CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CALCULO DIFERENCIAL E INTEGRAL II. Figura 1"

Transcripción

1 TEMA (Últma modcacó CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El cocete cremetal será : = ( + - ( = Fgura =+ e el lmte lm lm ( + - ( S este límte este, es por decó, la dervada de co respecto a e el puto = Grácamete, la dervada de = ( e el puto = represeta la pedete de la tagete geométrca a la curva = ( e el puto correspodete a =, e la gura es la tg (. S e lugar de u puto jo = se toma u puto geérco, la dervada de = ( es a su vez ua ucó de. d = d ( = ' ( d d Veamos ahora el cocepto de dervada para ucoes de varas varables. Comecemos co ucoes de dos varables z = (, ucó de las varables e Cosderemos u puto jo (a, b perteecete al domo de la ucó. Formaremos los cremetos de z respecto de e z = ( a +,b - (a,b z = ( a,b + - (a,b

2 El prmero es el cremeto parcal que tee la ucó cuado se cremeta la varable, metras que la varable permaece costate e =b El segudo es el cremeto parcal que tee la ucó cuado se cremeta la varable, metras que la varable permaece costate e = a. Cosderamos los cocetes cremetales. z (a +, b- (a, b z (a, b + - (a, b Cosderado el lmte de estos cocetes cremetales cuado los cremetos de las varables e tede a cero tedremos : z lm lm ( a +,b - ( a, b z lm lm (a,b + - (a,b S estos lmtes este, se llama dervadas parcales de la ucó co respecto a co respecto a e el puto (a, b. Se represeta de la sguete maera : lm z ( a +,b - ( a, b (a,b lm (a,b = (a,b. a b z (a,b + - (a, b (a, b lm lm (a, b = (a,b. a b que so úmeros, a que (a, b es u puto jo. S se cosdera u puto geérco (, tedremos : lm z lm ( +, - (, (, (, Z (, lm z lm (, + - (, (, (, = Z (, Que so uevas ucoes de (, No debe terpretarse los símbolos (, represeta los lmtes dcados. (, como cocetes pues so símbolos que E detva para calcular la dervada parcal de z = (, co respecto a se cosdera a como ua costate se derva como ucó de solamete.

3 Para calcular la dervada parcal de z = (, co respecto a se cosdera a como ua costate se derva como ucó de solamete. INTERPRETACION GEOMÉTRICA La ecuacó z = (, tee como represetacó gráca ua superce e el espaco z Al mateer = o costate, metras que vara, la ecuacó z = (, o es la ecuacó de la curva Ro que resulta de la terseccó de la superce z = (, el plao = o Por lo tato la dervada parcal de la ucó respecto de os represeta la pedete de la tagete a la curva e el puto (, o. Por ejemplo cuado = o la tagete de es gual a Z ( o,o Para otro valor costate de = obteemos otra curva R cua ecuacó es z=(, que se obtee como terseccó de la superce z = (, co el plao =. Es decr al varar se obtee las dsttas curvas que so paralelas al plao z.

4 La terpretacó geométrca de la dervada parcal co respecto a, es la msma que e el caso ateror, dode las curvas que se obtee so las terseccoes de la superce z = (, co los putos = Cte. Así por ejemplo, la curva correspodete a = o es z = (o, la dervada de la ucó ( o, os da el valor de la pedete de la recta tagete geométrca a la curva z = (o, e u puto de la msma. DERIVADAS PARCIALES PARA FUNCIONES DE N VARIABLES. Sea = ( ; ; ;... ua aplcacó R R sea hj el cremeto de la varable j. Formemos el cremeto de la ucó cuado la varable j se cremeta e hj: j = ( ; ; ;... j + hj;... - ( ; ;... El cocete cremetal será: j ( ; ;... j hj;... ( ; ;... j hj hj Cosderado el límte para hj será: lm j hj hj hj j j lm h ( ; ;... ;... ( ; ;... ( hj j j Habrá dervadas parcales prmeras, correspodetes a los valores que puede tomar j. DEFINICION: Ua ucó es dervable cuado este las dervadas parcales co respecto a cada ua de las varables depedetes. 4

5 RELACION ENTRE LA DERIVABILIDAD Y LA CONTINUIDAD Demostraremos u teorema que relacoa la cotudad de ua ucó co su dervabldad. Para demostrarlo, es coveete recordar el teorema del valor medo o de Lagrage o del cremeto to, para ucoes de ua varable. S la ucó = ( es cotua e el tervalo [a, b] co dervada úca (ta o ta e todo puto de (a, b, ha por lo meos u puto teror, / ( b ( a b a ( (Lagrage (a a ( b (b o sea: =. ( llamado = h será b - a = h ; b = a + h de dode : ( a h ( a h ( a h co < < a que está compreddo etre a b. TEOREMA S la ucó ( es dervable e u recto S además las ( dervadas parcales prmeras so acotadas e S, etoces ( es cotua e S. Aclaracó : Ua ucó ( es acotada e u recto S, cuado es posble hallar u úmero M o ulo to, tal que el valor absoluto de la ucó se matega e ese recto, sempre meor que M, o sea ( M; ( S DEMOSTRACION Demostraremos el teorema para ucoes de dos varables depedetes, dado que su geeralzacó es medata. El cremeto total de la ucó cuado e se cremeta e h k, respectvamete es: (, ( h; k ( ; Sumamos restamos ( + h, luego: ( h; k ( h; ( h; (; ( El prmer paso es cosderar que: ( h; k ( h; k. ( h;. k e dode < < ( h; ( ; h. ( h; co < < 5

6 Reemplazado estas ecuacoes e ( se tee : k ( h, k h ( h; { co ' ' o sea, cosderado valor absoluto: luego, como k ( h; k h ( h; so acotadas será: ( h; k M ( h; M e cosecueca, h k M h M o sea que cuado co lo que se demuestra que Z = (, es cotua, a que su cremeto tede a cero cuado los cremetos de las varables depedetes tede a cero. De este teorema se desprede que o basta co que ua ucó (, sea dervable e u recto, para garatzar su cotudad, so que además es ecesaro que las dervadas parcales sea acotadas e dcho recto. k DERIVADAS PARCIALES DE ORDEN SUPERIOR Cosderamos ua ucó Z=(; de la cual hemos dedo las dervadas parcales de prmer orde. (; lm h ( h; (; h (; Z (; (; (; k (; lm (; Z (; h k que so e geeral uevas ucoes de,. S estas ucoes admte a su vez dervadas, las uevas ucoes así dedas se llama DERIVADAS SEGUNDAS de (, ; las dervadas de las dervadas segudas se llama dervadas terceras de (, ;etc. Dada la ucó Z = (, teemos cuatro dervadas parcales segudas: (; (; Z Z (; (; Z (; (; (; Z (; (, (; Z 6

7 Habrá ocho dervadas terceras, correspodetes a la dervacó co respecto a e de las cuatro dervadas segudas: ; ; ; ; ; ; ; E geeral para ua ucó Z = (, de dos varables depedetes ha r dervadas de orde r, pero como veremos que bajo certas codcoes puede haber alguas que so guales etre sí, podemos armar que e geeral el úmero de dervadas de orde r dsttas, es meor que el ctado. Este u teorema que determa las codcoes bajo las cuales (; (; ; úcamete eucaremos el msmo: TEOREMA DE SCHWARTZ S (; (; este e u etoro del puto (; s (; es cotua e dcho etoro, etoces (; este es gual a (; COROLARIO DE BONET S (; (; so cotuas e u etoro del puto (, etoces (; (;.Estas hpótess clue a las de Schwartz, es decr so ua cosecueca de ellas. 7

8 DIFERENCIABILIDAD Recordemos el cocepto de derecabldad para ucoes de ua varable depedete; = (. Decó: la ucó = ( es derecable e u puto s está deda e u etoro del puto su cremeto = ( +-( se puede epresar de la sguete maera: =A. +. = A. + o ( dode. = o ( es u tésmo de orde superor a, es decr que cuado mplca. = o (. Se llama derecal de la ucó a la parte leal e o sea d=a.. A depede de pero o de. Veamos que represeta A: de =A. +. = (A + o sea que A + e el límte para será: lm lm (A lm A lm A a que A o depede de cuado o sea lm A ( d d o sea d. ( Grácamete vemos que d = tg. pero la tg represeta la dervada de la ucó = ( e el puto, luego d = (. S = d =d ( =. es decr: d =. d Cosderemos ua ucó de dos varables Z= (;. Decó: Ua ucó z = (, es derecable e u puto (,, s está deda e u etoro del puto (, su cremeto total (, ( ; ( ; se puede epresar como A. B... ( dode cuado respectvamete. Sedo d ( = A. + B. Determemos ahora cuato vale A B. Como so depedetes, podemos hacer =, co lo cual obteemos el cremeto parcal de la ucó respecto de. A (A de dode A lm lm A + lm A 8

9 (; lm A (; Z (; Hacemos ahora = co lo cual obteemos el cremeto parcal de la ucó cuado se cremeta la varable, es decr: B (B B lm lm B lm B (; B (; Z (; reemplazado los valores e ( tedremos: (; (;.. o sea: (; (; d(,.. ( E partcular cuado Z = (; = dz = d =. cuado Z= (;= dz=d=. o sea: d(, (; (;.d.d Z.d Z.d (;.d (;.d ( Las epresoes ( ( recbe el ombre de Epresó aalítca de la derecal. Es mu mportate observar que z =(, depede de las varables e metras que su derecal d.d. d depede de cuatro: ; ; d ; d Por lo tato para calcular la derecal de ua ucó e u puto, o solo es ecesaro dar las coordeadas del puto (,, so també el valor de los cremetos =d =d. Cosderemos ahora ua ucó de tres varables depedetes u=(;;z. Decó: Se dce que u=(;;z es derecable e u puto P(;;z s está deda e u etoro del puto ctado su cremeto total =u=(+;+;z+z-(;;z se puede epresar: (,,z A. B. C. z... z dode A, B C depede del puto (,, z pero o de ; z ; ; co ;, z respectvamete. Se llama derecal total de la ucó a d du A. B. C. z 9

10 Se demuestra que d(,,z A (; ;z ;B (; ;z ;C (; ;z; z o sea: (; ;z.d Derecal de ua ucó de varables. (; ;z.d (; ;z;.dz z S = ( ; ;... es derecable e u puto; s está deda e u etoro del puto su cremeto total se puede epresar: A. A.... A e dode la derecal de la ucó será: d A. A.... A. co A depededo de las coordeadas del puto pero o de los los co respectvamete. A ( (; ;...; luego : d.d Relacó etre la drerecabldad, dervabldad cotudad. Demostraremos dos teoremas que relacoa la cotudad, dervabldad derecabldad de ua ucó e u puto. Haremos la demostracó para ua ucó de dos varables depedetes. Teorema S ua ucó z =(; es derecable e u puto (, etoces es cotua dervable e ese puto. Demostracó: Por ser derecable la ucó; su cremeto total se puede epresar: (; (; A. B... (4 sedo A B Por lo tato al estr las dervadas parcales prmeras la ucó es dervable co lo que se demuestra la prmera parte del teorema. E (4 vemos que s o sea que z=(; es cotua e (; a que su cremeto cuado tede a cero los cremetos de las varables depedetes. Co esto queda demostrado este teorema. El recíproco de este teorema o es certo, es decr que o basta que ua ucó sea cotua dervable e u puto, para garatzar que sea derecable. A cotuacó demostraremos u teorema que epresa las codcoes ecesaras sucetes para que ua ucó sea derecable. Teorema

11 S ua ucó z = (; es cotua dervable tee sus dervadas parcales cotuas e u etoro del puto P (;, etoces es derecable e dcho puto. Demostracó: El cremeto total de la ucó es: (, ( ; (; S sumamos restamos al segudo membro ( + ; será: ( ; ( ; ( ; (; Aplcado Lagrage. ( ;.. (. ; (5 dode: Pero por hpótess so cotuas e ; por lo tato se puede escrbr: ( ;. (; (. ; (; [ (; ]. [ (; co s co s reemplazado e (5 será: ]. (;. (;... pero esto últmo os dca que la ucó z =(, es derecable e P(, co lo cual queda demostrado el teorema. Covecó: Llamaremos: C al cojuto de ucoes cotuas. C al cojuto de ucoes cuas dervadas prmeras este so cotuas. C al cojuto de ucoes cuas dervadas segudas este so cotuas. C r al cojuto de ucoes cuas dervadas de orde r este so cotuas. Derecales Sucesvas Cosderemos el caso de ucoes de dos varables : d (;.d (;.d e la cual d depede de ; ; d; d. S damos valores jos a d d la derecal depederá úcamete de e, cosderada como ua ucó de estas dos varables, podrá teer a su vez ua derecal que llamaremos derecal seguda, la que dcamos por d d[d] Podemos eteder estos coceptos a ucoes de varables, para el caso de derecales de orde, lo que dcaremos por: d d[d ] d[d(d];d d[d ]... d d[d 4 S (; C estrá la derecal seguda (teorema. Por haber supuestos jos d d será: ]

12 d (, d[d(, ] d[ (;.d] d[ d[ (;.d] (;.d (;.d] por se d = cte d = cte será: d (, {d[ (;.d.d (; ]}.d {d[ (;.d.d (; ]}.d (;.d.d d (,. d. d. d. d (;.d.d Llamaremos operador derecacó a la epresó d.d. d Podemos calcular su cuadrado e orma smbólca: d (.d.d.d.d.d.d Aplcado el operador derecacó a ua ucó (; obteemos: d(, (.d.d. (; (; (;.d.d La derecal prmera se obtee aplcado el operador derecacó a la ucó (;. Aplcado ahora el operador al cuadrado, obtedremos la derecal seguda: d (, (. d. d. ( ;. d. d. d. d S ( ; C estrá la derecal tercera; de la msma orma ateror se verá que d se obtee aplcado el operador derecacó elevado al cubo: d (, (.d.d. (; E geeral s k (; C será:.d.d.d.d.d.d d k (.d.d k. (;

13 Para Fucoes de Tres Varables..d.dz z Sea u (;;z la du.d.d. dz el operador derecacó será: d.d z k Supoedo u C será: k d u (.d.d.dz z Para varables será: =( ; ;...; d k. (; ; z d d d ( d. S ( ; ;...; C k será: d k ( [.d ] k. ( ; ;...; DERIVADA DIRECCIONAL Cosderemos e prmer térmo el caso de ua ucó Z=(; de dos varables depedetes. Hemos dedo las dervadas de (; e u puto ( ; cuado el puto (; tede a ( ; paralelamete al eje. ( ; ( ; ( ; lm cuado el puto (; tede al ( ; paralelamete al eje : (; (; (; lm Ahora vamos a der la dervada de z = (; e ua dreccó cualquera, determada por sus coseos drectores; cos ; cos. S z = (; es derecable e el puto ( ; ; cosderado u cremeto e la dreccó de su cremeto parcal, se puede escrbr:

14 (;. (;... dode co Dvdedo por se tee: ( ;. ( ;... pero cos; cos luego: ( ;.cos ( ;.cos.cos. cos e el lím : lm lm [ cos cos.cos.cos ] Cuado ; por lo tato luego: lm cos cos e ( ; 4

15 ( ; ( ; cos cos Demostraremos que las dervadas parcales de (; respecto de e so casos partculares de las dervadas dreccoales. E eecto s = será luego: ( ; ( ; o ( ;.cos ( ;.cos ( ; ( ; ( ;. ( ;. Hacedo será = luego: ( ; ( ; ( ;. ( ;. ( ; Para varables: = ( ; ;...;.cos.cos....cos ( ;.cos INTERPRETACION GEOMETRICA DE LA DIFERENCIAL TOTAL PLANO TANGENTE S e lugar de cosderar la derecal de la ucó cosderamos la sguete epresó: z z (;.( (;.( obteemos la ecuacó de u plao llamado plao tagete a la superce e ;. Geométrcamete se caracterza por el hecho que e el etoro de ( ; las ordeadas de z de dcho plao dere de las de la superce e u tésmo de orde superor a Es mu mportate que quede claramete establecdo lo sguete:. La codcó ecesara sucete para que la superce z=(; admta plao tagete e u puto es que sea derecable e ese puto. La epresó aalítca de la derecal e el puto se coverte e la ecuacó cremetal 5

16 z ; ; z (.( (.( del plao tagete susttuedo las derecales por los cremetos. El plao tagete, cotee las rectas tagetes a todas las curvas plaas o alabeadas de la superce que pase por el puto cosderado admta tagete e él. H. T P. H HM=HL+LM sedo HL=H T LM = H T luego HM = H T + H T H. T ( ; Tg( H. T Tg(. d H. T Tg(. d. d d H.T H.T ( ; Tg(.d H.T Tg(.d HT Tg(.d. d H.P d ( ; ( HM.d.d dz Derecal de la ucó e el puto P( o, o = dz = HM = H T + H T 6

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

Transparencias de clase

Transparencias de clase Trasparecas de clase Dada ua tabla de datos se ha de ecotrar ua ucó que tome los valores requerdos e los putos dados; e el caso que os ocupa la ucó buscada será de carácter polómco Teorema: El polomo de

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

SISTEMAS DE ECUACIONES NO LINEALES

SISTEMAS DE ECUACIONES NO LINEALES SISTEMAS DE ECUACIONES NO INEAES Capítulo 7 Sstemas de ecuacoes o leales c Elzabeth Vargas 7 INTRODUCCIÓN os métodos teratvos para resolver ua ecuacó o leal se puede eteder para ecotrar la solucó de u

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

SOLUCIONES SEGUNDA HOJA EJERCICIOS 1º BACHILLER CIENCIAS. Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo:

SOLUCIONES SEGUNDA HOJA EJERCICIOS 1º BACHILLER CIENCIAS. Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo: SOLUCIONES SEGUNDA HOJA EJERCICIOS º BACHILLER CIENCIAS Ejercco º.- a) Calcula, utlado la decó de logartmo: log log log Halla el valor de, aplcado las propedades de los logartmos: log log log Solucó: a)

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

Problemas discretos con valores iniciales

Problemas discretos con valores iniciales Problemas dscretos co valores cales Gustavo Adolfo Juarez Slva Iés Navarro El presete trabajo pretede dfudr problemas dscretos co valores cales (e adelate PVID), a partr de ecuacoes e dferecas leales co

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Interpolación polinómica.

Interpolación polinómica. 5 Iterpolacó polómca Itroduccó E muchas ocasoes e dferetes ramas de la geería, a la hora de resolver u problema, los datos de que se dspoe se ecuetra e tablas, como por ejemplo tablas estadístcas E la

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector.

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector. Comportameto Mecáco de Sóldos Capítulo II. Itroduccó al aálss tesoral. Itroduccó al aálss tesoral esores Es aquella catdad físca que después de ua trasformacó de coordeadas (que obedezca certas reglas),

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2010 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES.

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2010 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. EJERCICIO a) ( putos) Racoalce smplfque la fraccó. 8 8 b) ( putos) Determe los coefcetes de la ecuacó 3 a b

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Po tres ejemplos de úmeros reales que o sea racoales, y otros tres ejemplos de úmeros reales que o sea rracoales. Respuesta aberta. Tres úmeros reales que o sea racoales:,

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices Tema V DIAGONALIZACIÓN POR TRANSFORMACIONES DE SEMEJANZA Objetvos Presetar los coceptos de autovalor y autovector, los cuales tee gra mportaca e las aplcacoes práctcas (tato es así, que podría decrse que

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

Expectativas del Mercado y Creación de Valor en la Empresa

Expectativas del Mercado y Creación de Valor en la Empresa 2d teratoal Coferece o dustral Egeerg ad dustral Maagemet X Cogreso de geería de Orgazacó September 3-5, 28, Burgos, Spa Expectatvas del Mercado y Creacó de Valor e la Empresa elpe Ruz López 1, Cáddo Barrea

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E wwwovauedes/webpages/ilde/web/dexhtm e-mal: mozas@elxuedes TEMA PROAILIDAD SUCESOS Exste feómeos o expermetos que, repetdos e détcas codcoes, sempre proporcoa el msmo resultado, a los que llamaremos determstas,

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN 0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordacó de Cecas Computacoales - INAOE Matemátcas Dscretas Cursos Propedéutcos 0 Cecas Computacoales INAOE Dr. Erque Muñoz de Cote jemc@aoep.m http://ccc.aoep.m/~jemc Ofca 80 Dapostvas basadas e prevas

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2013 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES.

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2013 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 01 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO 1 a) (5 puto) Racoalce la epreoe 5 8 b) (5 puto) Halle el cojuto de olucoe de la ecuacó 5 8 EJERCICIO

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

Problemas de Polímeros. Química Física III

Problemas de Polímeros. Química Física III Problemas de Polímeros Químca Físca III 7..- Del fraccoameto de ua muestra de u determado polímero se obtuvero los sguetes resultados: Fraccó º, g 5, g/mol,75,6,886,89,,75,57,56 5,9,68 6,8,8 7,55,5 8,6,9

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

Incertidumbre de las medidas.

Incertidumbre de las medidas. Icertdumbre de las meddas. Al realzar el proceso de medcó, el valor obtedo y asgado a la medda dferrá probablemete del valor verdadero debdo a causas dversas, algua de las cuales ombraremos más adelate.

Más detalles

Unidad 2. Reactores Continuos

Unidad 2. Reactores Continuos Reactores Químcos: Udad Udad Reactores otuos Reactores cotuos so aquellos e los cuales, de maera cotua, se almeta los reactvos y també, de maera cotua se extrae los productos Detro de esta clasfcacó, de

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) Oetvos El alumo coocerá aplcará y comparará alguos métodos de terpolacó umérca de ucoes. Al al de esta práctca el alumo podrá:. Oteer ua ucó que cotega u couto dado de putos e u plao utlzado los métodos

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental.

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental. RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN Los métodos de regresó se usa para estudar la relacó etre dos varables umércas. Este tpo de problemas aparece co frecueca e el

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CPIULO 2º FUNCIONES DE VECORES Y MRICES_ Ig. Dego lejadro Patño G. M.Sc, Ph.D. Fucoes de Vectores y Matrces Los operadores leales so fucoes e u espaco vectoral, que trasforma u vector desde u espaco a

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor árbara Cáovas Coesa Estadístca Descrptva 1 Cálculo de Probabldades Trata de descrbr y aalzar alguos caracteres de los dvduos de u grupo dado, s extraer coclusoes para u grupo mayor Poblacó Idvduo o Udad

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

J O. = r i. por el vector unitario k cuya dirección y sentido son los del semieje positivo OZ:

J O. = r i. por el vector unitario k cuya dirección y sentido son los del semieje positivo OZ: aletos ísca para Cecas e Igeería 1.1 1.1 Cocepto de sóldo rígdo Al comeo del estudo de la Mecáca, vmos que u sóldo rígdo es u caso partcular de u sstema de partículas materales que se caractera por ser

Más detalles

QUIMICA FISICA I QUIMICA FISICA BIOLOGICA TEMA 2 POTENCIAL QUIMICO PROPIEDAD MOLAL PARCIAL

QUIMICA FISICA I QUIMICA FISICA BIOLOGICA TEMA 2 POTENCIAL QUIMICO PROPIEDAD MOLAL PARCIAL QUIMICA ISICA I QUIMICA ISICA BIOLOGICA TEMA POTENCIAL QUIMICO PROPIEDAD MOLAL PARCIAL 07 BIBLIOGRAIA S. Glasstoe, Termodámca para Químcos, Edtoral Agular, Madrd, España, 960. I. N. Leve, scoquímca, Edtoral

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

En consecuencia: Z=f(x,y)=f[ x(t) ; y(t) ]= F(t) (1) que resulta en definitiva una función de la variable t.la llamaremos Función Compuesta de t.

En consecuencia: Z=f(x,y)=f[ x(t) ; y(t) ]= F(t) (1) que resulta en definitiva una función de la variable t.la llamaremos Función Compuesta de t. TEMA 4 (Últma mocacó 8-7-05) CALCULO DIFERENCIAL E INTEGRAL II FUNCIONES COMPUESTAS DE UNA VARIABLE INDEPENDIENTE. Coseramos e prmer térmo a có e os arables Z=(;) spogamos, aemás qe é o so arables epeetes,

Más detalles

TEMA24. Funciones en forma de tabla. Interpolación y extrapolación

TEMA24. Funciones en forma de tabla. Interpolación y extrapolación TEMA 4. Fucoes e orma de Tabla terpolacó etrapolacó TEMA4. Fucoes e orma de tabla. Iterpolacó etrapolacó. Itroduccó. Fucó e orma de tabla. La Naturaleza es umérca matemátca así umerosos eómeos aturales

Más detalles

Métodos Numéricos TEMA 8: DERIVACION E INTEGRACION Numérica

Métodos Numéricos TEMA 8: DERIVACION E INTEGRACION Numérica Métodos Numércos TEMA 8: DERIVACION E INTEGRACION Numérca DIFERENCIACIÓN NUMÉRICA Polomo de terpolacó es aplcable para la resolucó de problemas de derecacó, e geeral y el cálculo de dervadas, e partcular.

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

2.4 Pruebas estadísticas para los números pseudoaleatorios

2.4 Pruebas estadísticas para los números pseudoaleatorios Capítulo Números pseudoaleatoros.4 Pruebas estadístcas para los úmeros pseudoaleatoros 34 E la seccó. se presetaro dversos algortmos para costrur u cojuto r, pero ése es sólo el prmer paso, ya que el cojuto

Más detalles