0. Introducción. Motivación y enunciado del problema 1. Solución de la ec. de Schrödinger indepte. del tiempo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "0. Introducción. Motivación y enunciado del problema 1. Solución de la ec. de Schrödinger indepte. del tiempo"

Transcripción

1 4. El Oscilador aróico cuático O 0. Itroducció. Motivació y uciado dl probla. Solució d la c. d Schrödigr idpt. dl tipo. Ergías y fucios d oda stacioarias. 3. Propidads itrsats y caractrísticas dl O cuático. 4. Evolució tporal d stados o stacioarios. El caso casi- clásico 5. Problas: Hoja 4

2 IV - Oscilador róico.. La fució d oda d u oscilador aróico cuático d asa y frcucia agular ω stá dada por: φ = c ϕ =0 sido ϕ la fució d oda dl stado stacioario, d rgía E = hω/ +. a Cuál s l valor dio d la rgía fució d los coficits c? ditido qu ua dida d la rgía s db obtr prcisat uo d los valors atriors, cuál s la probabilidad d obtr l valor E b Cuál s la probabilidad P d qu ua dida d la rgía u istat postrior t > 0 s obtga u valor ayor qu hω? Cuado P = 0, qué coficits c so distitos d cro?. Partido d los supustos dl probla atrior, supogaos qu sólo so distitos d cro c 0 y c. Escribir la codició d oralizació y l valor dio d la rgía < E > fució d c 0 y c. hora ipoos adás qu < E >= hω. Dtriar c 0 y c. b Fijaos qu c 0 sa ral y positivo. Dtriar l arguto d c, θ c = c iθ si adás d qu < E >= hω, s cupl tabié qu < >= h ω. c Escribir Ψt y calcular θ para todo t > 0. Dducir d ahí < > t. 3. Dtriar < >, < p >, < >, y < p > los stados ϕ 0 y ϕ dl oscilador aróico. Coprobar qu s cupl la rlació d icrtidubr. 4. E l stado fudatal dl oscilador aróico Cuál s la probabilidad d cotrar la partícula la zoa prohibida clásicat, s dcir dod V > E?. 5. Oscilador aróico isótropo 3D. Ua partícula s uv l spacio sotida a u potcial V = /ω + y + z. Ecotrar las fucios d oda y las rgías d los stados stacioarios. Sugrcia: probar fucios d oda d la fora ϕ, y, z = ϕ ϕ yϕ 3 z. 6. U oscilador aróico bidisioal isótropo d frcucia agular ω s cutra u stado d rgía hω. S sab qu l valor sprado d s 5 h/6ω. Calcular l valor sprado d y y l d la rgía potcial.

3 0. Itroducció E st capítulo studiaos l probla ás iportat t d la Mcáica clásica o cuática y uo d los cotados problas cuáticos qu s pud rsolvr actat. Fu rsulto por prira vz por Erwi Schrödigr uo d sus dos artículos 96 dod propuso su cuació. Su iportacia radica qu uchos casos rals s coporta aproiadat coo l oscilador aróico tórico, dbido a ua propidad bi coocida sgú la cual casi todo oviito d pquña aplitud crca d u puto d quilibrio s aproiadat aróico. Tos ua partícula d asa cuyo stado cuático volucioa sotida a ua furza cosrvativa cuyo potcial s: V quí s ua costat qu dfi la itsidad dl potcial. Su sigificado físico s la frcucia agular co la qu oscilaría si s coportara clásicat, pro NO SE COMPORT SÍ.

4 .Ec d Schrödigr. Cabio d variabls y d fució Coo casi todo probla d MQ, s trata d obtr las fucios d oda qu corrspod a rgía dfiida y los valors d sas rgías, ya qu cualquir otra fució d oda s pud scribir coo cobiació lial d llas Ec d Schr. dl O: d E d Dfiios i la costat t : ; L hora dfiios la costat, la variabl, y la fució todas adisioals: i E d' d d ' d ; ' ; ' ; 3/ 5/ d' d d' d Sustituydo y siplificado quda la cuació uivrsal para todo O: d ' ' d' ' ' ' ' E l prograa Schrödigr,c podíaos habr partido d sta cuació, pro stos cabios d scala so útils sólo para l O 4 3

5 Coportaito asitótico d ' La cuació s pud scribir: ' d' ' ' 0 5 Para valors d uy grads: - + -, la cuació s pud aproiar por d d' ' ' ' 0 6 ' Qu s satisfcha por la fució d Gauss: Esto sugir hacr u uvo cabio d fució dfiido: G ' ct ' ' ' h ' '

6 Polioios d Hrit l sustituir la cuació acta 5, rsulta qu h db cuplir: d d ' d h ' ' h ' d' h ' 0 7 E 96 sta cuació difrcial ordiaria ra bi coocida por los atáticos, y Schrödigr sabía prfctat qu las solucios qu o s va a ifiito cuado ± : * Eist úicat para valors si-ipars positivos d = /, 3/, 5/, qu hac l parétsis tro y par * So polioios co cof tros, llaados polioios d Hrit, H. * Etr otras propidads, l grado d cada polioio s -.H 0 = La dostració atática d sto y d las propidads d los H s: tdiosa y poco forativa rquriría u capítulo tro ddicado al studio d los H y adás 3 la solució d la c d Schr s pud obtr d ara ucho ás 3 la solució d la c d Schr s pud obtr d ara ucho ás sipl utilizado los rcursos atáticos qu vros ás tard.

7 Propidads d los Polioios d Hrit Vr Coh-Taoudji t al, coplto B V, auqu l probla MQ usaos la variabl, aquí vaos a por coo variabl atática abstracta Sa F la drivada -ésia d la fució d Gauss p. H s dfi ua tr varias dfiicios quivalts coo: 0 F F H 0 H F H 0 Fórula d Rodrigus F 4 H 4 * S pud dostrar vr por jplo Coh-Taoudji, t al qu cupl la cuació difrcial d d d H d 0 qu s la 7 atrior * Cada H ti actat t raícs rals y distitas t * Cupl varias rlacios d rcurrcia, qu prit obtr spcialt prograas d ordador todos los polioios a partir d los priros: dh H H H H d * Cada H ti paridad dfiida, igual al grado : H H

8 Ergías y fucios d oda Volvido a las uidads físicas covcioals: E H ; Las costats d oralizació so pricipio arbitrarias pro s db lgir d odo qu: H ; - d lgir d odo qu: Qu rprsta l hcho d qu cualquir stado la probabilidad d qu la partícula sté algú sitio db sr la uidad. Es dcir: Es dcir: - - du u H d H u L i t l d l líti t d d fi l t La itgral pud rsolvrs aalíticat d ara crrada y fialt quda:

9 Ergías y fucios d oda E

10 Propidads itrsats dl O * E coparació co la suposició d Plack-Eisti, la difrcia d rgía tr dos stados coscutivos s cirtat costat: E E, * Esto s suficit para podr plicar la ly d radiació dl curpo gro o la capacidad d calorífica d u cojuto d osciladors cuáticos, pro la rgía NO ES ħ sio: E * La rgía íia s la dl stado fudatal, co = 0, E 0 >0 porqu db sr copatibl co la rlació d icrtidubr E 0 Esta s ua codició coú a uchos problas d MQ tabié ocurrirá l átoo d hidrógo

11 * Rcordos qu los stados rprstados por las atriors f. d. o. so stacioarios i y o volucioa: E i t i t Ψ,t * sí pus, si la partícula stá uo d sos stados NO OSCIL, sio qu su posició s idtriada, sido la dia valor sprado cro. * No cofudir la frcucia clásica dl oscilador co la frcucia d Bohr : E /ħ d ua fució d oda. Las frcucias d Bohr so últiplos ipars d la fudatal, qu s. * La fució d oda dl stado fudatal s u paqut gaussiao, qu st caso s stacioario. * Vaos la icrtidubr la posició y l oto l stado fudatal, 0 : Δ 0 < > valor dio o sprado d cualquir agitud. E st caso <> =0 Δ 0 u 0 * 0 d 0 d u du... 3

12 * hora la icrtidubr l oto l stado fudatal, 0 : d d d d d d d d d d p Δp * d d d d Por tato l stado fudatal, 0, s cupl: 0 Δp E d i l t d f d t l d l il d ó i ti l Es dcir, qu l stado fudatal dl oscilador aróico s ti la icrtidubr íia, qu corrspod a u paqut gaussiao. * álogat s dduc d otra fora ás scilla, vr Coh-T t al, cap 5 D, la icrtidubr otros stados difrts dl fudatal stados citados s: Δp

13 * Las f. d o. s tid tóricat hasta l ifiito s dcir, la ralidad NO, porqu l oscilador aróico s sólo u odlo tórico qu o s va a cuplir uca para grads aplituds los casos rals, pro ya qu <> = 0 supo ua cirta aalogía co la aplitud d u oscilador clásico. Vaos: La rgía clásica s cl = aplitud s cl cl E Si igualaos dicha rgía a la d uo d los stados obtos: g g cl * E u stado o stá dfiidas i la rgía potcial, i la ciética, porqu o lo stá i i p. Podos calcular su valor dio: E V E p p T Est s u caso particular dl llaado tora dl virial, qu s vrá

14 Evolució tporal Siguido la toría gral d Schrödigr, si l oscilador s cutra u stado la fució d oda cualquir istat s obti ultiplicádola por l factor p-ie t/ħ, lo qu da ua f. d o. qu s difrcia u factor d fas global. Est factor d fas global o afcta a las probabilidads d las agituds físicas, por lo qu las sucsivas fucios d oda rprsta l iso stado físico y por tato ést o volucioa. Si bargo l stado ás gral posibl s ua suprposició ió lial l d todas las fucios d oda s pud dostrar qu cualquir fució d d cuadrado itgrabl s pud scribir así, lo vros l capítulo siguit Supogaos qu t =0 l stado d la partícula vi dscrito por la f. d o.: t 0 c 0, 0 Trataos d vr cóo s,t otro istat cualquira.

15 i t i t, t c0 c0 0 E 0 0 c t El valor dio d ua agitud física cualquira srá: 0 0 i t, t *, t d c 0* c 0 Dod dfiios i *, p d y dod,p s l oprador qu s obti rplazado p i E la dfiició clásica d la agitud.

16 X Cosidros los casos cocrtos = X y = P co ayúscula para rcordar qu hablaos dl oprador y o dl valor cocrto d o d p * d cost H H d cost No s uy difícil ostrar qu sta itgral s ula cpto si = ± H z zh sí pus <> s ua sua d costats ultiplicadas por it o por -it, s dcir siusoidal t co ua fas iicial dpdit d los valors d las costats, coo la prdicció clásica pro <>=0 si s u stado stacioario, o sa cuado sólo ua c 0 z Tabié s pud dostrar qu P =0 cpto si = ±, lugo <p> tabié oscila siusoidalt salvo si sólo ist ua c, pus tocs <p> =0. Tabié s pud dostrar qu: d dt p d p dt Es dcir qu los valors dios obdc a las lys dl oviito clásicas d Nwto z dz

17 IV - Oscilador róico.. La fució d oda d u oscilador aróico cuático d asa y frcucia agular ω stá dada por: φ = c ϕ =0 sido ϕ la fució d oda dl stado stacioario, d rgía E = hω/ +. a Cuál s l valor dio d la rgía fució d los coficits c? ditido qu ua dida d la rgía s db obtr prcisat uo d los valors atriors, cuál s la probabilidad d obtr l valor E b Cuál s la probabilidad P d qu ua dida d la rgía u istat postrior t > 0 s obtga u valor ayor qu hω? Cuado P = 0, qué coficits c so distitos d cro?. Partido d los supustos dl probla atrior, supogaos qu sólo so distitos d cro c 0 y c. Escribir la codició d oralizació y l valor dio d la rgía < E > fució d c 0 y c. hora ipoos adás qu < E >= hω. Dtriar c 0 y c. b Fijaos qu c 0 sa ral y positivo. Dtriar l arguto d c, θ c = c iθ si adás d qu < E >= hω, s cupl tabié qu < >= h ω. c Escribir Ψt y calcular θ para todo t > 0. Dducir d ahí < > t. 3. Dtriar < >, < p >, < >, y < p > los stados ϕ 0 y ϕ dl oscilador aróico. Coprobar qu s cupl la rlació d icrtidubr. 4. E l stado fudatal dl oscilador aróico Cuál s la probabilidad d cotrar la partícula la zoa prohibida clásicat, s dcir dod V > E?. 5. Oscilador aróico isótropo 3D. Ua partícula s uv l spacio sotida a u potcial V = /ω + y + z. Ecotrar las fucios d oda y las rgías d los stados stacioarios. Sugrcia: probar fucios d oda d la fora ϕ, y, z = ϕ ϕ yϕ 3 z. 6. U oscilador aróico bidisioal isótropo d frcucia agular ω s cutra u stado d rgía hω. S sab qu l valor sprado d s 5 h/6ω. Calcular l valor sprado d y y l d la rgía potcial.

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s

Más detalles

Cap. II: Principios Fundamentales del Flujo de Tránsito

Cap. II: Principios Fundamentales del Flujo de Tránsito Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos

Más detalles

TEMA 1: CALCULO DIRECTO DE LÍMITES

TEMA 1: CALCULO DIRECTO DE LÍMITES INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

CÁLCULO NUMÉRICO ( )

CÁLCULO NUMÉRICO ( ) CÁLCULO NUMÉRICO (808068) Tma. Fudamtos d la Toría d Errors Octubr 0. Al studiar l fómo diario d la variació qu primta las codicios mtorológicas, s suprim muchas variabls qu dbría d itrvir los cálculos.

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

En esta unidad vamos a aprender el proceso inverso de derivar, que se llama integrar. 2, la función F(

En esta unidad vamos a aprender el proceso inverso de derivar, que se llama integrar. 2, la función F( . PRIMITIV DE UN FUNCIÓN E sa uidad vaos a aprdr l procso ivrso d drivar, qu s llaa igrar. Diició: Ua ució F diros qu s ua priiiva d ora ució dada, si la drivada d F s, s dcir: F s priiiva d F Ejplo :

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes 3. Modlos Uivariats d Probabilidad Curso - Estadística Modlos Uivariats Procso d Broulli El rsultado d u rimto admit dos catgorías: Actabl y Dfctuoso. S rit l rimto vcs. La robabilidad d dfctuoso s la

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

INGENIERÍA DE SISTEMAS Y AUTOMÁTICA. Fundamentos de Regulación y Automática. Análisis de Sistemas

INGENIERÍA DE SISTEMAS Y AUTOMÁTICA. Fundamentos de Regulación y Automática. Análisis de Sistemas INGENIERÍA DE SISTEMAS Y AUTOMÁTIA Fudao d Rgulació y Auoáica Aálii d Sia FUNDAMENTOS DE REGULAIÓN AUTOMÁTIA Aálii d Sia Jua Lui Roja Ojda Igiría d Sia y Auoáica Uivridad d ádiz Spibr 00 ANEXO B : Traforada

Más detalles

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

Informalmente, una serie es una suma de infinitos sumandos (ver antecedentes históricos y comentarios

Informalmente, una serie es una suma de infinitos sumandos (ver antecedentes históricos y comentarios Capítulo 8 Series uéricas 8.. Defiició y prieras propiedades Iforalete, ua serie es ua sua de ifiitos suados (ver atecedetes históricos y coetarios e [APOSTOL, cap. 0] y e [DURÁ, pág. 84 y sigs.]). Estas

Más detalles

FÍSICA II. Guía De Problemas Nº4:

FÍSICA II. Guía De Problemas Nº4: Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado

Más detalles

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD APÉNDICE: FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD Fórmula uificada d Kimbr Kimbr aglutia la xpricia d muchos años d sayos ralizados por l TRRL Gra Brtaña y propo ua fórmula uificada para l cálculo

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos. Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS LCTROMAGNTISMO PARA INGNIRÍA LCTRÓNICA. CAMPOS Y ONDAS Odas mdios abirtos acotados Itroducció Capítulo 7 l caso tratado l capítulo atrior, l cual ua oda s propaga librmt a través d u mdio si frotras i

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

Continuo de carga positiva

Continuo de carga positiva Capítulo Modlos Atóicos Modlo d Thoso (898) Cotiuo d caga positiva lctos uifot distibuidos l stado d gía ás bajo los lctos dbía sta fijos sus posicios d quilibio stados xcitados los lctos viba alddo d

Más detalles

Transformada de Laplace

Transformada de Laplace Traformada d Laplac Traformada d Laplac Dada ua fució d variabl cotiua f, u traformada bilatral d Laplac dfi como: t [ f ] f dt L dod ua variabl complja, σ iω Para qu ta itgral covrja, dcir, para qu ita

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD 3 MODELOS DE PROBABILIDAD.- VARIABLES ALEATORIAS DISCRETAS E ocasioes, alguas variables aleatorias sigue distribucioes de probabilidad uy cocretas, coo por ejeplo el estudio a u colectivo ueroso de idividuos

Más detalles

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario. Identificación de Sistemas

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario. Identificación de Sistemas Facltad d Cicias xactas, Igiría Agrisra ivrsidad acioal d osario Idtificació d Sistas ítlo: Aálisis spctral Fca: Abril d 22 Ator: Dr. Ja Carlos Góz Itrodcció Los sistas lials stacioarios da copltat caractrizados

Más detalles

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces art Variabls alatorias rof. María B. itarlli.- Variabls alatorias discrtas imortats Distribució biomial Sa ε u xrimto alatorio. Sa u vto asociado a ε y aotamos Suogamos u xrimto alatorio ε u cuml los siguits

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal MATEMÁTICA JRC La disciplia es la parte ás iportate del éito POLINOMIOS EN R EXPRESIÓN ALGEBRAICA.- Es u cojuto de úeros letras, elazadas por cualquiera de las cuatro operacioes, adeás de la poteciació

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

5. Vibraciones en Máquinas

5. Vibraciones en Máquinas DPTO. INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES 004 V. BADIOLA 5. Vibraios Máquias Ua vibraió s ua pquña osilaió alrddor d la posiió d quilibrio. Los oviitos vibratorios áquias s prsta uado sobr

Más detalles

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2 Tma Drivaa. Técicas Drivació 0.- Itroucció.- Tasa Variació Mia.- Drivaa ua ució u puto..- Drivaas Latrals...- Itrprtació gométrica la rivaa..- Rlació tr cotiuia y rivabilia..- Sigiicao graico la rivaa.

Más detalles

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos ESSTENCA ELECTCA: oltítro -Aprítro Mdicion d rsistncias por l todo oltítro-aprítro CONTENDOS oltítro Aprítro. Conxión Corta y Larga. Error sistático d consuo y dbido a la clas. y o. Errors casuals. Opratoria

Más detalles

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation Lecturas Mateáticas Volue 32 (2011), págias 23 27 ISSN 0120 1980 U coetario sobre New exact solutios for the cobied sih-cosh-gordo equatio Jua Carlos López Carreño & Rosalba Medoza Suárez Uiversidad de

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

6. FAST FOURIER TRANSFORM (FFT)

6. FAST FOURIER TRANSFORM (FFT) 6. FAS FOURIER RASFORM FF Las rasformadas Rápidas d Fourir so algoritmos spcializados qu prmit a u procsador digital acr l cálculo d la rasformada Discrta d Fourir d ua forma ficit, lo qu rspcta a carga

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

Construyendo la función exponencial

Construyendo la función exponencial Costrdo l ció ocil Cr SÁNCHZ DÍZ Pd costrirs l ció ocil ri o trl coo l ció ivrs d l ció logrito trl r d idtiicrs co l ocil d s úro rl os d ror tl coicidci l cso d ot tro tié rciol l cso d ot rl d diirs

Más detalles

Tema 9. Combinatoria

Tema 9. Combinatoria Tea 9. Cobiatoria. Defiició de cobiatoria. Estrategias de resolució.. Estrategia del producto y la sua.. Diagraa de árbol. Variacioes y perutacioes.. Variacioes siples u ordiarias.. Perutacioes.. Variacioes

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles