PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS"

Transcripción

1 PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos etraer coclusioes acerca de los arámetros de la oblació a artir de datos eerimetales. Esto imlica el coocimieto de la distribució muestral del estadístico y de la relació establecida co el arámetro. La teoría de iferecia estadística cosiste e aquellos métodos or los que se realiza iferecias o geeralizacioes acerca de ua oblació. Esta se uede dividir e dos áreas riciales: La estimació y la rueba de hiótesis. A cotiuació se eoe los cocetos de esta teoría así como alguos ejemlos y ejercicios rouestos ara su aálisis. EL PROBLEMA DE ETIMACIÓN e uede hacer dos tios de estimacioes cocerietes a ua oblació: ) La estimació utual y ) La estimació or itervalo. Ua estimació utual es u solo úmero que se utiliza ara estimar u arámetro descoocido. A meudo ua estimació utual es isuficiete debido a que sólo tiee dos ocioes: es correcta o está equivocada. Por otra arte o se tiee certeza de que la estimació sea cofiable e algua medida. Por tal motivo ua estimació utual es mucho más útil si viee acomañada or ua estimació del error que odría estar imlicado. La estimació or itervalo e cambio es u rago de valores que se utiliza ara estimar u arámetro. Ua estimació de este tio idica el error de dos maeras: ) Por etesió del itervalo y ) Por la robabilidad que el arámetro esté coteido e el itervalo.

2 De esta maera se tiee ua mejor idea de la cofiabilidad de la estimació. PROPIEDADE DE LO ETIMADORE PUNTUALE Alguos estadísticos so mejores estimadores que otros. Afortuadamete éstos uede ser comarados e relació a ciertas roiedades o características deseables tales como: ) esgo ) Cosistecia 3) Eficiecia 4) uficiecia Para ecotrar estimadores co esas roiedades se usa dos métodos ricialmete: el método de cuadrados míimos y el método de máima verosimilitud. i embargo eiste otros métodos como el método de los mometos y el método de estimació de Bayes. A cotiuació se describirá e que cosiste cada ua de éstas roiedades ara los estadísticos e geeral. Estimador Isesgado e dice que u estadístico θ (léase tita sombrero) es u estimador isesgado del arámetro θ sí = E( ) = θ. θ θ Ejemlo: Muestre que X es u estimador isesgado de la media oblacioal olució: i E( i ) = E( ) = E = = = =

3 Estimador Cosistete ea θ (que se calcula a artir de la muestra X X X ) u estimador del arámetro oblacioal θ. í P( θ θ) cuado etoces θ se deomia u estimador cosistete de θ. Estimador Eficiete í se ecotrara u estimador co variaza iferior a la de cualquier otro estimador se utilizaría este como base de la medida de la eficiecia; e térmios de eficiecia se dice que este estimador de variaza más equeña es u estimador eficiete. i cosideramos todos los osibles estimadores isesgados de algú arámetro θ el de meor variaza se llamará: estimador más eficaz de θ. Estimador uficiete U estadístico suficiete es u estimador que utiliza toda la iformació que osee ua muestra ara estimar el arámetro. Por ejemlo y so estadísticos suficietes ara y π resectivamete dado que el cálculo de estos estadísticos ivolucra a cada uo de los valores observados e la muestra. X ACTIVIDAD PARA EL ALUMNO Ivestigar los distitos métodos que eiste ara obteer estimadores co las roiedades deseables que se mecioaro ateriormete. LA ETIMACIÓN POR INTERVALO Como ya se dijo ates es referible determiar u itervalo el cual eseraríamos que cotuviera el valor del arámetro e cotraosició a suoer que ua estimació utual obteida de ua muestra sea eactamete igual al arámetro oblacioal. E este setido la estimació or itervalo comlemeta la estimació utual dado que cosidera dicho valor utual del estadístico más o meos u error de estimació el cual se estudiará más adelate. 3

4 La estimació or itervalo de u arámetro de oblació θ ecierra u rago de valores (o itervalo) de la forma θ LI < θ < θ L dode θ LI y θ L rereseta lo etremos o límites iferior (LI) y suerior (L) del itervalo y deede tato del valor del estadístico θ ara ua muestra esecífica como de su distribució muestral ƒ ( θ ). A cotiuació se defie tres cocetos estrechamete relacioados e la costrucció de itervalos de cofiaza: Estos so: Itervalo de Cofiaza Nivel de Cofiaza y Valor Crítico. Itervalo de Cofiaza IC U itervalo de cofiaza es u cojuto o rago de valores que se usa ara estimar el valor real de u arámetro oblacioal. Nivel de Cofiaza - El ivel de cofiaza es la robabilidad - idicativa de la roorció de veces que el IC realmete cotiee el arámetro de la oblació suoiedo que el roceso de estimació se reite u gra úmero de veces. Valor Crítico Z U valor crítico es u úmero que está e la frotera que seara aquellos valores del estadístico que robablemete ocurrirá de aquellos valores del estadístico que o tiee osibilidades de ocurrir. Por ejemlo el valor crítico Z que corresode a u ivel de cofiaza (-) del 95% es la utuació Z co la roiedad de que seara u área de = 005 e la cola derecha de la distribució ormal estádar tal como se muestra e la siguiete figura. 4

5 Nivel de Cofiaza del 95% - = 095 = 005 = Z = -96 Z = 0 Z = 96 Figura. Curva de la distribució ormal idicado las áreas y valores críticos ara u ivel de cofiaza del 95%. Fuete: Autor. Alguos de los valores críticos Z usados co mayor frecuecia e la estimació or itervalos cuado la distribució muestral del estadístico corresode a ua distribució ormal se idica e la siguiete tabla: Tabla. Valores críticos más utilizados e la costrucció de IC co estadísticos cuya distribució muestral corresode a la distribució ormal estadarizada. Nivel de cofiaza (- ) Valor crítico Z 90% % % ACTIVIDAD PAR EL ALUMNO Ecuetre los valores críticos corresodietes a los iveles de cofiaza del y 99 or cieto sabiedo que la distribució muestral del estadístico es la distribució t de studet co ν = grados de libertad (g.l.). 5

6 ERROR DE ETIMACIÓN Cuado se utiliza los datos de ua muestra aleatoria simle ara estimar u arámetro oblacioal θ el marge de error que se deota co la letra mayúscula E rereseta la diferecia máima robable (co robabilidad -) etre el valor del estadístico θ calculado a artir de la muestra y el valor real del arámetro θ. El error de estimació tambié se cooce como error máimo del estimado o error de estimació y se calcula multilicado el valor crítico θ or la desviació estádar del estadístico como se muestra e la siguiete fórmula: θ E = θ * θ Ua vez coocido el error de estimació se uede costruir el itervalo de cofiaza siguiedo el rocedimieto que a cotiuació se detalla. PROCEDIMIENTO GENERAL PARA CONTRUIR UN INTERVALO DE CONFIANZA. Verificar que los suuestos requeridos se satisfaga.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. 3. Evaluar el marge de error E. 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: a. θ LI = θ - E b. θ L = θ E 5. Erese el itervalo e alguo de los siguietes formatos: a. ( θ LI θ L ) b. θ E c. θ LI < θ < θ L A cotiuació se dará alguos ejemlos de cómo obteer itervalos de cofiaza ara la media oblacioal siguiedo los asos descritos e el rocedimieto aterior. 6

7 Estimació de la media oblacioal mediate u itervalo de cofiaza (cuado se cooce la desviació estádar de la oblació ).. Verificar que los suuestos requeridos se satisfaga. (Ver codicioes de validez del teorema). La muestra es aleatoria simle. e cooce el valor de la desviació estádar oblacioal. La oblació está ormalmete distribuida o > 30. Nota: La media muestral X es el mejor estimador utual de la media de la oblació dado que es u estimador isesgado cosistete eficiete y suficiete como se había mecioado ates.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. Por ejemlo si el ivel de cofiaza es de 95% (- = 095) el valor crítico es Z = 96. Nota: Recuérdese que segú el teorema del límite cetral odemos eserar que la distribució muestral de X = y desviació estádar = esté distribuida de forma aroimadamete ormal co media De aquí que el estadístico Z = ( X - ) = ( X - ) ( ) siga ua distribució ormal estadarizada: Z N(0). 3. Evaluar el marge de error E = θ * Nota: E este caso θ es reemlazado or X el cual tiee ua distribució ormal (como se elica e el aso aterior) y que será equivalete a la variable aleatoria Z ua vez que se haya hecho la estádarizació. Por lo tato θ es e este caso: Z y es igual a: θ θ De aquí que E = Z * 7

8 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: θ LI = θ - E X LI = X - (Z * ) θ L = θ E X L = X (Z * ) 5. Erese el itervalo e alguo de los siguietes formatos: a. ( θ LI θ L) ( X LI X L) b. θ E X E c. θ LI < θ < θ L X LI < θ < X L Nota: Cualquiera de estas tres formas de eresar el itervalo es similarmete correcta. Estimació de la media oblacioal mediate u itervalo de cofiaza (cuado NO se cooce la desviació estádar oblacioal ). Como se dijo ates la media muestral es el mejor estadístico ara estimar la media oblacioal si embargo el hecho de que la desviació estádar de la oblació sea descoocida obliga a redefiir la distribució muestral de X. Por lo tato e este caso articular X uede ser descrita co mayor eactitud mediate la distribució t de studet a la cual ya se ha hecho referecia e otras oortuidades. Co esto e mete sígase el rocedimieto geeral ara la costrucció de itervalos de cofiaza euesto ates. X. Verificar que los suuestos requeridos se satisfaga. La muestra es aleatoria simle. La oblació está ormalmete distribuida o > 30.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. Hallar or medio de la tabla de la distribució t el valor t co ν = - (g.l.). 3. Evaluar el marge de error E. X 8

9 Para este caso el estadístico tiee ua desviació estádar equivalete a or lo tato el error de estimació viee dado or: E = t * 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: X X LI = L = X - E X E 5. Erese el itervalo e alguo de los siguietes formatos: X ( X LI X L ) E X LI < < X L Estimació de la variaza ( ) y la desviació tíica () de la oblació mediate u itervalo de cofiaza ara u ivel de cofiaza del (-)%. ea la variaza de ua muestra aleatoria de tamaño de ua oblació ormal etoces el estadístico: (-)* es ua variable aleatoria llamada χ cuya distribució muestral corresode a ua distribució chi-cuadrada co - grados de libertad. Para la costrucció del itervalo de cofiaza e este caso el rocedimieto difiere u oco del caso geeral eslicado ates dado que la distribució chi-cuadrada o es simétrica y además está defiida solo ara valores ositivos. cotiuació: E cosecuecia de esto se debe obteer los límites de cofiaza como se idica a LI L = (-)* χ - y = (-)* χ - - Luego se eresa el itervalo e uo de los modos acostubrados. Observacioes:. es la variaza muestral y se calcula mediate la fórmula: = ( i - ) ( -). Los valores críticos χ - y χ - - ara el Nivel de Cofiaza del (-)% so obteidos de la distribució chi-cuadrada co - g.l. y corresode a aquellos 9

10 valores bajo la curva que deja u área de e cada cola de dicha distribució como se muestra e la gráfica siguiete. Gráfica de la Distribució χ χ - χ - - χ Figura. Distribució Chi-cuadrada idicado los valores críticos ara el Nivel de Cofiaza del (-)%. Fuete: Autor. 3. E el caso de la desviació estádar los límites de cofiaza ara el ivel de (-)% so los siguietes: LI = (-)* χ - y = (-)* χ - - L INTERVALO DE CONFIANZA PARA LO PARÁMETRO MAYORMENTE UTILIZADO A cotiuació se resume los itervalos de cofiaza de aquellos arámetros que se utiliza co mayor frecuecia e roblemas de estimació estadística así como el estadístico utilizados. 0

11 Parámetro Estadístico Itervalo de cofiaza ( coocida) (0) N Z ( descoocida) t t (sí > 30) ( ) χ ( ) ( ) χ χ ( ) ( ) χ χ B() (0) ) ( N Z ) ( (cuado > 5 y q > 5) B( ) y B( ) (0) N Z - ( y coocidas) ( ) ( ) (0) N Z Z

12 Parámetro Estadístico Itervalo de cofiaza t f - ( o dadas) ( ) ( ) f t ( ) ( ) = f Z (cuado > 30) - ( = o dadas) ( ) ( ) t ) ( ) ( = t F F F F F

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

TEORÍA ELEMENTAL DE MUESTREO

TEORÍA ELEMENTAL DE MUESTREO TEORÍA ELEMENTAL DE MUETREO La teoría de muestreo se refiere al estudio de las relacioes que existe etre u colectivo o oblació y las muestras que se extrae de las mismas. El estudio de las muestras ermite

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Capítulo II Estimación de parámetros

Capítulo II Estimación de parámetros Capítulo II Estimació de parámetros Estimació putual de parámetros Explicaremos el tópico de la estimació putual de parámetros, usado el siguiete ejemplo. La Tabla Nº. cotiee iformació de los salarios

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Inferencia estadística. Intervalo de confianza y contraste de hipótesis

Inferencia estadística. Intervalo de confianza y contraste de hipótesis UNIDAD 0 Iferecia estadística. Itervalo de cofiaa y cotraste de hiótesis e royecta crear u cetro comercial e ua S ciudad, como el de la foto, y se quiere saber el oder adquisitivo de los habitates de la

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA)

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA) I N F R N C I A S T A D Í S T I C A I (INTRVALOS D CONFIANZA) Sea Ω ua població y sobre ella ua variable aleatoria X que sigue ua ley ormal N(µ; ), co media µ descoocida y desviació típica coocida. Co

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Estadístico. Parámetro

Estadístico. Parámetro La iferecia estadística comprede el establecer ciertos juicios co respecto a algo después de examiar solamete ua parte o muestra de ello. Así, se ofrece ua muestra gratis de u uevo producto alimeticio

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009.

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009. IES Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua Relació de Ejercicios de Cotrastes de Hiótesis. Poecia Adaluza de Matemáticas Alicadas a las CCSS II del año 29. Ejercicio 1. La altura e cm. de

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013 Probabilidad y Estadística Itroducció a la Iferecia Estadística Raúl D. Katz 013 Ídice 1. Itroducció 3. Muestreo 3.1. Muestras aleatorias simples.................................... 4 3. Iferecia estadística

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva, Ejercicio 4, Oció B Reserva 2, Ejercicio 4,

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Método de máxima verosimilitud Curso de Estadística TAE,2005 J.J. Gómez Cadeas Muestras Cosiderar ua variable aleatoria x descrita por la pdf f(x). El espacio de muestras está costituido por todos los

Más detalles

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1 Algebras de Boole Cojuto de partes. Dado u cojuto =,, podemos eumerar todos los subcojutos posibles de A, o dicho de otro modo todos los cojutos icluídos e A. Costruímos etoces u uevo cojuto co todos esos

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO El muestreo estratificado cosiste e dividir la població e subcojutos o estratos, y de cada uo de ellos seleccioar ua muestra probabilística; de maera idepediete de u estrato a otro. Existe tres razoes

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ESTIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRASTES DE HIPÓTESIS TEMA 8: Cotrastes

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1)

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1) Estadística I Exame Liceciatura e Matemáticas Febrero 2011 1. Sea X 1,..., X ua muestra aleatoria de ua variable X co distribució Beta de parámetros 2 y θ > 0. Esto último sigifica que la fució de desidad

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles