PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS"

Transcripción

1 PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos etraer coclusioes acerca de los arámetros de la oblació a artir de datos eerimetales. Esto imlica el coocimieto de la distribució muestral del estadístico y de la relació establecida co el arámetro. La teoría de iferecia estadística cosiste e aquellos métodos or los que se realiza iferecias o geeralizacioes acerca de ua oblació. Esta se uede dividir e dos áreas riciales: La estimació y la rueba de hiótesis. A cotiuació se eoe los cocetos de esta teoría así como alguos ejemlos y ejercicios rouestos ara su aálisis. EL PROBLEMA DE ETIMACIÓN e uede hacer dos tios de estimacioes cocerietes a ua oblació: ) La estimació utual y ) La estimació or itervalo. Ua estimació utual es u solo úmero que se utiliza ara estimar u arámetro descoocido. A meudo ua estimació utual es isuficiete debido a que sólo tiee dos ocioes: es correcta o está equivocada. Por otra arte o se tiee certeza de que la estimació sea cofiable e algua medida. Por tal motivo ua estimació utual es mucho más útil si viee acomañada or ua estimació del error que odría estar imlicado. La estimació or itervalo e cambio es u rago de valores que se utiliza ara estimar u arámetro. Ua estimació de este tio idica el error de dos maeras: ) Por etesió del itervalo y ) Por la robabilidad que el arámetro esté coteido e el itervalo.

2 De esta maera se tiee ua mejor idea de la cofiabilidad de la estimació. PROPIEDADE DE LO ETIMADORE PUNTUALE Alguos estadísticos so mejores estimadores que otros. Afortuadamete éstos uede ser comarados e relació a ciertas roiedades o características deseables tales como: ) esgo ) Cosistecia 3) Eficiecia 4) uficiecia Para ecotrar estimadores co esas roiedades se usa dos métodos ricialmete: el método de cuadrados míimos y el método de máima verosimilitud. i embargo eiste otros métodos como el método de los mometos y el método de estimació de Bayes. A cotiuació se describirá e que cosiste cada ua de éstas roiedades ara los estadísticos e geeral. Estimador Isesgado e dice que u estadístico θ (léase tita sombrero) es u estimador isesgado del arámetro θ sí = E( ) = θ. θ θ Ejemlo: Muestre que X es u estimador isesgado de la media oblacioal olució: i E( i ) = E( ) = E = = = =

3 Estimador Cosistete ea θ (que se calcula a artir de la muestra X X X ) u estimador del arámetro oblacioal θ. í P( θ θ) cuado etoces θ se deomia u estimador cosistete de θ. Estimador Eficiete í se ecotrara u estimador co variaza iferior a la de cualquier otro estimador se utilizaría este como base de la medida de la eficiecia; e térmios de eficiecia se dice que este estimador de variaza más equeña es u estimador eficiete. i cosideramos todos los osibles estimadores isesgados de algú arámetro θ el de meor variaza se llamará: estimador más eficaz de θ. Estimador uficiete U estadístico suficiete es u estimador que utiliza toda la iformació que osee ua muestra ara estimar el arámetro. Por ejemlo y so estadísticos suficietes ara y π resectivamete dado que el cálculo de estos estadísticos ivolucra a cada uo de los valores observados e la muestra. X ACTIVIDAD PARA EL ALUMNO Ivestigar los distitos métodos que eiste ara obteer estimadores co las roiedades deseables que se mecioaro ateriormete. LA ETIMACIÓN POR INTERVALO Como ya se dijo ates es referible determiar u itervalo el cual eseraríamos que cotuviera el valor del arámetro e cotraosició a suoer que ua estimació utual obteida de ua muestra sea eactamete igual al arámetro oblacioal. E este setido la estimació or itervalo comlemeta la estimació utual dado que cosidera dicho valor utual del estadístico más o meos u error de estimació el cual se estudiará más adelate. 3

4 La estimació or itervalo de u arámetro de oblació θ ecierra u rago de valores (o itervalo) de la forma θ LI < θ < θ L dode θ LI y θ L rereseta lo etremos o límites iferior (LI) y suerior (L) del itervalo y deede tato del valor del estadístico θ ara ua muestra esecífica como de su distribució muestral ƒ ( θ ). A cotiuació se defie tres cocetos estrechamete relacioados e la costrucció de itervalos de cofiaza: Estos so: Itervalo de Cofiaza Nivel de Cofiaza y Valor Crítico. Itervalo de Cofiaza IC U itervalo de cofiaza es u cojuto o rago de valores que se usa ara estimar el valor real de u arámetro oblacioal. Nivel de Cofiaza - El ivel de cofiaza es la robabilidad - idicativa de la roorció de veces que el IC realmete cotiee el arámetro de la oblació suoiedo que el roceso de estimació se reite u gra úmero de veces. Valor Crítico Z U valor crítico es u úmero que está e la frotera que seara aquellos valores del estadístico que robablemete ocurrirá de aquellos valores del estadístico que o tiee osibilidades de ocurrir. Por ejemlo el valor crítico Z que corresode a u ivel de cofiaza (-) del 95% es la utuació Z co la roiedad de que seara u área de = 005 e la cola derecha de la distribució ormal estádar tal como se muestra e la siguiete figura. 4

5 Nivel de Cofiaza del 95% - = 095 = 005 = Z = -96 Z = 0 Z = 96 Figura. Curva de la distribució ormal idicado las áreas y valores críticos ara u ivel de cofiaza del 95%. Fuete: Autor. Alguos de los valores críticos Z usados co mayor frecuecia e la estimació or itervalos cuado la distribució muestral del estadístico corresode a ua distribució ormal se idica e la siguiete tabla: Tabla. Valores críticos más utilizados e la costrucció de IC co estadísticos cuya distribució muestral corresode a la distribució ormal estadarizada. Nivel de cofiaza (- ) Valor crítico Z 90% % % ACTIVIDAD PAR EL ALUMNO Ecuetre los valores críticos corresodietes a los iveles de cofiaza del y 99 or cieto sabiedo que la distribució muestral del estadístico es la distribució t de studet co ν = grados de libertad (g.l.). 5

6 ERROR DE ETIMACIÓN Cuado se utiliza los datos de ua muestra aleatoria simle ara estimar u arámetro oblacioal θ el marge de error que se deota co la letra mayúscula E rereseta la diferecia máima robable (co robabilidad -) etre el valor del estadístico θ calculado a artir de la muestra y el valor real del arámetro θ. El error de estimació tambié se cooce como error máimo del estimado o error de estimació y se calcula multilicado el valor crítico θ or la desviació estádar del estadístico como se muestra e la siguiete fórmula: θ E = θ * θ Ua vez coocido el error de estimació se uede costruir el itervalo de cofiaza siguiedo el rocedimieto que a cotiuació se detalla. PROCEDIMIENTO GENERAL PARA CONTRUIR UN INTERVALO DE CONFIANZA. Verificar que los suuestos requeridos se satisfaga.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. 3. Evaluar el marge de error E. 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: a. θ LI = θ - E b. θ L = θ E 5. Erese el itervalo e alguo de los siguietes formatos: a. ( θ LI θ L ) b. θ E c. θ LI < θ < θ L A cotiuació se dará alguos ejemlos de cómo obteer itervalos de cofiaza ara la media oblacioal siguiedo los asos descritos e el rocedimieto aterior. 6

7 Estimació de la media oblacioal mediate u itervalo de cofiaza (cuado se cooce la desviació estádar de la oblació ).. Verificar que los suuestos requeridos se satisfaga. (Ver codicioes de validez del teorema). La muestra es aleatoria simle. e cooce el valor de la desviació estádar oblacioal. La oblació está ormalmete distribuida o > 30. Nota: La media muestral X es el mejor estimador utual de la media de la oblació dado que es u estimador isesgado cosistete eficiete y suficiete como se había mecioado ates.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. Por ejemlo si el ivel de cofiaza es de 95% (- = 095) el valor crítico es Z = 96. Nota: Recuérdese que segú el teorema del límite cetral odemos eserar que la distribució muestral de X = y desviació estádar = esté distribuida de forma aroimadamete ormal co media De aquí que el estadístico Z = ( X - ) = ( X - ) ( ) siga ua distribució ormal estadarizada: Z N(0). 3. Evaluar el marge de error E = θ * Nota: E este caso θ es reemlazado or X el cual tiee ua distribució ormal (como se elica e el aso aterior) y que será equivalete a la variable aleatoria Z ua vez que se haya hecho la estádarizació. Por lo tato θ es e este caso: Z y es igual a: θ θ De aquí que E = Z * 7

8 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: θ LI = θ - E X LI = X - (Z * ) θ L = θ E X L = X (Z * ) 5. Erese el itervalo e alguo de los siguietes formatos: a. ( θ LI θ L) ( X LI X L) b. θ E X E c. θ LI < θ < θ L X LI < θ < X L Nota: Cualquiera de estas tres formas de eresar el itervalo es similarmete correcta. Estimació de la media oblacioal mediate u itervalo de cofiaza (cuado NO se cooce la desviació estádar oblacioal ). Como se dijo ates la media muestral es el mejor estadístico ara estimar la media oblacioal si embargo el hecho de que la desviació estádar de la oblació sea descoocida obliga a redefiir la distribució muestral de X. Por lo tato e este caso articular X uede ser descrita co mayor eactitud mediate la distribució t de studet a la cual ya se ha hecho referecia e otras oortuidades. Co esto e mete sígase el rocedimieto geeral ara la costrucció de itervalos de cofiaza euesto ates. X. Verificar que los suuestos requeridos se satisfaga. La muestra es aleatoria simle. La oblació está ormalmete distribuida o > 30.. Calcular el valor crítico corresodiete al ivel de cofiaza que se deseado. Hallar or medio de la tabla de la distribució t el valor t co ν = - (g.l.). 3. Evaluar el marge de error E. X 8

9 Para este caso el estadístico tiee ua desviació estádar equivalete a or lo tato el error de estimació viee dado or: E = t * 4. Calcular los valores corresodietes a los límites de cofiaza del itervalo: X X LI = L = X - E X E 5. Erese el itervalo e alguo de los siguietes formatos: X ( X LI X L ) E X LI < < X L Estimació de la variaza ( ) y la desviació tíica () de la oblació mediate u itervalo de cofiaza ara u ivel de cofiaza del (-)%. ea la variaza de ua muestra aleatoria de tamaño de ua oblació ormal etoces el estadístico: (-)* es ua variable aleatoria llamada χ cuya distribució muestral corresode a ua distribució chi-cuadrada co - grados de libertad. Para la costrucció del itervalo de cofiaza e este caso el rocedimieto difiere u oco del caso geeral eslicado ates dado que la distribució chi-cuadrada o es simétrica y además está defiida solo ara valores ositivos. cotiuació: E cosecuecia de esto se debe obteer los límites de cofiaza como se idica a LI L = (-)* χ - y = (-)* χ - - Luego se eresa el itervalo e uo de los modos acostubrados. Observacioes:. es la variaza muestral y se calcula mediate la fórmula: = ( i - ) ( -). Los valores críticos χ - y χ - - ara el Nivel de Cofiaza del (-)% so obteidos de la distribució chi-cuadrada co - g.l. y corresode a aquellos 9

10 valores bajo la curva que deja u área de e cada cola de dicha distribució como se muestra e la gráfica siguiete. Gráfica de la Distribució χ χ - χ - - χ Figura. Distribució Chi-cuadrada idicado los valores críticos ara el Nivel de Cofiaza del (-)%. Fuete: Autor. 3. E el caso de la desviació estádar los límites de cofiaza ara el ivel de (-)% so los siguietes: LI = (-)* χ - y = (-)* χ - - L INTERVALO DE CONFIANZA PARA LO PARÁMETRO MAYORMENTE UTILIZADO A cotiuació se resume los itervalos de cofiaza de aquellos arámetros que se utiliza co mayor frecuecia e roblemas de estimació estadística así como el estadístico utilizados. 0

11 Parámetro Estadístico Itervalo de cofiaza ( coocida) (0) N Z ( descoocida) t t (sí > 30) ( ) χ ( ) ( ) χ χ ( ) ( ) χ χ B() (0) ) ( N Z ) ( (cuado > 5 y q > 5) B( ) y B( ) (0) N Z - ( y coocidas) ( ) ( ) (0) N Z Z

12 Parámetro Estadístico Itervalo de cofiaza t f - ( o dadas) ( ) ( ) f t ( ) ( ) = f Z (cuado > 30) - ( = o dadas) ( ) ( ) t ) ( ) ( = t F F F F F

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

TEORÍA ELEMENTAL DE MUESTREO

TEORÍA ELEMENTAL DE MUESTREO TEORÍA ELEMENTAL DE MUETREO La teoría de muestreo se refiere al estudio de las relacioes que existe etre u colectivo o oblació y las muestras que se extrae de las mismas. El estudio de las muestras ermite

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Tema IV. Estimación con intervalos de confianza

Tema IV. Estimación con intervalos de confianza Notas de Estadística Alicada a la Admiistració, Cotaduría, Iformática Admiistrativa I y Negocios y Comercio Iteracioales. Dr. Fracisco Javier Taia Moreo. Abril de 0. Tema IV Estimació co itervalos de cofiaza

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Jua Carlos Coloia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE UNA POBLACIÓN POBLACIONAL ES CONOCIDA Sea X ua muestra aleatoria de tamaño 1, X,..., X extraída de ua població N,

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

Parte 2. Estadística inferencial

Parte 2. Estadística inferencial Parte. Estadística iferecial. Distribucioes muestrales Recordemos que el objetivo de la Estadística es hacer iferecias acerca de los parámetros de ua població co base e la iformació coteida e ua muestra.

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS...

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS... 6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES... 7 6. INTRODUCCION...7 6. PARÁMETROS Y ESTADÍSTICOS...8 6.3 DISTRIBUCIÓN DEL PROMEDIO MUESTRAL...9 6.4 DISTRIBUCIÓN DE LA FRECUENCIA

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Estimación de los parámetros de las distribuciones Bernoulli y Poisson bajo cero eventos

Estimación de los parámetros de las distribuciones Bernoulli y Poisson bajo cero eventos Publicado e la Rev. Fac. Nac. Salud Pública 999; 7(): 30-36 Estimació de los parámetros de las distribucioes Beroulli y Poisso bajo cero evetos Estimatig parameters of the Beroulli ad Poisso distributios

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

Ejercicios y Aplicaciones: Resolución Guiada

Ejercicios y Aplicaciones: Resolución Guiada Uidad Temática 5 : Resolució Guiada Bibliografía Los ejercicios y aplicacioes de esta uidad tiee como referecia los siguietes libros de texto: PROBABILIDAD Y ESTADÍSTICA PARA INGENIEROS Sexta Edició Autores:

Más detalles

9- Test o prueba de hipótesis

9- Test o prueba de hipótesis arte Estadística rof. María B. itarelli 9- Test o rueba de hiótes 9. Itroducció asta ahora hemos estudiado el roblema de estimar u arámetro descoocido a artir de ua muestra aleatoria. E muchos roblemas

Más detalles

Hacer estimaciones estadísticas (Making statistical estimations)

Hacer estimaciones estadísticas (Making statistical estimations) IOvaciOes de NegOciOs 5(): 99-316, 009 009 UANL, Impreso e Méico (ISSN 1665-967) Hacer estimacioes estadísticas (Makig statistical estimatios) UANL, Sa Nicolás, N.L., Méico, mhbadii@yahoo.com.m Keywords:

Más detalles

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR).

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR). 1 EL MODELO DE MERCADO (MODELO DE ÍNDCE ÚNCO, O MODELO DE UN SOLO FACTOR). Disoemos de las tasas de redimieto de u cojuto de activos co riesgo (i = 1,,, ) y disoemos tambié de la tasa de redimieto de u

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Inferencia estadística. Intervalo de confianza y contraste de hipótesis

Inferencia estadística. Intervalo de confianza y contraste de hipótesis UNIDAD 0 Iferecia estadística. Itervalo de cofiaa y cotraste de hiótesis e royecta crear u cetro comercial e ua S ciudad, como el de la foto, y se quiere saber el oder adquisitivo de los habitates de la

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES.

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. TEMA 3: DISTRIBUCIOES BIDIMESIOALES. 3.. Cocetos Geerales.... 3.2. Distribucioes bidimesioales de frecuecias... 3.2.. Tablas de correlació y cotigecia.... 3.2.2. Distribucioes margiales y codicioadas....

Más detalles

ANEXO I - Algunos elementos sobre tratamiento de incertezas experimentales, cifras significativas, tablas, gráficos y esquemas.

ANEXO I - Algunos elementos sobre tratamiento de incertezas experimentales, cifras significativas, tablas, gráficos y esquemas. ANEXO I - Alguos elemetos sobre tratamieto de icertezas eerimetales, cifras sigificativas, tablas, gráficos y esquemas. Medir imlica comarar ua catidad de ua magitud co otra catidad de la misma magitud

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Capítulo II Estimación de parámetros

Capítulo II Estimación de parámetros Capítulo II Estimació de parámetros Estimació putual de parámetros Explicaremos el tópico de la estimació putual de parámetros, usado el siguiete ejemplo. La Tabla Nº. cotiee iformació de los salarios

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles