Matemáticas Discretas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Discretas"

Transcripción

1 Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda Algo de nformacón Curso propedéutco formatvo/selectvo Págna del curso ccc.naoep.mx/~vllasen/cursomatdscretas Evaluacón 2 exámenes parcales 60% 1 examen fnal 40% 2 Contendo Introduccón y subconjuntos, operacones de conjuntos, dagramas de Venn Relacones y Funcones Relacones y sus propedades, equvalenca, conjuntos parcal y totalmente ordenados, Lógca Fundamentos, álgebra booleana, cálculo proposconal, cálculo de predcados Seres Seres y recurrencas, manpulacón de seres, seres múltples Grafos Defncones, grafos euleranos y hamltonanos, conectvdad, grafos planares, árboles Prncpos fundamentales del Conteo Reglas de la suma y el producto, permutacones, combnacones Probabldad Defncones, probabldad condconal, Teorema de Bayes, prncpales dstrbucones dscretas y contnuas, varables aleatoras Defncón: la matemátca dscreta, tambén llamada matemátca fnta, comprende el estudo de las estructuras matemátcas fundamentalmente dscretas en el sentdo de no soportar o requerr la nocón de contnudad Induccón y Recursón Induccón en números naturales, nduccón matemátca, funcones recursvas 3 4 1

2 Importanca Matemátcas necesaras para hacer cenca de la computacón en una forma confable y efcente: Confable: Lógca, teoría de conjuntos, funcones y relacones, estructuras dscretas Cómo argumentar y probar Efcente: Combnatora, teoría de probabldad Cómo contar cosas PRIMERA PARTE 1. y subconjuntos, operacones de conjuntos, dagramas de Venn 5 6 Se tene un sentmento íntmo de que un conjunto debe ser una coleccón ben defnda de elementos. A estos elementos se les suele llamar objetos y se dce que son membros del conjunto. El adjetvo ben defndo mplca que cualquera que sea el objeto consderado, se pueda determnar s está o no en el conjunto que se analza. 7 Se utlzan letras mayúsculas, como A, B, C,..., para representar conjuntos, y mnúsculas para los elementos. Dado un conjunto A Se escrbe x A s x es un elemento de A; y A ndca que y no pertenece a A. Para denotar un conjunto se utlza un par de llaves {} alrededor de los elementos del conjunto 8 2

3 Un conjunto se puede determnar enlstando sus elementos entre llaves como A = {1, 2, 3, 4, 5}, (determnacón extensonal). Cuando se trata un problema partcular, hay un unverso o conjunto unversal, formulado o mplcado, del cual se selecconan los elementos para formar los conjuntos. Este conjunto tambén se puede determnar medante una propedad que ndca cómo deben ser los elementos (determnacón ntenconal). Entonces A tambén se puede escrbr como A = {x x es un entero, 1 x 5 }. 9 EJEMPLO. Para el unverso U = {1, 2, 3, 4, 5}, consdérese un conjunto A = {1, 2}. S B = {x x 2 U } los elementos de B son 1, 2. Como A y B tenen los msmos elementos se consdera que son el msmo conjunto. 10 Defncón Para un unverso U se dce que los conjuntos A y B (tomados de U) son guales y se escrbe A = B, s A y B contenen los msmos elementos. De esta defncón se deduce que n el orden n la repetcón tenen mportanca para un conjunto, de modo que {1, 2, 3} = {3, 1, 2} = {2, 2, 1, 3} = {1, 2, 1, 3, 1}. EJEMPLO Para U = {1, 2, 3,... }, el conjunto de enteros postvos, sea: a) A = {1, 4, 9,...,64, 81} = {x 2 x U, x 2 100}. b) B = {1, 4, 9, 16} = {y 2 y U, y 2 20} c) C = {2, 4, 6, 8,...} = {2k k U } A y B son ejemplos de conjuntos fntos, mentras que C se denomna conjunto nfnto

4 Dado un conjunto fnto A A denota el número de elementos en A y se denomna cardnaldad de A. EJEMPLO a) A = {1, 4, 9,...,64, 81} = {x 2 x U, x 2 100}. A = 9 b) B = {1, 4, 9, 16} = {y 2 y U, y 2 20}. B = 4 Defncón S C, D son conjuntos de un unverso U, se dce que C es un subconjunto de D, y se escrbe C D o D C s todo elemento de C es tambén un elemento de D. S exste algún elemento de D que no está en C, C se denomna subconjunto propo de D y se denota por C D o D C. AB s y solo s x [xa xb] EJEMPLO Sea U = {1, 2, 3, 4, 5} con A = {1, 2, 3}, B = {3,4}, C = {1, 2, 3, 4}. Entonces se cumplen las sguentes relacones de subconjuntos: a) A C b) A C c) B C d) A A e) B A (es decr, B no es un subconjunto de A) f) A A Teorema Sea A, B, C U. a) S A B y B C, entonces A C. b) S A B y B C, entonces A C c) S A B y B C, entonces A C d) S A B y B C, entonces A C

5 Defncón El conjunto nulo o vacío es aquél que no contene elementos y se denota por o {}. Defncón S A es un conjunto del unverso U, el conjunto potenca de A, denotado por P(A), es la coleccón de todos los subconjuntos de A. Se observa que = 0, pero {0}. Para cualquer conjunto fnto A con A = n 0, A tene 2 n subconjuntos, de modo que P(A) = 2 n EJEMPLO sea A={x, y, z} Su conjunto potenca, P(A)={{},{x},{y},{z},{x, y},{x, z},{y, z},{x, y, z}} Operacones de Defncón Dados A, B U, se defnen las propedades sguentes: a) A B (la unón de A y B) = {x x A o x B} b) A B (la nterseccón de A y B) = { x x A y x B} c) A B (la dferenca smétrca de A y B) = A B = {x x A o x B, pero x A B}

6 Operacones de EJEMPLO Con U={1,2,3,...,9,10}, A={1,2,3,4,5}, B ={3,4,5,6,7}, C={7,8,9} tenemos Operacones de EJEMPLO Con U={1,2,3,...,9,10}, A={1,2,3,4,5}, B ={3,4,5,6,7}, C={7,8,9} tenemos a) AB = b) AB = c) BC = d) AC = e) AB = f) AC = g) AC = a) AB = {3, 4, 5} b) AB = {1, 2, 3, 4, 5, 6, 7} c) BC = {7} d) AC = e) AB = {1, 2, 6, 7} f) AC = {1, 2, 3, 4, 5, 7, 8, 9} g) AC = {1, 2, 3, 4, 5, 7, 8, 9} Operacones de Defncón S S, T U, cuando S T =, entonces S y T se denomnan dsjuntos o mutuamente dsjuntos. Teorema S S, T U, S T = S T s y sólo s S y T son dsjuntos. Operacones de Defncón Para un conjunto A U, el complemento de A, denotado por U A o A, está dado por {x xu, xa }. Para U={1,2,3,...,9,10} A={1,2,3,4,5}, B={3,4,5,6,7}, y C={7,8,9} A ={6, 7, 8, 9, 10}, B ={1, 2, 8, 9, 10}, C ={1, 2, 3, 4, 5, 6, 10}

7 Operacones de Defncón Para A, B U, el complemento (relatvo) de A en B, denotado por B A, está dado por {x x B, x A}. Para U={1,2,3,...,9,10} A={1,2,3,4,5}, B={3,4,5,6,7}, y C={7,8,9} se tene: a) B A = {6,7} b) A B = {1, 2} c) A C = A d) C A = C e) A A = f) U A = A 25 Leyes de la teoría de conjuntos Para conjuntos cualesquera A, B, C de un unverso U: 1. A= A Doble complemento _ 2. A B A B DeMorgan _ A B A B 3. A B = B A Conmutatvas A B = B A C B C A BC 4. A B C A B Asocatvas A B C A BAC 5. A B C A B AC Dstrbutvas A 27 Leyes de la teoría de conjuntos 6. A A = A Idempotentes A A = A 7. A = A Identdad A U = A 8. A A = U Inversas A A = 9. A U = U Domnacón A = A A B A 10. A A B Absorcón A 28 Leyes de la teoría de conjuntos Debe tener alguna mportanca que las leyes 2 a 10 se presenten por pares. Estos pares se llaman duales. Una proposcón se puede obtener a partr de la otra ntercambando en todos los casos en que se presente por, y vceversa, y donde aparezca U por, y vceversa. 29 7

8 Dagramas de Venn Un dagrama de Venn, se construye como sgue: U se representa por el nteror de un rectángulo, mentras que sus subconjuntos se representan por círculos nterores y otras curvas cerradas. Dagramas de Venn En la fgura se usan dagramas de Venn para establecer una de las leyes de DeMorgan. 31 A B A B 32 Dagramas de Venn Dagrama de Venn numerando regones Dagramas de Venn A B está_ formado por las regones 2, 3, 5, 6, 7, 8, de modo que A comprende las regones 1 y 4. B Al desarrollar A B C está formado por las regones 1, 4, 6, 7, 8. La regón 3 es A B C y la regón 7 es A B C. Cada regón es un conjunto de la forma S1 S2 S3 donde S 1 se susttuye por A o A, S 2 por B o B, y S 3 por C o C

9 Dagramas de Venn El conjunto A consta de las regones 1, 3, 4, 6, mentras que las regones 1, 2, 4, 7 forman B, de modo que las regones 1 y 4 comprenden A B. S se toma la unón de C con A B, se concluye con las regones 1, 4, 6, 7, 8. Tabla de pertenenca Otra técnca para probar gualdades entre conjuntos es la tabla de pertenenca. Se observa que para los conjuntos A, B U, un elemento x U cumple exactamente una de las cuatro stuacones sguentes: a) xa, xb; b) xa, xb; c) xa, xb; c) xa, xb Tabla de pertenenca Se puede establecer la gualdad de dos conjuntos ocupando sus columnas respectvas en las tablas de pertenenca. En la tabla se muestra esto para la ley dstrbutva de la unón sobre la nterseccón. Smplfcacón y deduccón de expresones EJEMPLO Smplfque la expresón A B C B _ B C = A B C B DeMorgan = A B C doble complemento = A B C B asocatva = A B B C conmutatva de nterseccón = A B B asocatva de la nterseccón = B C absorcón

10 Leyes de la teoría de conjuntos Leyes de la teoría de conjuntos Para conjuntos cualesquera A, B, C de un unverso U: 6. A A = A Idempotentes 1. A= A Doble complemento _ 2. A B A B DeMorgan _ A B A B 3. A B = B A Conmutatvas A B = B A C B C A BC 4. A B C A B Asocatvas A 5. A B C A B AC Dstrbutvas A A A = A 7. A = A Identdad A U = A 8. A A = U Inversas A A = 9. A U = U Domnacón A = A A 10. A A B Absorcón B C A B AC A A B Smplfcacón y deduccón de expresones _ EJEMPLO Exprésese A B en funcón de y. Por la defncón de complemento relatvo tenemos que x x A x B A B A B,. Por tanto, A B A B = A B DeMorgan = A B doble complemento Generalzacón operacones de conjuntos Defncón Denótese por I un conjunto de índces. S para cada índce I hay un conjunto A U, entonces I I A. A x x A para al menos una x x A para todo I I Obsérvese que x s x A, para todo índce I. A I S x A para al menos un índce I, entonces x. y A I

11 Generalzacón operacones de conjuntos S el conjunto de índces I es el conjunto Z +, se puede escrbr: A A A 1 2 Z 1 A A1 A2 Z 1 A A Generalzacón operacones de conjuntos Teorema (Leyes de DeMorgan generalzadas) Sea I un conjunto de índces, donde para cada I, A U. Entonces, a) A A b) I I I A A I Conteo y dagramas de Venn Para A, B U, los sguentes dagramas de Venn ayudarán a obtener fórmulas de conteo para A, A B en funcón de A, B y A B. Conteo y dagramas de Venn Los conjuntos A, B de la fgura no tenen nterseccón, así que aquí la regla de la suma da lugar a A B A B, y es necesaro que A, B sean fntos, pero no requere condcón alguna sobre la cardnaldad de U. Como se muestra en la fgura, A A U y A A, de modo que, porla regla de la suma, A A U o A U A

12 Conteo y Dagramas de Venn EJEMPLO En una clase de 50 alumnos de prmero de unversdad, 30 estudan BASIC, 25 Pascal, y 10 los dos lenguajes. Cuántos alumnos estudan un sólo lenguaje de programacón? Conteo y Dagramas de Venn Sea U la clase de 50 alumnos, A el subconjunto de los que estudan BASIC y B el de los que estudan Pascal. Para responder a la pregunta, se necesta A B. En la fgura, los números de las regones se obtenen de la nformacón: A =30, B =25, A B =10. Por tanto, A B = 45 A + B, pues A + B cuenta dos veces a los alumnos de A B. Para evtar esta sobre cuenta se resta A B de A+ B y se obtene la fórmula correcta: A B = A + B A B y lógca La lógca y conjuntos están íntmamente relaconadas: xa s y sólo s (xa) AB s y sólo s (xa xb) es Verdadero x (AB) s y sólo s (xa xb) x (AB) s y sólo s (xa xb) x A B s y sólo s (xa xb) x A B s y sólo s (xa xb) (xb xa) x A s y sólo s (xa) El empleo de conjuntos Los conjuntos son las estructuras más smples pero no trvales de las matemátcas Otros objetos y propedades de la matemátcas se defnen en base a ellos Fueron usados en un prncpo para estudar la nocón de nfnto Útles en problemas de conteo y teoría de probabldad

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006 Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo 4 Probabldades Estadístca Computaconal II Semestre 006 Profesores: Héctor llende (hallende@nf.utfsm.cl) Carlos Valle (cvalle@nf.utfsm.cl)

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos. ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas.

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas. Tema 11- onceptos báscos Teoría de onjuntos. Estructuras lgebracas TEM 11. onceptos báscos de la Teoría de onjuntos. Estructuras algebracas. 1. Introduccón. La teoría de conjuntos es una rama de las matemátcas

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes.

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes. CyRCE: Un modelo de Resgo de Crédto para Mercados Emergentes. Javer Márquez Dez-Canedo. DICIEMBRE 2004 Índce I. Introduccó cón II. CyRCE 1. El Modelo General 2. Segmentacón del Portafolo 3. Índce de Concentracón

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

FACULTAD DE INGENIERÍA U N A M

FACULTAD DE INGENIERÍA U N A M FCULTD DE INGENIERÍ U N M Irene atrca Valdez y lfaro renev@servdor.unam.mx T E M S DEL CURSO 1. nálss Estadístco de datos muestrales. 2. Fundamentos de la Teoría de la probabldad. 3. Varables aleatoras.

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa Geometría Axomátca de la Convexdad Parte II: Axomátca de Cápsula convexa Juan Carlos Bressan Resumen En la Parte I estudamos una axomátca de segmentos, en la que defnmos los convexos y estudamos sus propedades

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas UNIDAD 5 Varables aleatoras dscretas Objetvos Al fnalzar la undad, el alumno: utlzará el método de puntos muestrales asocado a varables aleatoras dstngurá una varable aleatora dscreta de una varable aleatora

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUCCIÓN A LA PROBABILIDAD José Lus Quntero Expermento aleatoro Expermento Bnomal Teoría de Conjuntos Probabldad Teorema de Bayes Técncas de Conteo Unversdad Central de Venezuela Facultad de Ingenería

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

TEMA 1: INCERTIDUMBRE Y PROBABILIDAD

TEMA 1: INCERTIDUMBRE Y PROBABILIDAD MÉTODOS ESTDÍSTICOS PR L EMPRES TEM 1: INCERTIDUMBRE Y PROBBILIDD 1.1.- La probabldad. Conceptos y cuantfcacón 1.2.- Defncón axomátca de la probabldad 1.3.- Probabldad condconada e ndependenca 1.4.- Probabldad

Más detalles

TEMA VII. VARIABLE ALEATORIA. CLASIFICACIÓN Y CARACTERISTICAS

TEMA VII. VARIABLE ALEATORIA. CLASIFICACIÓN Y CARACTERISTICAS ESTADÍSTICA I TEMA VII. VARIABLE ALEATORIA. CLASIFICACIÓN Y CARACTERISTICAS VII.1.- Varable aleatora. Clasfcacón. VII.1.1.- Introduccón. VII.1..- Defncón. VII.1.3.- Clasfcacón. VII..- Caracterzacón de

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO) Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las

Más detalles

Integración por el método de los residuos

Integración por el método de los residuos Semana 13 - lase 38 Tema 6: Varable ompleja 1. Introduccón Integracón por el método de los resduos Las expansones de funcones en seres de potencas dejan resduos al detener la expansón a para una determnada

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else Proposcones Proposcones Maro Medna C. maromedna@udec.cl Expresones Artmétcas (b + c) De control (f ) De asgnacón (X = Y) Llamadas a funcones (prntf( )) Termnadas por un punto y coma (;) Bloques de proposcones

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

PRELIMINARES. ab bc aec ac H. a b S / b a.

PRELIMINARES. ab bc aec ac H. a b S / b a. Introduccón Cuando un novel estudante de álgebra abstracta se enfrenta a expresones como grupo cocente, espaco cocente, cree y con justfcada razón, que se enfrentará a conjunto de cocentes, fnalmente se

Más detalles

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia Unverstas Scentarum ISS: 0-7483 revstascentfcasjaverana@gmal.com Pontfca Unversdad Javerana Colomba Aranda, Mosés; Molna, Fabo; Moreno, Vladmr EL PROBLEMA DEL CUMPLEAÑOS, UA GEERALIZACIÓ Unverstas Scentarum,

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

SUCESIONES RECURSIVAS LINEALES

SUCESIONES RECURSIVAS LINEALES SUCESIONES RECURSIVAS LINEALES Juan Saba Susana Tesaur 1 Introduccón Una forma usual de defnr sucesones de números es nductvamente Por ejemplo, s alguen conoce la sucesón de Fbonacc, es probable que la

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

Tema 1: TEORÍA DE LA PROBABILIDAD

Tema 1: TEORÍA DE LA PROBABILIDAD Tema : TEORÍ DE L ROLDD Carlos lberola López Lab. rocesado de magen, ETS Telecomuncacón Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lp.tel.uva.es/sar . ara qué estudar esto? Se pretende

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

Capítulo 1. Conjuntos Difusos

Capítulo 1. Conjuntos Difusos Capítulo. Conjuntos Dfusos.. Introduccón Cuando los computadores se enfrentan a la stuacón de tomar decsones, generalmente hacen preguntas que tenen respuestas del tpo sí o no. Por ejemplo:. La temperatura

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

ISSN en trámite. Notas de matemática. Fascículo 2. Juan Sabia Susana Tesauri. Sucesiones recursivas lineales

ISSN en trámite. Notas de matemática. Fascículo 2. Juan Sabia Susana Tesauri. Sucesiones recursivas lineales Fascículo Notas de matemátca ISSN en trámte Juan Saba Susana Tesaur Sucesones recursvas lneales Departamento de Matemátca Facultad de Cencas Exactas y Naturales Unversdad de Buenos Ares 014 Notas de matemátca

Más detalles

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO Concepto de equlbro físco Sstema Fase Componente Solubldad Transferenca Equlbro Composcón 2 Varables de mportanca en el equlbro de fases:

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Unversdad Dego Portales Profesor: Carlos R. Ptta Hasta este momento nos hemos enfocado en juegos en los cuales cualquer nformacón que es conocda por un jugador es conocda por todos los demás (es decr,

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares Paso básco: Expresones Regulares Ø es una expresón regular es una expresón regular s Σ, s es una expresón regular Paso de nduccón: unón, concatenacón y clausura S y β son expresones regulares β es una

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles