 ) 4 -(4) + 5(4)= -6+0= 4 ( 4, 4 ) 5 -(5) + 5(5)= -5+5= 0 ( 5, 0 ) Vértie (.5, 6.5) Dominio0 5 Rngo L euión de l funión es -t +5t=0, l omprr on l euión del tipo +=0, tenemos que; =-, =5 =0. El vértie V(h, k) 5 ( ) 5 h=t= = = =. 5 Pr enontrr k= +, en nuestro so k=-t +5t=0 sustituimos el vlor de t, por lo que k=-(.5) +5(.5)= = 5= 6.5 Vértie (.5, 6.5) El punto máimo se enuentre en el vértie de l funión. Los puntos donde se pteó ó el lón representn ls ríes de l euión. Se trt del so. Cundo l euión udráti tiene l form +=0 =0 es el punto donde se pteó el lón. 5 = = = 5 Es el punto donde ó el lón. Podemos oservr los resultdos en l gráfi nterior.
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:
UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.
X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
1. Conceptos previos. Traslación gráficas en los ejes de coordenadas
Tem 8. Cónis. Coneptos previos. Trslión gráfis en los ejes de oordends.... L irunfereni... 3.. Definiión euión de l irunfereni... 3.. Euión de l rets tngentes normles l irunfereni.... 6.3 Posiiones reltivs
3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola
Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
Funciones cuadráticas
Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
Fracciones equivalentes
6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,
UNIDAD 2 Geometría 2.2 Triángulos 10
UNI Geometrí. Triánguos 10. Triánguos OJETIVOS ur e áre e perímetro de triánguos. Otener os dos ánguos de triánguos utiizndo s reiones entre otros ánguos en figurs geométris. ur os dos de un triánguo usndo
Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz
Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo
OPERACIONES CON POTENCIAS
http://wwwugres/lol/metunt OPERACIONES CON POTENCIAS L representión de l poteni dej un operión indid que impli l multipliión de l bse por sí mism tnts vees omo el exponente lo indique b = es l bse de l
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow
Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro
CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
1NÚMEROS REALES. Problema 1. 10 Capítulo 1. Números Reales.
CONTENIDOS Números nturles Números enteros Números rionles Números irrionles Números reles Los números nturles, los enteros, ls friones y deimles hn sido ojeto de estudio en diferentes oportuniddes. En
Teorema de Pitágoras
Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS Hemos visto el prolem de enontrr el produto, ddos los ftores. L ftorizión es enontrr los ftores, ddo el produto. Se llmn ftores de un epresión lgeri quellos que multiplidos
Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo
Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre
Resolución de Triángulos Rectángulos
PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
GEOMETRÍA ANALÍTICA DEL ESPACIO
CAPITULO Espero que l posteridd me jugue on enevoleni no solo por ls oss que he eplido sino tmién por quells que he omitido inteniondmente pr dejr los demás el pler de desurirls René Desrtes. GEOMETRÍA
MATEMÁTICAS II SISTEMAS DE ECUACIONES
Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:
odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función
Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes
Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists
Profr. Efraín Soto Apolinar. Ley de senos
Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Introducción a la integración numérica
Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
II. FUNCIONES TRIGONOMÉTRICAS
II. FUNCIONES TRIGONOMÉTRICAS.. RAZONES TRIGONOMÉTRICAS Ls rzones trigonométris se utilizn fundmentlmente en l soluión de triángulos retángulos, reordndo que todo triángulo retángulo tiene un ángulo de
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
DP. - AS - 5119 007 Mtemátics ISSN: 1988-79X 00 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON VARIABLES. Descompón el número 9 en dos sumndos e, tles que l sum + 6 se mínim. DETERMINACIÓN DE INCÓGNITAS
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí
Haga clic para cambiar el estilo de título
Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles
MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE
Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos
Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1
Ejemplo de álulo de un portio por el método mtriil de l rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ Con el fin de resumir en un ejemplo el proeso seguir vmos resolver el pórtio de l figur. Ls
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.
Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
[FACTORIZACION DE POLINOMIOS]
009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:
Son Co Razones Seno y Coseno Tangente y Cotangente Secante y Cosecante RAZONES TRIGONOMETRICAS DE UN ÁNGULO AGUDO. 3. Triángulos Notables
Elusivo Universidd grri Elusivo Universidd grri on o zones eno oseno Tngente otngente ente osente ZONE TIGONOMETI DE UN ÁNGUO GUDO opuesto en hipotenus s hipotenus opuesto dente os hipotenus e hipotenus
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida
Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD
COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A FACULTATS, ESCOLES TÈCNIQUES SUPERIORS I COL LEGIS UNIVERSITARIS PRUEBAS
8. La elipse. 9/ Las cónicas.
9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,
Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17
Leión 3.4 Leyes del Seno y Coseno /0/04 Prof. José G. Rodríguez Ahumd de 7 Atividdes 3.4 Refereni Texto: Seíón 8. Ley de los Senos; Problems impres -5 págins 577 y 578 (53 y 533); Seión 8. Ley de los Cosenos;
Resolución de Triángulos Rectángulos
PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) eigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales
Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina
MTRICES Mtries de números reles. Ddos dos suonjuntos = {,,,...i...n} = {,,,...j...m} perteneientes l onjunto de los números nturles, llmremos mtri de dimensión nm tod pliión X ---------> R / (i,j) --->
2. Integrales iteradas dobles.
2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo
Laboratorio N 7, Asíntotas de funciones.
Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones
Cálculo Integral. Métodos de integración
Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.
Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por
CALCULO DE CENTROS DE MASA: PLACAS
CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
Guía Práctica N 13: Función Exponencial
Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS
NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra
NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes
Puente de Wheatstone. Análisis del circuito
Eletróni y Miroeletróni pr Científios Puente de Whetstone El puente de hilo (o puente de Whetstone) es un instrumento de grn preisión que puede operr en orriente ontinu o ltern y permite l medid tnto de
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA
REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99
Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)
Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Derehos ásios de prendizje: Comprende y utiliz l ley del seno y el oseno pr resolver prolems de mtemátis y otrs disiplins que involuren triángulos no retángulos.
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
TEMA 26 (Oposiciones de Matemáticas)
TEMA 26 Oposiiones de Mtemátis DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.. Introduión. 2. Derivd de un unión en un punto. 2. El prolem de l tnente un urv.
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
Figura 1. Teoría y prática de vectores
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo
Determinantes: un apunte teórico-práctico
Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente
3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8
POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
Taller de Matemáticas III
Tller de Mtemátis III Semn 3 4 Tller de Mtemátis III Universidd CNCI de Méio Tller de Mtemátis III Semn 3 4 Temrio. L práol.. Crterizión geométri... L práol omo lugr geométrio... Elementos soidos on l
(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c )
Lcdo E. Monto & P.Perz Funciones Reles de Vrible Rel Repúblic Bolivrin de Venezuel Ministerio del Poder Populr pr l Educción Escuel Técnic Robinsonin P.S. S. S. Venezuel Brins Edo Brins Hoj de trbjo *III
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
Trigonometría del triángulo rectángulo
LECCIÓN CONDENSADA 1.1 Trigonometrí del triángulo retángulo En est leión prenderás sore rzones trigonométris soids un triángulo retángulo usrás rzones trigonométris pr hllr ls longitudes lterles desonoids
Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.
89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1
TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:
Los números racionales
UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y