Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?"

Transcripción

1 Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad, lo que nos srve entonces para predecr el clma, vemos que la probabldad de que contnúe soleado el día sguente es.7 y la probabldad de que al día sguente esté nublado es.3. Tambén nos fjamos en que s un día está nublado, la probabldad de que esté soleado el día sguente es.6 y la probabldad de que se ponga nublado es.4. Hoy está nublado, cuál es la probabldad de que mañana contnúe nublado? cuál es la probabldad de que está nublado pasado mañana? Podemos lustrar esta stuacón por medo de un dagrama de árbol: Tempo hoy Tempo mañana Tempo pasado mañana.7 soleado soleado.6.3 nublado nublado.4.6 soleado nublado.4 nublado Fgura Posbles estados del tempo a partr de que hoy está nublado Con la ayuda de la Fgura podemos predecr qué ocurrrá mañana s sabemos que hoy está nublado. Vemos que la probabldad de que mañana contnúe nublado es.4, es decr, s hcéramos esta predccón muchas veces estaríamos en lo correcto cerca del 40% de las veces. Para conocer la probabldad de esté nublado pasado mañana buscamos en las hojas del árbol correspondentes al Tempo pasado mañana los lugares donde dce nublado. Hay dos hojas donde esto ocurre. Ahora lo que queda es determnar cómo desde el prncpo, desde la raíz del árbol, podemos llegar allí. S hoy está nublado, para que pasado mañana esté nublado, podríamos tener un día de mañana soleado o nublado. Así tenemos las sguentes secuencas en orden de (hoy, mañana, pasado mañana): (nublado, soleado, nublado) o (nublado, nublado, nublado) donde pasado mañana es nublado. Estas secuencas son mutuamente excluyentes, corresponden a camnos dstntos en el árbol, así tenemos que: P(pasado mañana nublado hoy nublado) = P((nublado, soleado, nublado) o (nublado, nublado, nublado)) = P(nublado, soleado, nublado) + P (nublado, nublado, nublado) = (.6.3) + (.4.4) =.34. Este resultado se obtuvo multplcando las probabldades condconales a lo largo de los camnos desde hoy nublado hasta pasado mañana nublado. No es necesaro que seamos tan específcos en térmnos de hoy, mañana o pasado mañana, podemos darnos cuenta que lo realmente mportante es el número de días que pasa entre una predccón y otra. El problema que tratamos es equvalente al problema en que s en el día 0 está nublado, cuál es la probabldad un día después tambén esté nublado?, dos días después?, 00 días después?... C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag.

2 Hoy está nublado, cuál es la probabldad de que esté nublado tres días después? Representa esta stuacón con un árbol. El proceso de este ejemplo sólo puede adqurr uno de dos estados posbles s = nublado y s oleado. La probabldad con que se va de un estado a otro depende del estado en que estamos en el presente. Dejemos que represente el estado del clma del día número, el estado del clma del día número y así sucesvamente. En general, para n =,,... sea n el estado del clma en el enésmo día. La sucesón de observacones,,... se llama un proceso estocástco o proceso aleatoro. La prmera observacón se conoce como el estado ncal del proceso y para n =, 3,..., n es el estado del proceso en el tempo n. En un proceso de este tpo los valores de las observacones no pueden predecrse con precsón de antemano. Sn embargo puede especfcarse una probabldad de observar determnado valor, tal como en nuestro ejemplo. En un proceso estocástco el estado varía en una forma aleatora. Para descrbr el modelo de probabldad es necesaro especfcar una probabldad para cada uno de los posbles valores del estado ncal. Tambén es necesaro especfcar para cada estado subsguente n+ todas las probabldades condconales de la forma sguente: P( n+ n+,,..., n n ). Esto quere decr que para todos los tempos n, el modelo de probabldad debe especfcar la probabldad condconal de que el proceso esté en el estado s n+ en el tempo n+, dado que en los tempos,,..., n el proceso estuvo en los estados s, s,..., s n. Muchos procesos reales, como el del ejemplo, se pueden modelar examnando úncamente la hstora más recente, es decr, examnando su últmo estado, sn consderar todos los estados anterores. Una cadena de Marov (general) es un proceso de esta naturaleza: en el momento n el estado actual del proceso y todos los estados anterores son conocdos, entonces las probabldades de todos los estados futuros j ( j > n) dependen úncamente del estado actual n y no de los anterores,,,... n-. Esto se puede ver en el dagrama de árbol, s sabemos cuál es estado del clma hoy, no tenemos que saber cuál fue el de ayer, anter o antes. Formalmente, una cadena de Marov es un proceso estocástco tal que para n =,,... y para cualquer sucesón posble de estados s, s,..., s n+, tenemos P( n+ n+,,..., n n ) = P( n+ n+ n n ). Tal como en el ejemplo del clma, s usamos la regla de multplcacón repetdas veces vemos que las probabldades en una cadena de Marov deben cumplr: P(,,..., n n ) = P ( ) P( ) P( 3 3 )... P( n n n- n- ). Demuestra este últmo resultado. En general, consderamos una cadena de Marov que en cualquer momento estará en alguno de un número fnto de estados s, s,..., s. Un proceso aleatoro de esta naturaleza se llama una cadena de Marov fnta. C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag.

3 Es el ejemplo del estado del clma una cadena de Marov fnta? Explca. Identfca los estados. La probabldad condconal P( n+ j n ), de que la cadena estará en el estado s j en el tempo n + s está en el estado s en el tempo n se conoce como una probabldad de transcón. S para una cadena de Marov esta probabldad de transcón tene el msmo valor para todo los tempos n (n =,, 3,... ) decmos que la cadena tene probabldades de transcón estaconaras. Es decr una cadena de Marov tene probabldades de transcón estaconaras s para cualquer estados s y s j exste una probabldad de transcón p j tal que P( n+ j n ) = p j para n =,, 3,... Son las probabldades del ejemplo del estado del clma estaconaras? Construye ejemplos de stuacones que se puedan representar por procesos estocástcos, por cadenas de Marov generales, por cadenas de Marov fntas, por cadenas de Marov fntas con probabldades estaconaras. Las probabldades del ejemplo pueden presentarse en forma de matrz: soleado( s ) nublado( s ) soleado( s).7 nublado( s) Esta matrz que ncluye las probabldades de pasar de un estado a otro en un paso se llama la matrz de transcón. Los elementos en cada una de las flas suman uno. En la prmera fla representamos P( n n- ) = P( soleado soleado) =.7 y P( n n ) = P( nublado soleado) =.3. Qué probabldades condconales representa la segunda fla? En general, consdera una cadena de Marov con estados posbles s, s,..., s y probabldades estaconaras. Para =,, 3,..., y j =,, 3,..., denotaremos por p j la probabldad condconal de que el proceso estará en el estado s j en un determnado momento s está en el estado s en el momento nmedatamente anteror. Entonces la matrz de transcón de la cadena de Marov se defne como una matrz de dmensones, que llamamos P con elementos p j : p p L p p p L p P =. M M M p p L p El elemento en la fla, columna j p j =P( n j n- ), representa la probabldad de transcón de un paso. Estos elementos son probabldades, vemos que p j 0 para todo, j y que además la suma de estos valores en cada fla es gual a : p =. Esto nos dce que s estamos en el estado, entonces la suma de las probabldades de r a un estado s, s,..., s es uno. j = j C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag. 3

4 El usar esta representacón en forma de matrz nos faclta el cómputo de las probabldades de transcón en más de un paso. Regresemos al ejemplo del estado del clma y añadamos algo de notacón. Dgamos que el estado s es gual a n, ndcando que el día está nublado y s es gual a s ndcando que está soleado. Sea n el estado del clma en el enésmo día en que se observe. Así n será gual a n s el día está nublado y será gual a s s el día está soleado. La pregunta que contestamos antes, la probabldad de que pasado mañana esté nublado s sabemos que hoy está nublado corresponde entonces a encontrar P( 3 = n = n). Para calcular esta probabldad examnamos los posbles estados del día de mañana y las formas de cómo llegar a 3 = n, vemos esto en el sguente árbol: Tempo hoy Tempo mañana Tempo pasado mañana p =.7 3 p =.6 p =.3 3 = n =n p =.6 3 p =.4 = n p =.4 3 = n Fgura Notacón para los posbles estados del tempo Así la probabldad que nos nteresa se puede calcular como hcmos antes, usando la fórmula de probabldad total: P( 3 = n = n) = (.6.3) + (.4.4) en térmnos de nuestra notacón esto es gual a = (p p ) + (p p ) = P( = n) P( 3 = n ) + P( = n = n) P( 3 = n = n). Es decr, hemos descompuesto el evento de que pasado mañana esté nublado s sabemos que hoy lo está en térmnos de todas los estados que se pueden observar mañana. Entonces, para cada posble estado del clma de mañana examnamos cómo podemos tener el día de pasado mañana nublado. Ahora veamos la expresón resultante. S examnamos la expresón (p p ) + (p p ), vemos que ésta corresponde al elemento en la segunda fla y segunda columna de la matrz que resulta al multplcar P P. Es decr.7 P P = = = Esta últma matrz es la matrz de transcón del proceso en dos pasos. Nos da las probabldades de llegar en dos pasos a cualquer estado s partmos de un estado partcular. Por ejemplo, de ahí podemos leer que P( 3 = n ) =.33 y P( 3 = n) =.66. Como el proceso es estaconaro podemos nclusve determnar que P( 5 = n 3 = n) =.34, ya que lo únco que afecta el resultado es el número de días en el futuro en que queremos hacer la predccón. Podemos extender este argumento a cualquer número de días en el futuro en que queremos hacer la predccón, vemos que P P = P corresponde a las probabldades de transcón en dos pasos, entonces P 3, P 4,..., P m,... corresponden a las probabldades de transcón en 3, 4,..., m pasos respectvamente. De hecho, la matrz P m se conoce como la matrz de transcón en m pasos de la cadena de Marov. C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag. 4

5 Estas matrces pueden encontrarse fáclmente usando una calculadora con esta capacdad o un programa de computadoras tal como Excel. Hasta ahora no sabemos las probabldades de encontrar el clma en un estado partcular (soleado o nublado) rrespectvamente del estado del tempo de hoy, es decr no sabemos P( n ), por ejemplo. S aplcamos la defncón de probabldad condconal y la fórmula de probabldad total, sabemos que P( ) = P( y ) + P( y = n) = P( )P( ) + P( = n)p( = n). Así que para calcular P( ) debemos conocer el valor de P( ) y de P( = n) además de las probabldades condconales. Estas últmas están dadas en la matrz de transcón, así que son conocdas. Las probabldades P( ) = w y P( = n) = w se conocen como las probabldades ncales del sstema. Su valor se puede estmar o suponer a través del hstoral de días soleados o nublados con que se cuente hasta ese momento. Podemos escrbr P( ) = w p + w p, recordando que el estado número corresponde a soleado y el estado número corresponde a nublado. Debemos darnos cuenta que w + w =, pues estas probabldades ncluyen todos los posbles estados en que puede estar el sstema. Encuentra P( ) s w =.7 y w =.3. Podemos extender la notacón de matrces a las probabldades ncales, esta vez usando un vector de probabldad. Consdera una cadena de Marov con estados posbles s, s,..., s y probabldades estaconaras. Supongamos que al nco, la cadena puede estar en cualquera de los estados con la probabldad de que esté en el estado s con probabldad w 0, es decr P( ) = w para =,,..., y que además w + w w =. Estas probabldades descrben un vector de probabldad w = (w, w,..., w ), en este caso llamado vector de probabldad ncal. Usando este vector de probabldad ncal podemos calcular por ejemplo, P( = = P( j ) = = P( ) P( j y ) ) = j = w p j. Esta últma sumatora corresponde al componente j del vector wp, así las probabldades de que esté en cualquera de los estados están dadas por el vector vp. Podemos generalzar este resultado aún más. Supongamos que en el tempo n, la probabldad de que el sstema esté en el estado s es P( n ) = v, n+ j = = entonces P ( ) v p. para j =,,...,. Dcho de otra forma, s las probabldades de los j estados en el tempo n están especfcadas por el vector de probabldad v, entonces las probabldades en el tempo n+ están especfcadas por el vector de probabldad vp. De aquí podemos ver que s el vector de probabldad ncal para una cadena de Marov con probabldades de transcón estaconaras es w, entonces las probabldades de los varos estados en el tempo n+ están especfcados por el vector de probabldad vp n. C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag. 5

6 Demuestra esta últma aseveracón. Encuentra el vector de probabldad correspondente a 3 s w = (.7,.3). Ejerccos y Problemas. Camnata aleatora con barreras que reflejan.. Camnata aleatora con barreras absorbentes. 3. Dfusón de gases 4. Modelo de colas 5. Cajas con cancas C:\My Documents\Cursos\M 500\.06.Cadenas de Marov.doc pag. 6

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

2 de mar de 2004 Codificación de imágenes y video

2 de mar de 2004 Codificación de imágenes y video Teoría de la Informacón 2 de mar de 2004 Codfcacón de mágenes y vdeo 2 de mar de 2004 Codfcacón de mágenes y vdeo 2 El clma en el Río de la Plata...... S... T... S... S S S T T... S S S... S T... S T p=0.5,

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Unversdad Dego Portales Profesor: Carlos R. Ptta Hasta este momento nos hemos enfocado en juegos en los cuales cualquer nformacón que es conocda por un jugador es conocda por todos los demás (es decr,

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE PARTE COLUSION EN OLIGOPOLIOS TEMA 8: JUEGOS REPETIDOS: TEOREMAS Y PARADOJAS 1. Juegos repetdos: Conceptos báscos y ejemplos. 2. Paradojas en los juegos

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

6 Minimización del riesgo empírico

6 Minimización del riesgo empírico 6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

Fuentes de información

Fuentes de información TEORÍA DE LA INFORMACIÓN Tratamento probablístco de la Informacón Fuentes de nformacón INGENIERÍA DE SISTEMAS Cursada 6 TRANSMISIÓN DE INFORMACIÓN decodfcacón automátca PRINCIPALES TEMÁTICAS DE LA TEORÍA

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO

Más detalles

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior)

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior) DIFERENTES TIOS DE DISTRIBUCIÓN UTILIZACIÓN DE FUNCIONES DE EXCEL EN MODELOS DE SIMULACIÓN Utlzacón ndvdual y conjunta de funcones para la representacón del comportamento de varables bajo las alternatvas

Más detalles

UNIDAD 1: Tablas de frecuencias

UNIDAD 1: Tablas de frecuencias UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca descrptva. ESTADÍSTICA DESCRIPTIVA POBLACIÓN Y MUESTRA. VARIABLES ESTADÍSTICAS DISTRIBUCIÓN DE FRECUENCIAS DE UNA MUESTRA AGRUPACIÓN DE DATOS REPRESENTACIONES GRÁFICAS DE LAS MUESTRAS PRINCIPALES

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA Sstemas de Amortzacón de Deudas MATEMÁTICA FINANCIERA SISTEMA FRANCÉS Lus Alcalá UNSL Segundo Cuatrmeste 2016 Como hpótess ncal de trabajo suponemos que la tasa de nterés cobrada por el prestamsta (acreedor)

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

Mecánica Estadística: Estadística de Maxwell-Boltzmann

Mecánica Estadística: Estadística de Maxwell-Boltzmann Ludwg Boltzmann 1844-1906 James Clerk Maxwell 1831-1879 E. Martínez 1 Lápda de Boltzmann en el cementero de Vena S=k ln W E. Martínez 2 S=k ln W Entropía, una propedad termodnámca Una medda de nuestra

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Tema 1.- Variable aleatoria discreta (V2.1)

Tema 1.- Variable aleatoria discreta (V2.1) Tema.- Varable aleatora dscreta (V2.).- Concepto de varable aleatora A cada posble resultado de un expermento lo llamamos suceso elemental, y lo denotamos con ω, ω 2, Llamamos espaco muestral al conjunto

Más detalles

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

Clase Auxiliar #1: Teoría de Juegos

Clase Auxiliar #1: Teoría de Juegos UNIVERSIDAD DE CHILE FAC DE CIENCIAS FÍSICAS Y MATEMÁTICAS Departamento de Ingenería Industral Curso: IN5A Economía Industral Semestre: Prmavera 7 Profesor: Ronald Fscher Auxlares: Klaus Kaempfe Sofía

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Examen 4 de Febrero de 2005

Examen 4 de Febrero de 2005 Arqutectura de Computadores 1 Examen Período Febrero 2005 Instruccones Examen 4 de Febrero de 2005 Indque su nombre completo y número de cédula en cada hoja. Numere todas las hojas e ndque la cantdad total

Más detalles

Principio del palomar

Principio del palomar Prncpo del palomar Juana Contreras S. Claudo del Pno O. Insttuto de Matemátca y Físca Unversdad de Talca Introduccón Cuando se reúnen 367 personas, es seguro que debe haber al menos dos personas que cumplen

Más detalles

Notar que A = A S = A ( ). Por la propiedad distributiva, se tiene que n A = A, donde la

Notar que A = A S = A ( ). Por la propiedad distributiva, se tiene que n A = A, donde la 4.3.2 Probabldad Total y Regla de ayes Regla de la Probabldad Total. Sean 1,, n una coleccón de eventos que forman una partcón del espaco muestral S esto es n S y φ para. Sea A otro evento defndo sobre

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 PROBABILIDAD Y ESTADISTICA LABORATORIO PARA EXAMENES EXTRAORDINARIOS INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA

Más detalles

5 Centrales Hidráulicas

5 Centrales Hidráulicas Curso SmSEE IIE 2012 Cap. 5 pág 1/6 5 Centrales Hdráulcas 5.1 Centrales Hdráulcas con Embalse En el caso de centrales con embalses, tendremos que agregar restrccones adconales para mponer los límtes de

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles