Unidad 2 Diseño de experimentos de un factor

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad 2 Diseño de experimentos de un factor"

Transcripción

1 Uidad Diseño de experimetos de u factor.. Familia Diseños para comparar tratamietos.. Diseño Complemetario al azar y ANOVA.3. Comparacioes o Pruebas de Ragos Multiples.4. Verificació Supuestos del Modelo.5. Elecció del Tamaño de Muestra.6. Software Estadístico.. Diseño Complemetario al azar y ANOVA ANÁLISIS DE VARIANZA Se supoe el caso de u fabricate y tres cosumidores de latas cuyo fodo tega al meos 0.5 libras de recubrimieto de estaño. Mediate u tratamieto químico, se puede medir el peso de este recubrimieto, pero desgraciadamete o se puede repetir la experiecia co la misma muestra e lo cuatro laboratorios. U esayo experimetal puede cosistir e cortar discos a eviar a cada laboratorio, pero puede haber diferecias e el promedio debido: a) diferecias sistemáticas e la técica de medició, b) variabilidad aleatoria. Por otro lado, está la icógita de cuátos discos debería cortarse para eviar a cada laboratorio. Ua forma de determiar este valor es utilizado la desviació estádar de la distribució muestral etre dos medias. Se supodrá que este úmero está e el orde de por laboratorio (e total 48 discos). La preguta ahora es cómo seleccioar esos 48 discos de ua chapa, la primera que viee a la mete es eviar segú este formato: Si las medias de las medicioes realizadas por cada uo de los laboratorios está muy dispersas, idica falta de cosistecia e las medicioes. Esto puede ser porque todos mide distito o quizá porque la distribució del depósito e la chapa es irregular. Es decir,

2 se cofude la icosistecia de los laboratorios co la catidad de estaño depositado e la tira. Ua solució posible para esto sería umerar aleatoriamete los discos, por medio de ua Tabla de Números Aleatorios o co ua computadora, destiado a cada uo de los laboratorios los siguietes discos: Laboratorio A: 3, 0,. Laboratorio B: 33, 4, 8. Laboratorio A: 5,, 8. Laboratorio A: 45,, 35. Esta alterativa disuelve el patró de la disposició de estaño sobre la chapa (por ejemplo, más espesor e el cetro que e los bordes). Al aleatorizar el total de los 48 discos sólo queda atribuir a variació aleatoria las causas extrañas. Otra solució podría ser etregar los 48 de ua misma tira (experimetació cotrolada), pero los resultados sería sólo aplicables a distacias fijas del extremo de la lámia. Rara vez se fija todos o la mayoría de los factores extraños a lo largo de u experimeto, se cosigue así ua estimació de la variació aleatoria que o esté iflada por variacioes debidas a otras causas. E la práctica, los experimetos deberá plaearse de tal maera que las fuete coocidas de variabilidad sea deliberadamete cosideradas sobre u rago ta amplio como sea ecesario. Más aú, deberá variarse e tal forma que su variabilidad pueda elimiarse e la estimació de la variable aleatoria. U modo es repetir el experimeto e varios bloques e los que la fuete coocida de variabilidad (esto es, variables extrañas) se matiee fijas e cada bloque, pero variado de bloque e bloque: Tira Tira Tira 3 Tira 4 Laboratorio A 8, 4, 0 3, 4, 9 6, 9, 35 37, 44, 48 Laboratorio B, 6,, 5, 34, 33, 3 45, 43, 46 Laboratorio C, 5, 6, 0, 3 36, 9, 30 4, 38, 47 Laboratorio D 7, 3, 9 7, 8, 4 8, 3, 5 39, 40, 4 De este modo, las diferecias etre medias obteidas por los 4 laboratorios, o puede atribuirse a variacioes etre tiras. DISEÑOS COMPLETAMENTE ALEATORIOS Se supoe que el experimetador cueta co los resultados de muestras aleatorias idepedietes, cada ua de tamaño, de diferetes poblacioes (datos relativos a tratamietos, grupos, métodos de producció, etc.). Iteresa probar la hipótesis de que las medias de esas poblacioes so todas iguales. Se deota a la j-ésima observació de la i-ésima muestra por y ij. El esquema geeral para u criterio de clasificació es:

3 Muestra y y y j. y Medias Muestra y y y j y. Muestra i y i y i y ij y i. Muestra y y y j y Bajo este esquema experimetal, e referecia al ejemplo tratado, y ij (i=,,..,4; j=,,, ) es la j-ésima medició del peso del revestimieto del iésimo laboratorio, e es la media global (o gra media) de las 48 observacioes. Para pruebas de hipótesis (medias iguales) se supodrá estar trabajado co poblacioes ormales de la misma. Si i es la media de la població i-ésima y es la variaza comú de las poblacioes, se puede expresar cada observació y ij como i más el valor del compoete aleatorio: y i j = i + i j para i=,,..,; j=,,, i j es ua variable aleatoria co distribució ormal, = 0 y comú. Para dar uiformidad a las ecuacioes, se reemplaza i por + i, dode es la media de las i y i es el efecto del i-ésimo tratamieto, de aquí que: i i 0 esto surge de: i i i i i i luego, la expresió de y ij queda: y i j = i + i j para i=,,..,; j=,,, Por lo tato, la Hipótesis Nula (las medias de las poblacioes iguales) se reemplaza por la Hipótesis Nula de que = = = = 0. La Hipótesis Altera de que al meos dos de las medias so distitas equivale a que i < > 0 para algua i.

4 Para probar la Hipótesis Nula, se compara las estimacioes de (ua e base a la observació de las medias muestrales y la otra co la variació detro de la muestra). cuatro laboratorios de u Ya que cada muestra viee de ua població co variaza, la variaza se puede edias obteidas por estimar cada uo de cualquiera de las muestras: uir ua Tabla de aálisis de s i j y ij y i y etoces tambié por su media: cada ua de las variazas muestrales s i está basada e (-) grados de libertad y etoces está basada e.(-) grados de libertad. Por otro lado, la variaza de las medias muestrales está dada por: y si la hipótesis es verdadera, esta expresió da ua estimació de / y así ua estimació de, pero basada e la diferecia etre las medias, está dada por: basada e (-) grados de libertad. Si Ho es cierta, se puede demostrar que y so estimacioes idepedietes de y por ello: F = / es ua variable aleatoria co distribució F co = - y =.(-) grados de libertad.

5 Cabe esperar que la variaza etre muestras,, exceda la variaza detro de las muestras,, cuado la Hipótesis Nula es falsa, por eso Ho será rechazada si F>F. Co el argumeto aterior se ha idicado cómo la prueba de las medias se puede fudametar e la comparació de dos estimacioes de variazas. Es otable el hecho de que las dos estimacioes e cuestió [excepto para los divisores (-) y.(-)] puede obteerse partiedo o aalizado la variaza total de las. observacioes e dos partes. La variaza muestral de las. observacioes está dada por: se puede probar el siguiete teorema respecto del umerador, llamado Suma de Cuadrados Total: Demostració: y como: y y yi y. ij i y y ij i y y ij i y y. i i j i j y y ij i y y. i y y ij i y y. i i j i j i j y y ij i se verifica la relació aterior: Se acostumbra a deotar: a) Suma de Cuadrados Total, SST: SST y ij y. i j 0 y y. i

6 b) Suma de Cuadrados de Error, SSE: c) Suma de Cuadrados de Tratamieto SS(Tr): Luego, F se puede escribir así: F SS ( Tr) SSE ( ) los resultados obteidos so resultados e la siguiete tabla: Fuetes Variació de Grados de Libertad Suma de Cuadrad os Media Cuadrada Tratamiet os - SS(Tr) MS(Tr)=SS(Tr)/(- ) Error.(-) SSE MSE=SSE/.(-) Total.- SST F MS(Tr)/M SE Ejemplo: A fi de utilizar el Aálisis de Variaza para u criterio de clasificació, supoer el siguiete esquema de medicioes de cuatro laboratorios de u parámetro determiado (revestimieto de estaño de discos) cuyos resultados so: Total Lab. A Lab. B Lab. C Lab. D Total.69 del que se quiere probar que las medias obteidas por cada uo de ellos es sigificativamete igual (Hipótesis Nula) co =0.05. Costruir ua Tabla de aálisis de variaza.

7 Para facilitar cálculos, se utiliza las fórmulas: SST y ij C SS ( Tr) i j Demostració: y y 0 ij i Para Suma de Cuadrados total j SST y y ij. y ij i j i j C i j i j y. y ij y ij ( ) y ij T i C i y. y ( ). ( ) y ij i j y. i j ( ) y ij i j y. y. y ij SST i j y ij C Para Suma de Cuadrados de Tratamietos: y ( ) i y y. C ij i i j SS( Tr) y y. i y y i. y i y. i i i SS( Tr) y C ij T i C i j i dode C (llamado Térmio de Correcció) y T i es: C y ij T i i j j y ij

8 dode T i es el úmero total de observacioes de la i-esima muestra, Mietras que T es el Gra Total de las. observacioes. Luego, SSE se obtiee de: SSE = SST SS(Tr) Para el ejemplo: T =.69 C = T /(.) =.69 /(4.) =.8470 SST= = SS(Tr) = ( ) / = SSE = = la Tabla queda: Fuetes Variació de Grados de Libertad Suma de Cuadrad os Media Cuadrada Laboratori os Error Total Coforme a las tablas de la fució F, se puede ecotrar el valor correspodiete de la abscisa que deja a la derecha u área de 0.05 siedo además los grados de libertad para el umerador y deomiador 3 y 44, respectivamete, como lo idica el siguiete gráfico F

9 Ya que F (.87) excede a F 0.05 =.8, se rechaza la Hipótesis Nula, luego los laboratorios o está logrado resultados cosistetes..3. Comparacioes o Pruebas de Ragos Múltiples COMPARACIONES MÚLTIPLES Co las pruebas F empleadas se demostraba si las diferecias etre varias medias era sigificativas, pero o iformaba si ua media e particular (o medias) difiere e forma sigificativa de otra media cosiderada (o grupo de medias). E el caso de los pesos de los recubrimietos puede ser importate que los laboratorios difiera uos de los otros. Si u experimetador tiee ate sí medias, parece razoable probar etre todos los pares posibles, esto es efectuar.(-)/ pruebas t bimuestrales. Esto o es eficiete. Para ello se utiliza Pruebas de Comparacioes Múltiples, y etre ellas la Prueba del Rago Múltiple de Duca. Las suposicioes básicas so, e esecia, las del aálisis de la variaza e ua dimesió para tamaños muestrales iguales. La prueba compara el Rago de Míima Sigificacia, R p, dado por: aquí R p sr p x es ua estimació de: x y puede calcularse como: s x MSE dode MSE es la media de los cuadrados de error e el Aálisis de Variaza. El valor de r p depede del valor deseado de sigificacia y del úmero de grados de Libertad correspodiete a la MSE, que se obtiee de tablas existetes e la bibliografía (Miller y Freud, Estadística para Igeieros, tablas a, para =0.05 y b, para =0.0, co p=,3,,0 y para varios grados de libertad etre y 0). Ejemplo: Co respecto a los datos de los pesos de los recubrimietos de estaño, aplicar la prueba del Rago Múltiple de Duca para probar cuáles medias de los laboratorios difiere de las otras empleado u ivel de sigificacia de Para ello se ordea, e orde creciete, las cuatro medias muestrales: Laboratorio B C D A

10 Media luego, se calcula usado MSE = del Aálisis de Variaza: s x siedo el úmero de grados de libertad =.(-) = 44. Por iterpolació, e la Tabla -a, se obtiee los valores de r p : multiplicado r p por = 0.0: p 3 4 r p P 3 4 R p El rago de las cuatro medias es = 0.04, que excede a R 4 = 0.034, que es el rago sigificativo míimo. Esto era de esperar, porque la prueba F idicó que las diferecias etre las cuatro medias era sigificativas co a = Para probar que hay diferecias sigificativas etre tres medias adyacetes, se obtiee los ragos de y 0.03 respectivamete para 0.30, 0.50, 0.68 y 0.7, 0.30, Puesto que el primero de estos valores sobrepasa a R 3 = 0.033, las diferecias correspodietes o so sigificativas. Por último e el caso de parejas adyacetes de medias, igú par adyacete tiee rago mayor que el rago sigificativo míimo R = Esto se resume: dode se ha dibujado ua líea bajo cualquier cojuto de medias adyacetes para las cuales el rago es meor que u valor correspodiete de R p, esto es, bajo cualquier cojuto de medias adyacetes, para las cuales las diferecias o so sigificativas. Se cocluye así que el Laboratorio A obtiee los pesos medios de recubrimieto más alto que los Laboratorios B y C..4. Verificació Supuestos del Modelo

11 Para estimar los parámetros,,, 3 y 4 se puede emplear míimos cuadrados miimizado: y ij i i j co respecto a y a las i, sujetas a la restricció Esto se puede hacer por el método de los Multiplicadores de Lagrage. Derivado la peúltima expresió respecto de e igualado a cero: i j y ij i y ij i j i j y ij 0 0 i j 0 i 0 i j para u i dado: j y ij i 0 i y ij j j j Ejemplo: Estimar los parámetros del modelo co u criterio de clasificació para los revestimietos de estaño del ejemplo aterior

12 Elecció del Tamaño de Muestra TAMAÑOS MUESTRALES DISTINTOS El Aálisis de Variaza descripto, se aplica a criterios de clasificació e que cada muestra tiee el mismo úmero de observacioes. Si o es así, y los tamaños muestrales so,,, se tiee que sustituir N = i por. e todo lo aterior, quedado el siguiete esquema de partida: Muestra y y y j. Medias Muestra y y y j. Muestra i y i y i y ij. Muestra y y y j Se obtiee la variaza detro de la muestra: y s i i i y ij y i j la variaza de las medias muestrales es: y

13 co lo cual se determia: La variaza muestral de las N observacioes está dada por: se puede demostrar que: SST = SSE + SS(Tr) Co: SST siedo: C i i j y ij C SS ( Tr) i y ij N T i i j i i y ij T i i C Problema: El coteido de aflatoxia, e partes por milló, de alguas muestras de crema de maí se prueba y se cosigue los siguietes resultados: Total Marca A Marca B Total 4.9 a) Emplear Aálisis de Variaza para probar si las dos marcas difiere e e coteido de aflatoxia, co u ivel de sigificacia a=0.05. b) Probar la misma hipótesis usado la prueba t-bimuestral.

14 Respuesta: a) y. y 4.05 y.. SST SS ( Tr) 8 y j 3 j j i y i 3 6 y j i SSE = SST SS(Tr) = = (. 3) 6 ( ).74 Fuetes de Variació Grados de Libertad Suma de Cuadrad os Media Cuadrada Tratamiet os Error Total Dado que.05 < 4.75 (valor de F, de Tablas, co =0.05, = y =) se rechaza la Hipótesis de que las dos marcas difiere e el coteido de aflatoxia. b) El estadístico para esta prueba es: F t s x x s s 8.5 s 5.48 t ( 8 ) 8.5 ( 6 ) ( 8 6 ) siedo t 0.05 = -.8 co = + = = grados de libertad, se aprecia que t > t 0.05 por lo tato se rechaza la Hipótesis de que las dos marcas difiere e el coteido de aflatoxia. Puede comprobarse que el estadístico t co grados de libertad y el estadístico F co grados de libertad está relacioados por: F(,t lo se puede verificar para este caso:

15

ANÁLISIS DE VARIANZA

ANÁLISIS DE VARIANZA ANÁLISIS DE VARIANZA Se supoe el caso de u fabricate y tres cosumidores de latas cuyo fodo tega al meos 0.25 libras de recubrimieto de estaño. Mediate u tratamieto químico, se puede medir el peso de este

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Estimación por intervalos

Estimación por intervalos Estimació por itervalos Estimació por itervalos para la media poblacioal co (variaza poblacioal) coocida P( x z/ x z/ ) 1 co (variaza poblacioal) descoocida Si 30 se reemplaza por S y usamos el itervalo

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA Uiversidad Nacioal del Litoral Facultad de Igeiería Ciecias Hídricas ESTADÍSTICA Igeierías RH-Amb-Ag TEORÍA Mg. Susaa Valesberg Profesor Titular INFERENCIA ESTADÍSTICA TEST DE HIPÓTESIS INTRODUCCIÓN Geeralmete

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Ejemplo Solución. 2) Datos p 1 =253/300 p 2 =196/300 n 1 =n 2 =300 α= ) Ensayo de hipótesis

Ejemplo Solución. 2) Datos p 1 =253/300 p 2 =196/300 n 1 =n 2 =300 α= ) Ensayo de hipótesis Ejemplo Solució ) Se trata de ua distribució muestral de diferecia de proporcioes. Se evalúa dos tipos diferetes de solucioes para pulir, para su posible uso e ua operació de pulido e la fabricació de

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Explicación de la tarea 10 Felipe Guerra. Para la explicación de esta tarea veamos primeramente que es lo que nos están pidiendo.

Explicación de la tarea 10 Felipe Guerra. Para la explicación de esta tarea veamos primeramente que es lo que nos están pidiendo. Explicació de la tarea 0 Felipe Guerra Para la explicació de esta tarea veamos primeramete que es lo que os está pidiedo. Ya hemos visto a lo largo del curso que la variaza es el error cuadrado medio de

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL Revisió, Cambios y Ampliació: Ig. José Alejadro Marí Fuete Primaria: Ig. César Augusto Zapata Urquijo 1. M U E S T R E O S I S T E M

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA X INFERENCIA ESTADÍSTICA Sea ua característica o variable aleatoria de la població objeto de estudio y sea ( X, X, X,..., X ) ua muestra aleatoria de dicha població. 1 3 U parámetro poblacioal es ua caracterizació

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio.

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio. EJERCICIO () Es u problema de idepedecia de criterios y se tedrá que costruir la tabla de cotigecia de frecuecias teóricas (esperadas), t ij, a partir de las frecuecias o observadas, ij, que se da e la

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Ejemplo Solución. μ 1 =121 μ 2 =112 σ 1 =σ 2 =8.0 α=0.05 n 1 =n 2 =10. 2) Datos. 3) Ensayo de hipótesis

Ejemplo Solución. μ 1 =121 μ 2 =112 σ 1 =σ 2 =8.0 α=0.05 n 1 =n 2 =10. 2) Datos. 3) Ensayo de hipótesis Ejemplo Solució ) Datos μ = μ = σ =σ =8.0 = =0 3) Esayo de hipótesis ; μ -μ = 0.0 H ; μ -μ >0.0 Se está iteresado e reducir el tiempo de secado de ua pitura. Probamos dos fórmulas; la fórmula tiee el coteido

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Sobre los intervalos de confianza y de predicción

Sobre los intervalos de confianza y de predicción Sobre los itervalos de cofiaza y de predicció Itervalos de cofiaza Javier Satibáñez 28 de febrero de 2018 Se costruye itervalos de cofiaza para parámetros. Sea X = X 1,..., X } ua muestra aleatoria de

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma MAS obteidas de ua població N, so por aturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño, tomadas de la misma població N, tega la misma media muestral o que sea completamete

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

TAMAÑO DE MUESTRA. 5.1 Coeficiente de homogeneidad al interior de las escuelas

TAMAÑO DE MUESTRA. 5.1 Coeficiente de homogeneidad al interior de las escuelas TAMAÑO DE MUETRA Ua de las etapas del diseño muestral es el cálculo del tamaño de la muestra (Cocra, 977, p. 7-88; Médez, 004, p. 45-47; y aro, 999, p. 39-4), ésta se lleva a cabo cosiderado el objetivo

Más detalles

TEMA 6.- INTERVALOS DE CONFIANZA

TEMA 6.- INTERVALOS DE CONFIANZA TEMA 6.- INTERVALOS DE CONFIANZA 6.1. Distribucioes asociadas a la Normal 6.1.1. Distribució Chi cuadrado de Pearso o Gi dos 6.1.. Distribució t de Studet 6.. Itroducció a itervalos de cofiaza 6.3. Método

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES.

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. E el siguiete ejercicio se tratará de expoer, de forma didáctica, el proceso de solució de u problema de regresió simple. Problema:

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Jua Carlos Coloia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE UNA POBLACIÓN POBLACIONAL ES CONOCIDA Sea X ua muestra aleatoria de tamaño 1, X,..., X extraída de ua població N,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua media (Cap. 21 del libro) 1 Tema 11. Estimació de ua media Itroducció 1. Distribució de la media e el muestreo 2. La media

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

CAPITULO II: MARCO TEORICO. En este capítulo se aclararan los conceptos necesarios para lograr una buena

CAPITULO II: MARCO TEORICO. En este capítulo se aclararan los conceptos necesarios para lograr una buena CAPITULO II: MARCO TEORICO E este capítulo se aclarara los coceptos ecesarios para lograr ua buea compresió del presete trabajo. Coceptos que abarca el diseño de experimetos, la simulació y programació.

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

9.3. Contrastes de una proporción

9.3. Contrastes de una proporción 9.3. CONTRASTES DE UNA PROPORCIÓN 219 y el criterio que sumiistra el cotraste es si a teo χ 2 exp b teo = o rechazamos H 0 ; si χ 2 exp < a teo ó χ 2 exp > b teo = rechazamos H 0 y aceptamos H 1. Cotrastes

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

θˆ = h(x 1,X 2,...,X n ) θˆ es un estimador puntual de θ

θˆ = h(x 1,X 2,...,X n ) θˆ es un estimador puntual de θ Iferecia Estadística 95 Capitulo VIII INFERENCIA ETADITICA Es ua rama de de la Estadística que se ocupa de los procedimietos que os permite aalizar y etraer coclusioes de ua població a partir de los datos

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Introducción. Introducción (2) Hasta ahora: estadística descriptiva (para describir datos)

Curso de Estadística Aplicada a las Ciencias Sociales. Introducción. Introducción (2) Hasta ahora: estadística descriptiva (para describir datos) Curso de Estadística Aplicada a las Ciecias Sociales Tema 10. Estimació de ua proporció Cap. 0 del maual Tema 10. Estimació de ua proporció Itroducció 1. Distribució e el muestreo de ua proporció. Estimadores

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles