Programación Matemática. Profesor: Juan Pérez Retamales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación Matemática. Profesor: Juan Pérez Retamales"

Transcripción

1 Programació Matemática Profesor: Jua Pérez Retamales

2 Capítulo 2: Ua breve visita a los métodos de puto Iterior Programació Matemática

3 Los métodos de puto iterior, tal como su ombre lo idica, busca al iterior del domiio para llegar al puto óptimo. El método simplex, como sabemos lo hace mediate la ispecció de los vértices o SBF.

4 E térmios teóricos los métodos de puto iterior so más eficietes que el método Simplex. Si embargo e la práctica esto o se ha plasmado del todo e los solvers debido a lo muy depurado, estudiado y optimizado que está el Simplex. E la actualidad y co el correr del tiempo esta situació se ha veido revirtiedo, pricipalmete porque se ha abordado co más fuerza la NLP, la cual usa métodos de puto iterior, lo cual a su vez a hecho que e el caso de LP, éstos sea cada vez más eficietes.

5 El método Simplex lametablemete podría llegar a recorrer todos los vértices e su búsqueda del óptimo (clásico ejemplo del cubo de Klee-Mity). (tiempo expoecial) Los métodos de barrera o tiee ese problema, e efecto se puede demostrar que preseta tiempo poliomial de resolució co respecto al tamaño de la istacia. Este tipo de métodos fue defiido origialmete para NLP, y por problemas de cálculo o se masificaro. Pero

6 U poco de historia de los que marca hitos: G. Datzig e 947 Simplex (tiempo expoecial) L. Khachiya e 979 Método del elipsoide (tiempo poliomial) N. Karmarkar e 984 Método de puto iterior (tiempo poliomial, ha sido bie estudiado)

7 E térmios metodológicos la secuecia es: Simplex Elipsoide Karmarkar Primales duales (barrera logarítmica)

8 Método Elipsoide Qué es eso?: La idea es ir ecerrado la regió de iterés e cada paso, e ua elipsoide, la cual cada vez es más pequeña. Elipse k Elipse k+ z k+ z k

9 Método de Karmarkar Idea: Trasformar el PPL a u formato particular para Karmarkar. Que cosiste básicamete e escalar y cetrar el problema al Simplex uitario, luego ecotrar ua direcció de mejora, moverse segú u largo de paso, ecotrar u uevo puto, y volver a trasformar el espacio (se reduce). Este método sigue hasta que la solució es meor que ua cierta medida pequeña positiva de covergecia.

10 Imágees de diarios desde clase de profesor R. Vaderbei.

11 Imágees de diarios desde clase de profesor R. Vaderbei.

12 Imágees de diarios desde clase de profesor R. Vaderbei.

13 Método de Karmarkar

14 Método de Karmarkar mi z sa.. Ax x. Rago S c x 2. x,..., es factible A, * 3. z A i A c, x m S x : x ; x ; i,..., i i

15 Método de Karmarkar.- Iicializar 2.- Defiir x x diag A Ax c x c A B Proyecció del gradiete t t d I B B B B c x 3.- Cálculo de paso 4.- Criterio deteció cx cx k k, típico 2/3 pequeño x x k k xx t xx d d TERMINAR Ir a paso x x x y t t T x T y x x x y

16 Método de Karmarkar Esquema ilustrativo Radio f SIMPLEX Gradiete Proyectado

17 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar

18 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO : Idetificar el problema y escribirlo e forma caóica micx sa.. Ax x b

19 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 2: Platear el problema dual max b sa. A c

20 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 3: Miimizar la brecha primal dual, y platear el problema micx b sa. Ax A b c x,

21 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 4: Poer el problema del Paso 3 e forma estádar micx b sa. Ax hp b A hd c x,, hd, hp

22 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 5-a: Itroducir ua restricció del tipo gra M co el objetivo de hacer patete que el problema es acotado y, segú esta cota ormalizarlo. Q "grade" tal que: m x hd hp Q i i i i i i

23 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 5-b: Itroducir la ueva restricció e el problema y formular mi sa. cx b Ax hp b A hd c m x hd hp Q i i i i i i x,, hd, hp

24 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 6: Variable de holgura para ueva restricció mi sa. cx b Ax hp b A hd c m x hd hp hq Q i i i i i i x,, hd, hp, hq

25 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 7: Utilizamos la restricció auxiliar t= para hacer ulos los RHS. micx b sa. Ax hp bt A hd ct m i i i i i m x hd hp hq Qt i x hd hp hq t Q i i i i i i x,, hd, hp, hq, t

26 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 8: Utilizamos u cambio de las variables e el factor (Q+) y t x Q y Q hd Q y hp Q y hq Q y t Q y x hd hp hq mi sa. m i m i i xi hdi i hpi hq t i x hd hp hq x x hp t cy hd y b Ay y by Ay y cy y t y y y y y Qy y y y y y t i i i i

27 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 9: Hacer que la variable evaluada e e*(/) sea factible. Para lo cual se usa ua variable artificial que haga la pega la llamamos y b, (b de brecha ). Siempre existirá uos vectores, escalares y ua costate grade talque. mi cy y b My sa. x hp t b m i m i hd t 2 b i xi hdi i hpi hq t 3 b i x hd hp hq b x Ay y by V y Ay y cy V y y i i i i b y y y y y Qy v y y y y y y t y

28 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar PASO 9 (cot.): cuado M es grade el problema es equivalete a: miy sa. x hp t b hd t 2 b m i i x hd hp hq t 3 b x m i i x hd hp hq b b Ay y by V y Ay y cy V y cy y y y y y y Qy v y by i i i i y y y y y t y i i i i

29 Método de Karmarkar Método para trasformar u problema al formato requerido por Karmarkar Ejemplo (Tarea Hacer): max z x 3x sa.. 2x x 8 x 2 2 x, x 2 2 4x 5

30 Métodos de Barrera (Primal - Dual) La idea de costrucció de la metodología (Ua forma): platear u sistema de ecuacioes que represete la miimizació de la brecha etre el primal y el dual. Tomar u efoque icremetal para solucioarlo. Idetificar los térmios o lieales impoer ua barrera. Platear el uevo problema lieal resultate y resolver. La idea del método es avazar por el iterior del espacio de solucioes factibles, a través de pasos que os acerque al óptimo, los cuales queda defiidos por u factor µ que represeta ua barrera.

31 Métodos de Barrera (Primal - Dual) micx sa.. Ax b x b, i,..., m x i i max b sa. A c c, i,..., i i

32 Métodos de Barrera (Primal - Dual) THC Recuerde otació de filas y columas de A x b, i,..., m i i i c x, i,..., i i i

33 Métodos de Barrera (Primal - Dual) Se itroduce variables de holgura Ax s b s, i,..., m i s Ax b A w c w, i,..., i w c A

34 Métodos de Barrera (Primal - Dual) Etoces lo que os queda es lo siguiete Ax s b A w c m s m m = m w x

35 Métodos de Barrera (Primal - Dual) Ax s b A w c Teemos 2m+2 ecuacioes y 2m+2 icógitas s Qué opia? Podemos Resolverlo? w x

36 Métodos de Barrera (Primal - Dual) Ax s b s A w c No todas las ecuacioes so lieales w x

37 Métodos de Barrera (Primal - Dual) E efecto, la complejidad que se deriva del THC es la que hace que resolver PPL s sea más complejo que resolver sistemas lieales

38 Métodos de Barrera (Primal - Dual) Hagamos u poco de modificació al sistema de ecuacioes aterior, a ver si podemos hacer algo co él

39 Métodos de Barrera (Primal - Dual) Itroducimos valores µ que os permite lidiar co las restriccioes de domiio (desigualdades) Ax s b A w c s m w x

40 Métodos de Barrera (Primal - Dual) Supogamos que podemos ecotrar u puto iicial, y u paso de avace de modo que: s s w w x x A x x s s b A w w c m

41 Métodos de Barrera (Primal - Dual) Supogamos que podemos ecotrar u puto iicial, y u paso de avace de modo que: Ax s b Ax s A w c A w s s s s w x w x wx wx m

42 Métodos de Barrera (Primal - Dual) Supogamos que podemos los térmios icremetales cuadráticos so despreciables, y aproximamos: Ax s b Ax s A w c A w s s s w x wx wx s m wx

43 Métodos de Barrera (Primal - Dual) Supogamos que podemos los térmios icremetales cuadráticos so despreciables, y aproximamos: Ax s b Ax s A w c A w m s s s w x wx w x Este sí es lieal

44 Métodos de Barrera (Primal - Dual) Pero que se hace para solucioarlo? Calcular u uevo valor para x =x +x Escoger ua barrera µ meor para la siguiete iteració Repetir el proceso hasta que se cumpla: Ax s b Factibilidad Primal c A w Factibilidad Dual cx b GAP de Dualidad

45 Métodos de Barrera (Primal - Dual) Veamos otro efoque, que es el clásico para geeralizar. Lo que vimos ates sirve para hacerse ua idea de dóde viee el método, pero a partir de los temas que ya hemos visto.

46 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Se itroduce térmios logarítmicos de pealizació e la FO. mi cx log x log s sa.. Ax s b x i i i i

47 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Se calcula la fució lagrageaa. log i i i i L cx log x s b Ax s

48 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Calculamos las derivadas de la fució lagrageaa. x s x L L x A x x s L L s s L L Ax s b

49 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Calculamos las derivadas de la fució lagrageaa. (recordemos que) x x L L x A x x x c A w w x wx

50 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Calculamos las derivadas de la fució lagrageaa. s s L L s s s

51 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Etoces, e cojuto, las codicioes de óptimo de KKT del problema co barrera logarítmica so: Ax s b A w c s m w x

52 Métodos de Barrera (Primal - Dual) Efoque de barrera logarítimica: Etoces, e cojuto, las codicioes de óptimo de KKT del problema co barrera logarítmica so: Ax s b s A w c m Lo que es equivalete a la primera deducció que hicimos a partir del problema de brecha primal dual w x

53 Métodos de Barrera (Primal - Dual) Y cómo se vería lo que hace el método? = = = = =. Recorrido iterior Dibujo de: E. Carreño, et. Al. OPTIMIZACIÓN DE SISTEMAS LINEALES USANDO MÉTODOS DE PUNTO INTERIOR, Scietia Et Techica, Uiversidad Tecológica de Pereira, ISSN 22-7, Mayo 24.

54 Métodos de Barrera (Primal - Dual) Recordar e PL los que marca tedecia so: Datzig Simplex Khachiya Elipsoide Karmarkar Puto Iterior E térmios de métodos, acabamos de ver: Simplex (hasta el casacio) Karmarkar Bases de métodos de barrera (primal-dual) Los métodos de puto iterior so cada vez más eficietes, y cuado efrete istacias de PPL grades, tega u bue solver lieal (CPLEX, Gurobi, etc.), les recomiedo escoger la opció de uso de métodos de puto iterior.

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO 2. Método de Enumeración De Soluciones Básicas

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO 2. Método de Enumeración De Soluciones Básicas MÉTODO SIMPLE PROFESOR: LILIN DELGDO HIDLGO Liliaadelgado@correouivalleeduco Método de Eumeració De Solucioes Básicas Ya se ha afirmado que la solució óptima (e geeral) de u modelo de Programació Lieal

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Métodos Iterativos para resolución de sistemas de ecuaciones lineales.

Métodos Iterativos para resolución de sistemas de ecuaciones lineales. Métodos Iterativos para resolució de sistemas de ecuacioes lieales Roberto Leó V Jorge Costazo V robertoleo@gmailcom jcosta@ifutfsmcl 8 de agosto de 006 Motivació El problema de la resolució de sistemas

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

3. Notación asintótica TEMA 1: EFICIENCIA DE LOS ALGORITMOS. 3. Notación asintótica. 3. Notación asintótica. 3. Notación asintótica

3. Notación asintótica TEMA 1: EFICIENCIA DE LOS ALGORITMOS. 3. Notación asintótica. 3. Notación asintótica. 3. Notación asintótica TEMA 1: EFICIENCIA DE LOS ALGORITMOS 0. Notació 1. Medida de la complejidad 2. Aálisis por casos El factor que más iteresa de las fucioes de coste es la tasa de crecimieto para valores grades de la talla

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana Las Matemáticas para la Gestió de Carteras co Riesgo. Carteras compuestas por activos co correlacioes estadísticas arbitrarias. El caso e que se fija el redimieto esperado de la cartera Apellidos, ombre

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global . Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

x = nº pólizas Toledo y = nº pólizas Albacete z = nº pólizas Cuenca

x = nº pólizas Toledo y = nº pólizas Albacete z = nº pólizas Cuenca wwwclasesalacartacom Uiversidad de Castilla la Macha AEG Juio JUNIO Opció A Dadas las matrices: A = y B = a) Calcula la matriz M = (I + A), dode I es la matriz idetidad de orde b) Calcula, si es posible,

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Helena Ramalhinho Lourenco y Daniel Serra 13 de Mayo PRESENTA: MC Marco Antonio Cruz Chavez.

Helena Ramalhinho Lourenco y Daniel Serra 13 de Mayo PRESENTA: MC Marco Antonio Cruz Chavez. Helea Ramalhiho Loureco y Daiel Serra 3 de Mayo 998 PRESENTA: MC Marco Atoio Cruz Chavez. OBJETIVO PRINCIPAL.- Compreder las diferecias de cada efoque heurístico aalizado. OBJETIVO SECUNDARIO.- De los

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker *

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker * Clases 9-10: El proceso de Wieer y los paseos al azar: el teorema de Dosker * 6 de oviembre de 2017 Ídice 1. Itroducció 1 2. Paseos al azar 1 3. Paseo al azar co variables gaussiaas 2 4. Paseo al azar

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Análisis de algoritmos

Análisis de algoritmos Tema 07: recursivos Solicitado: Ejercicios 04: recursivos M. e C. Edgardo Adriá Fraco Martíez http://www.eafraco.com edfracom@ip.mx @edfracom edgardoadriafracom 1 Coteido Recursividad Ecuacioes e recurrecia

Más detalles

Métodos Numéricos para Sistemas de Ecuaciones No Lineales

Métodos Numéricos para Sistemas de Ecuaciones No Lineales Uiversidad de Chile Departameto de Igeiería Matemática Métodos Numéricos para Sistemas de Ecuacioes No Lieales MA-33A Gozalo Herádez Oliva GHO SENL - MA-33A 1 Sistemas de Ecuacioes No Lieales: SENL 1)

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 4 de diciembre de 00 E esta sesió os cetramos e los problemas dode aparece desigualdades etre úmeros Alguos de estos

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas PROBLEMAS E MATEMÁTICAS Cálculo Primero de Ciecias Químicas FACULTA E CIENCIAS QUÍMICAS epartameto de Matemáticas Uiversidad de Castilla-La Macha Cálculo Sucesioes y series uméricas Sucesioes y series

Más detalles

MODELO DE RESPUESTAS. Lim n. Lim

MODELO DE RESPUESTAS. Lim n. Lim Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175) FECHA PRESENTACIÓN: 08-11-008 MODELO DE RESPUESTAS OBJ 7 PTA 7 Dadas las sucesioes de térmios

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia 1 EL RE SIN LAGRIMAS A. Blasco Istituto de Ciecia y Tecología Aimal Uiversidad Politécica de Valecia El Baby model y i = e i y = X + e = 1 + e dode X = 1 es u vector de uos. La matriz de variazas-covariazas

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Introducción. Leonfiel aportó principalmente en relaciones interindustriales a través de su matriz de insumo-producto.

Introducción. Leonfiel aportó principalmente en relaciones interindustriales a través de su matriz de insumo-producto. Itroducció La PL es ua clase de modelo de programació matemática destiada a la asigació eficiete de los recursos limitados e actividades coocidas, co el ojetivo de satisfacer las metas deseadas (como maximizar

Más detalles

3.2. Teoremas de Dini

3.2. Teoremas de Dini 3.2. TEOREMAS DE DINI 63 3.2. Teoremas de Dii Defiició 3.11. Sea X u espacio métrico y {f } ua sucesió e C(X). Decimos que la sucesió {f } es moótoa e si para todo x X se cumple f (x) f +1 (x), 1, o bie

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Técnicas de inteligencia artificial. Visión Artificial Segmentación

Técnicas de inteligencia artificial. Visión Artificial Segmentación Técicas de iteligecia artificial Visió Artificial Segmetació Idice Itroducció Algoritmo de las K-medias Mea-Sift Segmetació basada e regioes Itroducció La segmetació de imágees es el proceso de extraer

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2005

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2005 Solució del exame de Ivestigació Operativa de Sistemas de septiembre de 5 Problema (,5 putos): E ua serie de lazamietos de u dado, se observa cuatos resultados diferetes ha aparecido hasta cada mometo.

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles