Equilibrio termodinámico entre fases fluidas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Equilibrio termodinámico entre fases fluidas"

Transcripción

1 CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo a que todos los procesos de separacón se basan en datos precsos y exactos de propedades termofíscas y del equlbro de fases. Es en los procesos de separacón y purfcacón donde se consume entre el 70 y 90% de la energía y los costos de operacón de un gran número de plantas de refnacón, petroquímcas y químcas (Henley y Seader, 1990), por lo que es ndspensable optmzar algunos parámetros de operacón y para ello la termodnámca es fundamental. La ngenería básca, es parte medular para el dseño de procesos de la ndustra químca, requere de datos con alta precsón y exacttud de un número mportante de propedades termofíscas de las correntes nvolucradas que permtan el desarrollo y dseños confables que se traduzcan en ahorros en los costos y aumenten las ganancas con la dsmnucón de factores de resgo y segurdad para el personal y proteccón al medo ambente. S dos fases llegan al equlbro termodnámco se alcanza un límte en la transferenca de matera de una fase a otra, de tal forma, que dcha transferenca se anula, bajo condcones de presón y temperatura conocdas. Para que un proceso ndustral o de laboratoro se realce con una velocdad de produccón razonable, es necesaro evtar la proxmdad del equlbro, ya que la velocdad de transferenca en cualquer punto es proporconal a la fuerza mpulsora que vene dada por el alejamento del equlbro en dcho punto. Por tanto, para evaluar fuerzas mpulsoras el estudo del equlbro entre fases resulta de gran mportanca. En transferenca de matera son mportantes dferentes tpos de equlbro de fases. En todos los casos ntervenen por lo menos dos fases y se pueden encontrar todas las combnacones excepto dos fases gaseosas o sóldas. Consderando las fases en su conjunto, los efectos de área superfcal o de la curvatura de

2 las superfces son desprecables y las varables termodnámcas a controlar son la temperatura, presón y concentracones. (McCabe et al., 1993). Operacones untaras como la extraccón en fase líquda y las destlacones azeotrópca y extractva, muy utlzadas en la ndustra y los laboratoros de nvestgacón, requeren de la seleccón de dsolventes que posean las característcas adecuadas para obtener los productos deseados con efcencas altas de separacón. La extraccón en fase líquda es una operacón untara comercal para la separacón y recuperacón selectva de dferentes tpos de compuestos orgáncos donde la separacón por destlacón no es posble, ya que temperaturas elevadas pueden causar la descomposcón químca de algunos compuestos. El uso de solventes extractvos que presentan alta selectvdad y capacdad de extraccón se traduce en dseños con alta efcenca en su operacón, en su nversón de captal y amgables con el medo ambente. I.1 Regla de las Fases de Gbbs Para conocer la concentracón de un soluto en dos fases en equlbro, se requeren datos confables de equlbro de fases expermentales. El equlbro termodnámco entre dos o más fases se defne en térmnos de las propedades ntensvas de temperatura, presón y potencal químco. Cuando se tene gualdad en estas propedades en todas las fases presentes se determna el equlbro termodnámco del sstema. De esta manera, en un sstema heterogéneo conformado por π fases y n componentes, se alcanza el equlbro con las sguentes gualdades: T = ( α ) ( β ) ( π ) = T =... T (1.1) P = ( α ) ( β ) ( π ) = P =... P (1.2) ( α ) ( β ) ( π ) µ µ =... = µ = ( = 1 n) (1.3)

3 La fase está ndcada por el superíndce y el subíndce se refere al componente. Las ecuacones anterores proporconan el crtero básco de equlbro de fases (Prausntz et al., 2000). En un sstema con n componentes, el potencal químco de cada componente en la fase α y β es funcón de las varables T, P, x (α) 1, x (α) 2,..., x (α) n ; T, P, x (β) 1, x (β) 2,..., x (β) n, respectvamente. Con π fases, la sere completa de varables ndependentes está conformada por T, P y π(n-1) fraccones molares, por lo tanto exsten 2 + π(n-1) varables para defnr el equlbro termodnámco entre las dferentes fases. Exsten π ecuacones de gualdad de potencal químco para cada componente, en total n(n-1) ecuacones. Por lo tanto el número de varables ntensvas F que pueden asgnarse está determnado por la ecuacón (1.4) (Prausntz et al., 2000). F = n π + 2 (1.4) En la ecuacón anteror, el número F se nterpreta como el número de grados de lbertad termodnámcos y se defnen como el número de varables ndependentes para lograr el equlbro termodnámco de un sstema dado. La ecuacón (1.4) es amplamente conocda como la Regla de las Fases de Gbbs. En este trabajo se estudaron sstemas de 3 y 4 componentes en equlbro entre dos fases líqudas, por lo que de acuerdo con la ecuacón 1.4 los grados de lbertad de los sstemas se muestran en la tabla 1.1. Tabla 1.1 Grados de lbertad para sstemas con 3 y 4 componentes en equlbro entre dos fases. Número de componentes Número de fases Grados de lbertad

4 Para un sstema de 3 componentes, los grados de lbertad están formados por T, P y x 1. Para los sstemas de 4 componentes, los grados de lbertad están determnados por T, P, x 1 y x 2 (Walas, 1985). I.2 Equlbro líqudo-líqudo El estudo del equlbro de fases ha sdo amplamente estudado, por ejemplo en la complacón de Sorensen y Arlt (1979) se reporta un gran número de sstemas bnaros y ternaros, tambén exste un gran número de sstemas en los trabajos de Romero y Trejo (1989, 1995), a pesar de esto, exste un gran potencal para hacer contrbucones a la termodnámca del equlbro de fases, aún en áreas establecdas como la ndustra y la nvestgacón, como es el caso del equlbro líqudo-líqudo. Cuando dos líqudos se mezclan en dferentes proporcones a certas condcones de temperatura y presón, y se producen dos fases líqudas de dferente concentracón que están en equlbro termodnámco, entonces se tene el fenómeno de Equlbro Líqudo- Líqudo (ELL) (Van Ness y Abbott, 1982). La descrpcón termodnámca del ELL está en funcón de T, P y de la fugacdad (f) para cada espece químca en ambas fases. De esta manera, el crtero del equlbro líqudolíqudo en un sstema de n-componentes con T y P específcas se muestra en la ecuacón (1.5). α β f f = (1.5) o en funcón de coefcentes de actvdad, como: x α β β β ( f ) = x γ ( f ) ( 1,2..., n) α α = γ (1.6) S se consdera que todas las especes exsten como líqudos puros a la temperatura del sstema, y se defnen los coefcentes de actvdad con respecto al estado de Lews- Randall, se tene que (Van Ness y Abbott, 1982):

5 0 α 0 β ( f ) = ( f ) = f ( 1,2,..., n) = (1.7) Por lo tanto la ecuacón (1.6) puede escrbrse como: x α α β β = γ = x γ ( 1,2..., n) (1.8) La ecuacón anteror es la ecuacón general del ELL. Tambén puede escrbrse como: aˆ α ˆ = a β ( = 1,2,..., n) (1.9) Donde â es la actvdad de cada espece (Prausntz et al., 2000). Los coefcentes de actvdadγ α β y γ se dervan de la funcón G E /RT, la dferenca se encuentra en la fraccón molar en las cuales se aplcan. Para un sstema líqudo-líqudo con n especes químcas. γ y γ α β = γ = γ α α α ( x, x,..., x, T, P) 1 n 1 β β β ( x, x,..., x, T, P) n 1 Para cumplr con la regla de fases (Van Ness y Abbott, 1982), las ecuacones (1.7) y (1.9), muestran que se tenen n ecuacones de equlbro y 2n varables (T,P y n-1 fraccones molares ndependentes para cada fase). En especal, dentro de los estudos del equlbro entre fases líqudas, las mezclas formadas por un componente polar más un hdrocarburo son de nterés crecente, ya que presentan propedades nteresantes como la separacón de fases líqudo-líqudo y la azeotropía, como resultado de su alta no dealdad. Estas dos propedades representan un gran atractvo desde el punto de vsta centífco para el desarrollo y prueba de modelos de solucones, y tambén desde el punto de vsta ndustral, ya que numerosas correntes de proceso se encuentran consttudas por este tpo de mezclas. De aquí la mportanca y relevanca del actual trabajo de nvestgacón. Los sstemas líqudo-líqudo se caracterzan por la ampla varedad de comportamentos que presentan. En equlbro, la temperatura y presón de ambas fases son guales, por lo

6 que de acuerdo, con la Regla de Fases de Gbbs, el sstema tene 3 grados de lbertad. De esta forma, para tener defndo completamente el equlbro termodnámco del sstema basta con fjar, adconal a la temperatura y la presón, la concentracón de una de las fases. Las condcones de equlbro entre dos fases (a,b) de dos sustancas (1,2) son la gualdad de temperatura, presón y potencal químco. Las ecuacones resultantes de cada una de las gualdades permten calcular la concentracón de equlbro de las dos sustancas en cada una de las fases y ello permtrá entonces defnr la curva de equlbro líqudolíqudo (curva bnodal), la cual representa el límte entre las regones de mscbldad parcal líqudo-líqudo y la de mscbldad total. El estudo expermental de la extraccón líquda supone el uso de sstemas compuestos de al menos tres sustancas dferentes. Aunque las fases nsolubles son predomnantemente muy dstntas desde el punto de vsta químco, en la mayoría de los casos los tres componentes aparecen en cada fase (Treybal, 1980). En la sguente seccón se dscutrá el equlbro líqudo-líqudo en sstemas bnaros, ya que su estudo es de gran nterés para entender el comportamento entre sstemas ternaros y de más componentes. I.3 Equlbro líqudo-líqudo en sstemas bnaros S se consdera la mezcla de dos líqudo A y B a presón y temperatura constante, en cantdades n A y n B, el equlbro de fases se alcanza cuando G dsmnuya, es decr cuando la energía lbre de la mezcla sea menor que la energía lbre de los dos componentes puros. La energía lbre de mezcla G mezcla se defne como el cambo en la energía lbre del sstema al llevar a cabo el proceso de mezclar ambos líqudos, véase la ecuacón (1.1) (Prausntz et al., 2000). [ ] [ N G N G ] ( n A + nb ) G( A B) + (1.1) mezcla G = A A + B B

7 En la ecuacón (1.2) se observa por cada mol de mezcla mezcla G = G + (1.2) ( A B) [ χ AG A + χ BGB ] La G mezcla debe ser < 0 para que el equlbro de fases líqudo-líqudo tenga lugar. La G mezcla, a T y P constantes, puede varar con la concentracón del sstema (con la fraccón molar de sus componentes), como se representa en la fgura 1.1: Fgura 1.1. G mezcla de acuerdo con la concentracón del sstema. En (a) la G mezcla es negatva en todo el ntervalo de concentracón, por lo que ambos líqudos son totalmente mscbles a la presón y temperatura mplcadas. En (b) G mezcla >0, por lo que ambos líqudos son nmscbles, a la presón y temperatura de trabajo. En (c) se representa una stuacón más compleja. G mezcla <0, luego ambos líqudos son mscbles. Sn embargo, s la mezcla tene una concentracón entre x 1 y x 2, G mezcla es menor s el sstema se separa en dos fases, de concentracón x 1 y x 2 respectvamente. Se habla en este caso de que a la presón y temperatura de trabajo los líqudos son parcalmente mscbles. Los líqudos son mscbles en concentracón x menor que x 1 y x mayor que x 2, pero no en concentracón ntermedas. El hecho de que dos líqudos sean parcalmente mscbles a una temperatura y presón, y que en otras condcones sean totalmente mscbles o nmscbles, se debe a las

8 contrbucones de la entalpía y de la entropía al proceso de mezclado, por ejemplo el efecto que produce la varacón de la temperatura, véase las ecuacones (1.3) y (1.4) (Prausntz et al., 2000). mezcla H = H + (1.3) ( A B) [ χ AH A + χ B H B ] mezcla S = S + (1.4) ( A B) [ χ AS A + χ B S B ] Aunque se consdera que H mezcla y S mezcla varían poco con la temperatura s la varacón de ésta no es muy grande, una varacón de temperatura puede mplcar un cambo de sgno en G mezcla, pudéndose obtener dagramas de fase líqudo-líqudo dversos como se observa en la fgura 1.2, en los que la presón se mantene constante, y en los que se observan puntos de temperatura crítca nferor, temperatura nferor de cosolubldad (LCST), de temperatura crítca superor, temperatura superor de cosolubldad (UCST), o ambos, respectvamente (Prausntz et al., 2000). Fgura 1.2. Dagramas de fases líqudo-líqudo. I.4 Tpos de representacones gráfcas del equlbro líqudo-líqudo I.4.1 Coordenadas trangulares equláteras

9 Son amplamente utlzadas para descrbr gráfcamente las concentracones en sstemas ternaros. Una de las propedades de un trángulo equlátero es que la suma de las dstancas perpendculares desde cualquer punto dentro del trángulo hasta cualquera de los tres lados, es gual a la altura del trángulo. Por lo tanto, consderando la altura como la concentracón al 100% y las dstancas a los lados los porcentajes o fraccones de los tres componentes. Cada vértce del trángulo representa uno de los componentes puros, véase fgura 3. S se trazan líneas paralelas a los lados opuestos a cada vértce, es posble cuantfcar la cantdad de cada componente de la mezcla, véase fgura 1.3. El segmento AC, representa el porcentaje de C en la mezcla ; la dstanca CB, el porcentaje de B, y la dstanca BA, el porcentaje de A. Cualquer punto sobre un lado del trángulo representa una mezcla bnara de los compuestos relatvos a los extremos de dcho lado (Treybal, 1980). Fgura 1.3. Dagrama de equlbro ternaro ABC. Representacón de coordenadas equláteras. Los dagramas de fases líqudo-líqudo a P y T constantes para sstemas multcomponentes presentan dferentes tpos de comportamento y utlzándolos es posble conocer el número de pares parcalmente mscbles, así como la regón de mscbldad parcal que presente el sstema. Los dagramas de fases ternaros se representan comúnmente en coordenadas trangulares, aunque tambén pueden representarse en coordenadas rectangulares. Los tpos de dagramas de fases se clasfcan

10 de acuerdo al número de pares que son parcalmente mscbles en un sstema dado. En la fgura 1.4 se presentan los tpos de dagramas dependendo del número de pares parcalmente mscbles (Sorensen et al., 1979). Fgura 1.4 Clasfcacón de dagramas de fases del equlbro líqudo-líqudo para sstemas ternaros. En el presente trabajo se obtuveron dagramas del tpo I, es decr, solamente con un par de líqudos parcalmente mscbles. I.4.2 Sstemas multcomponentes

11 En el presente trabajo se estudaron equlbros de fases líqudo-líqudo de sstemas de cuatro componentes (cuaternaros). Para presentar completamente estos equlbros, se requere una gráfca trdmensonal, que se conoce como tetrahedro, en la fgura 1.5 se muestra un dagrama representatvo de la representacón en tetrahedro. En el presente trabajo, los dsolventes se sumaron para tener sstemas seudoternaros, con lo cual se puede trabajar fáclmente en dagramas trangulares. Fgura 1.5 Tetrahedro representatvo de un sstema cuaternaro. I.5 Sstemas de tres líqudos: un par parcalmente soluble Este sstema es el que se encuentra más comúnmente en la extraccón. El componente C se dsuelve completamente en A y B, pero A y B sólo se dsuelven entre sí parcalmente, hasta certo punto para generar solucones líqudas saturadas en L (rca en A) y en K (rca en B), como se observa en la fgura 1.5. Cuanto más nsolubles son los líqudos A y B, más cerca de los vértces del trángulo se encontrarán L y K. Una mezcla bnara J, en cualquer punto entre L y K, se separará en dos fases líqudas nsolubles de concentracones L y K. La curva LRPEK es la curva bnodal, la cual ndca el cambo en solubldad de las fases rcas en A y B al agregar C. Una mezcla fuera de esta curva representa una dsolucón homogénea de una fase líquda. Una mezcla dentro de la curva

12 forma dos fases líqudas nsolubles saturadas de composcones en equlbro, ndcadas por R (rca en A) y E (rca en B). La línea RE que une estas concentracones en el equlbro representa una línea de unón o de equlbro. Hay un número nfnto de líneas de unón en la regón de dos fases. El punto P, punto de plegue o crítco, representa una mezcla en equlbro con la msma composcón en ambas fases, es decr, es el punto de transcón entre la regón de mscbldad parcal y la regón de mscbldad total, a temperatura constante (Walas, 1985). Fgura 1.6. Sstema de tres líqudos con dos de ellos, A y B, parcalmente solubles. En el presente trabajo, los sstemas ternaros estudados se representan como se muestra en la fgura 1.7.

13 Fgura 1.7. Dagrama del equlbro líqudo-líqudo tpo I, para un sstema ternaro a temperatura constante. Las líneas de unón de las fases conjugadas preparadas en el presente trabajo no son funcón de la concentracón global del sstema, a una temperatura constante. Esto se muestra en la fgura 1.8.

14 Fgura 1.8 Línea de unón de un sstema ternaro. S se prepara un sstema con una concentracón global determnada, que se encuentre sobre la línea de unón entre los puntos RE, se obtenen valores de x 1, x 2 y x 3 de la fase del refnado (fase rca en metlcclohexano) y valores de x 1, x 2 y x 3 de la fase del extracto (fase rca en dsolvente). S se prepara otro sstema con una concentracón global dferente a la prmera, que se encuentre sobre la msma línea de unón entre los puntos RE, se obtenen los msmos valores de concentracón que en el prmer caso. Esta es la razón por la cuál las líneas de unón de las fases conjugadas preparadas en el presente trabajo no son funcón de la concentracón global del sstema. I.6 Efecto de la temperatura El aumento de solubldad a temperaturas altas nfluye en el equlbro ternaro, esto es, decrece el área de heterogenedad a temperaturas más altas. Tambén camban las pendentes de las líneas de unón con la varacón de la temperatura. En la fgura 1.9 se muestra el efecto de la temperatura en el equlbro de fases de sstemas ternaros (Treybal, 1980).

15 Fgura 1.9 Efecto de la temperatura en el equlbro de fases de sstemas ternaros. I.7 Efecto de la presón El efecto de presón, excepto a presones muy elevadas, es tan pequeño que generalmente no se toma en cuenta. Debe asegurarse que la presón se encuentre lo sufcentemente alta como para mantener un sstema completamente condensado, es decr, arrba de las presones de vapor de las solucones (Treybal, 1980). I.8 Eleccón del dsolvente Exste una ampla posbldad de elegr entre los líqudos que se van a utlzar como dsolventes para las operacones de extraccón. Es poco probable que cualquer líqudo partcular exhba todas las propedades que se consderan deseables para la extraccón, por lo tanto se deben consderar las sguentes característcas antes de tomar la decsón: selectvdad, coefcente de dstrbucón, nsolubldad del dsolvente, recuperabldad, densdad, tensón nterfacal, reactvdad químca, vscosdad, presón de vapor, toxcdad, dsponbldad en el mercado y punto de congelamento (Walas, 1985).

16 I.9 Coefcente de dstrbucón La operacón untara donde se aplca el estudo expermental del equlbro de fases líqudo-líqudo es la extraccón líqudo-líqudo, la cual consste en la separacón de los componentes de una mezcla líquda, medante el contacto con otro líqudo. La concentracón del soluto en ambas fases depende del equlbro líqudo-líqudo (Treybal, 1980). El coefcente de dstrbucón es una medda cuanttatva que ndca la dstrbucón del soluto en las dos fases en equlbro. Los datos expermentales de la dstrbucón de un soluto entre dos fases líqudas en equlbro usualmente son reportados en térmnos de coefcente de dstrbucón. En la ecuacón (1.5) se muestra el cálculo del coefcente de dstrbucón. concentracón del soluto en la fase I x k = = (1.5) concentracón del soluto en la fase II x I 1 II 1 Donde la fase I es la rca en metlcclohexano y la fase II la rca en dsolvente. En el capítulo III se presentan los resultados de los coefcentes de dstrbucón de cada línea de reparto de los sstemas estudados. I.10 Selectvdad La efectvdad del dsolvente, N-formlmorfolna o mezcla de éste con tretlenglcol, para separar los componentes de una solucón de metlcclohexano y tolueno, puede medrse comparando la relacón entre tolueno y metlcclohexano en la fase rca en N- formlmorfolna con la msma relacón en la fase rca en metlcclohexano en el equlbro. La relacón resultante proporcona el factor de separacón o selectvdad. (Treybal, 1980)

17 Para el presente trabajo la selectvdad se representa medante β. Consderando que la fase nferor (rca en dsolvente) y la fase superor (rca en metlcclohexano) son las fases en equlbro, entonces: ( fraccón peso de tolueno en fase nf eror) ( fraccón peso de metlcclohexano en fase nf eror) ( fraccón peso de tolueno en fase sup eror) ( fraccón peso de metlcclohexano en fase sup eror) β = (1.6) La ecuacón 1.6 representa la selectvdad de un sstema de equlbro de fases líqudolíqudo ternaro. En el capítulo III se presentan los resultados de la selectvdad de los sstemas ternaros estudados. I.11 Punto de Plegue Se conoce como punto de plegue a la últma de las líneas de unón y el punto en donde se encuentran las curvas de solubldad del lado del refnado (fase rca en metlcclohexano) y la fase del extracto (fase rca en dsolvente), generalmente no se encuentra en el valor máxmo de tolueno sobre la curva de solubldad por lo que es necesaro calcularlo. En este trabajo se descrben dos métodos gráfcos para dervar el punto de plegue o punto crítco de los sstemas ternaros y seudoternaros estudados. El prmero se lustra en la fgura 1.10.

18 Fgura 1.10 Método gráfco para dervar el punto de plegue o punto crítco. El método gráfco para dervar el punto de plegue representado en la fgura 1.10 consste en trazar una línea paralela al lado tolueno N-formlmorfolna desde el punto que representa una línea de unón del lado del refnado. Posterormente, se traza una línea paralela al lado tolueno- metlcclohexano desde el punto que representa la línea de unón del lado del extracto. El punto de nterseccón de estas dos líneas determna un punto de tendenca haca el punto de plegue. Con todas las líneas de unón se trazan puntos de tendenca, sguendo estos puntos hasta encontrar la curva bnodal se determna el punto de plegue. (Treybal, 1980). El segundo método para dervar el punto de plegue o punto crítco se muestra en la fgura 1.11.

19 Fgura 1.11 Método gráfco para dervar el punto de plegue o punto crítco. El método gráfco para dervar el punto de plegue representado en la fgura 1.11 consste en trazar una línea paralela al lado tolueno N-formlmorfolna desde el punto que representa una línea de unón del lado del refnado. Posterormente, se traza una línea paralela al lado metlcclohexano- N-formlmorfolna desde el punto que representa la línea de unón del lado del extracto. El punto de nterseccón de estas dos líneas determna un punto de tendenca haca el punto de plegue. Con todas las líneas de unón se trazan puntos de tendenca, sguendo estos puntos hasta encontrar la curva bnodal se determna el punto de plegue. (Treybal, 1980). En el presente trabajo se utlzó el método descrto en la fgura 1.11 para dervar el punto de plegue. Consderando que los sstemas cuaternaros estudados en el presente trabajo se manejaron como seudoternaros, el proceso de dervacón del punto plegue es el msmo que el utlzado para los sstemas ternaros.

20 En el capítulo III se muestran los resultados del punto de plegue o punto crítco para los sstemas estudados en el presente trabajo. En el Capítulo II del presente trabajo se menconan los métodos expermentales para determnar los dagramas de fases ternaros y seudoternaros estudados, el método para determnar las curvas de calbracón y la metodología para realzar los análss estadístcos de las calbracones.

21

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO

PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO PROCESOS DE SEPARACION UTILIZANDO EQUIPOS DE ETAPAS DE EQUILIBRIO Concepto de equlbro físco Sstema Fase Componente Solubldad Transferenca Equlbro Composcón 2 Varables de mportanca en el equlbro de fases:

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

Propiedades Termodinámicas de Equilibrio. Determinación de estado de equilibrio de fases.

Propiedades Termodinámicas de Equilibrio. Determinación de estado de equilibrio de fases. UTN Facultad Regonal Rosaro Cátedra: Integracón IV Año 008 Propedades Termodnámcas de Equlbro. Determnacón de estado de equlbro de fases.. Introduccón El modelo de smulacón de un proceso químco consste

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

EFECTO DE LA TEMPERATURA SOBRE LOS COEFICIENTES DE ACTIVIDAD DE AMINOÁCIDOS EN SOLUCION ACUOSA MARIA EUGENIA GONZALEZ JIMÉNEZ

EFECTO DE LA TEMPERATURA SOBRE LOS COEFICIENTES DE ACTIVIDAD DE AMINOÁCIDOS EN SOLUCION ACUOSA MARIA EUGENIA GONZALEZ JIMÉNEZ EFECTO DE LA TEMPERATURA SOBRE LOS COEFICIENTES DE ACTIVIDAD DE AMINOÁCIDOS EN SOLUCION ACUOSA MARIA EUGENIA GONZALEZ JIMÉNEZ UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE QUÍMICA

Más detalles

Conceptos fundamentales de Termodinámica

Conceptos fundamentales de Termodinámica CAPÍTULO Conceptos fundamentales de Termodnámca ESQUEMA DEL CAPÍTULO. Qué es la Termodnámca y por qué es útl?. Defncones báscas necesaras para descrbr los sstemas termodnámcos.3 Termometría.4 Ecuacones

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

ALGORITMO ETAPA A ETAPA PARA LA SIMULACIÓN DE CASCADAS DE EXTRACCIÓN EN FASE LÍQUIDA APLICANDO EL MODELO DE EQUILIBRIO

ALGORITMO ETAPA A ETAPA PARA LA SIMULACIÓN DE CASCADAS DE EXTRACCIÓN EN FASE LÍQUIDA APLICANDO EL MODELO DE EQUILIBRIO evsta IA, I 794-237 úmero 2, p. 39-58. Dcembre 2009 scuela de Ingenería de Antoqua, Medellín (Colomba) ALGOITMO TAPA A TAPA PAA LA IMULACIÓ D CACADA D XTACCIÓ A LÍQUIDA APLICADO L MODLO D QUILIBIO César

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Adsorción de agua en alimentos. Isoterma de adsorción de Guggenheim, Anderson y de Boer (GAB). Josefina Viades Trejo.

Adsorción de agua en alimentos. Isoterma de adsorción de Guggenheim, Anderson y de Boer (GAB). Josefina Viades Trejo. Adsorcón de agua en almentos. Isoterma de adsorcón de Guggenhem, Anderson y de Boer (GAB). Josefna Vades Trejo. Semnaro de Investgacón: Fenómenos de Superfce, Postgrado en Cencas Químcas, Unversdad Naconal

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Lección: Disoluciones

Lección: Disoluciones Leccón: Dsolucones TEMA: Introduccón 1 Adolfo Bastda Pascual Unversdad de Murca. España. I. Caracterzacón de las dsolucones.......2 I.A. Composcón de una dsolucón....... 2 I.B. Magntudes molares parcales.........

Más detalles

3. ANALISIS DE UNIDADES SIMPLES

3. ANALISIS DE UNIDADES SIMPLES 28 3. ANALISIS DE UNIDADES SIMPLES Por undades smples se entenden aquellas que desarrollan operacones de transformacón físca o químca de la matera y que se analzan a partr de los prncpos de conservacón

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

aad DE LAS PALMAS DE GRAN CANARIA

aad DE LAS PALMAS DE GRAN CANARIA aad DE LAS PALMAS DE GRAN CANARIA Departamento de Químíca TESIS DOCTORAL DETERMINACIÓN Y ANÁLISIS DE PROPIEDADES TERMOFÍSICAS DE SISTEMAS TERNARIOS CARBONATO + ALCOOL + ALCANO Y SUS CONSTITUYENTES BINARIOS

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

OPERACIONES BÁSICAS. (Notas de clase) Separadores flash

OPERACIONES BÁSICAS. (Notas de clase) Separadores flash OPERACIONE BÁICA (Notas de clase eparadores flash Profesor Asocado Andrés oto Agüera Curso 2003-2004 Operacones Báscas Balances de matera y energía Caracteracón del estado de equlbro termodnámco de un

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Ingeniería de Reacciones

Ingeniería de Reacciones DEFINICIÓN La Ingenería de las Reaccones Químcas es la rama de la Ingenería que estuda las reaccones químcas a escala ndustral. Su objetvo es el dseño y funconamento adecuado de los reactores químcos.

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS CAPACIDAD DE LAS OJAS DE CÁLCULO EN EL ANÁLISIS Y OPIMIZACIÓN DE PROCESOS Y SISEMAS A. Rvas y. Gómez-Acebo Departamento de Ingenería Mecánca-Área de Ingenería érmca y de Fludos ECNUN - Escuela Superor

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

SEPARACIÓN DE MEZCLAS BINARIAS GASEOSAS EN UN ADSORBEDOR DE LECHO FIJO

SEPARACIÓN DE MEZCLAS BINARIAS GASEOSAS EN UN ADSORBEDOR DE LECHO FIJO REPÚBLICA BOLIVARIAA DE VEEZUELA UIVERSIDAD DEL ZULIA FACULTAD DE IGEIERÍA DIVISIÓ DE POSTGRADO PROGRAMA DE POSTGRADO E IGEIERÍA DE GAS SEPARACIÓ DE MEZCLAS BIARIAS GASEOSAS E U ADSORBEDOR DE LECHO FIJO

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

TERMODINÁMICA DE SOLUCIONES.

TERMODINÁMICA DE SOLUCIONES. Slva érez Casas Termodnámca de Solucones TRMODINÁMIC D SOLUCIONS. Una dsolucón es una mezcla homogénea de especes químcas dspersas a escala molecular. Una dsolucón puede ser gaseosa, líquda o sólda. Se

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA INCORPORACION DE LOS CONJUNTOS DIFUSOS PARA MODELAR INCERTIDUMBRES EN LOS SISTEMAS ELECTRICOS DE POTENCIA

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

METODOS VOLTAMPEROMETRICOS

METODOS VOLTAMPEROMETRICOS Métodos Voltamperométrcos 2 Tema 9 METODOS VOLTAMPEROMETRICOS Los métodos voltamperométrcos ncluyen un conjunto de métodos electroanalítcos en los que la nformacón sobre el analto se obtene a partr de

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

UNIDAD 4. PRESUPUESTO DE VENTAS.

UNIDAD 4. PRESUPUESTO DE VENTAS. UNIDAD 4. PRESUPUESTO DE VENTAS. OBJETIVOS. 1. Dar a entender al estudante la mportanca prmordal del presupuesto de ngresos dentro de una empresa u organzacón. 2. Enseñar lo que realmente comprende un

Más detalles