1. LOS NÚMEROS REALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. LOS NÚMEROS REALES"

Transcripción

1 TEMA NÚMEROS REALES -. LOS NÚMEROS REALES Númers rciles s ls que se puede per cm cciete de ds úmers eters. Su expresió deciml es exct periódic. Númers irrciles s ls rciles, es decir, ls que puede bteerse cm cciete de ds úmers eters. Su expresió deciml es ifiit periódic. Pr ejempl, π Al cjut frmd pr ls úmers rciles y ls irrciles se llm cjut de úmers reles y se desig pr R.

2 .. REPRESENTACIÓN DE NÚMEROS RACIONALES EN LA RECTA Represetció de úmers rciles: Puede existir ds css: Cud el umerdr es myr que el demidr:. Teems que ir restádle úmers eters hst que csigms l frcció c el umerdr mer que el demidr.. Lueg represetms l rect rel, y el eter que s h hech cseguir l frcció c el umerdr mer que el demidr dibujms l rect iclid. Después dividims l rect iclid e tts prtes cm l frcció teg, y e l rect rel hcems l mism desde el eter dde hems dibujd l rect iclid hst el siguiete eter. 4. Uims e l rect iclid hst l rect rel pr el umerdr y l mism desde l últim prció de l rect iclid c el siguiete úmer eter de l rect rel. 4 Ejempl: 5. Prbms restádle : vle 5 5 Prbms restádle : Represetms l rect rel:

3 . Dividims ls segmets: 4. Uims: Cud el umerdr es mer que el demidr:. Se reliz prtir del ps, y l rect iclid se dibuj e el cer. OJO!!Si hubier que represetr lgu frcció egtiv l rect iclid se dibujrí hci el tr setid... REPRESENTACIÓN DE NÚMEROS IRRACIONALES EN LA RECTA Pr represetr úmers irrciles e l rect uméric se debe recurrir ls triáguls rectáguls. Se tiee que descmper e cudrds perfects. Ahr vms bservr lgus ejempls: ) Represetció de, e u triágul rectágul isósceles cuys ctets mide, el vlr de l hipteus es. +

4 b) Represetció de 5, e u triágul rectágul cuys ctets mide y, el vlr de l hipteus es c) Represetció de, e u triágul rectágul cuys ctets mide y, el vlr de l hipteus es. ( ) + +

5 .. INTERVALOS Y SEMIRRECTAS OJO!! Se llm rect rel l rect que represet el itervl (-, + ) OJO!! Ls ifiits y se + ó se represet siempre biert, es decir etre prétesis. Ejempls: ) (-, ) b) [-, ] c) (,4] d) (-, ) e) [, + )

6 .4. RAÍCES Y RADICALES Se llm ríz -ésim de u umer, y se escribe cm, u úmer b que cumple l siguiete cdició: b, si b. Se llm rdicl Se llm rdicd Se llm ídice de l ríz PECULIARIDADES Si 0, existe culquier que se. Si <0, sól existe sus ríces de ídice pr Auque ls ríces cudrds suele teer ríces psitivs y egtivs, sól s referirems l ríz psitiv Ejempl: 4 ríz psitiv ( 4 ) y ríz egtiv (- 4 -). FORMA EXPONENCIAL DE LOS RADICALES / Ejempl: 4 8 (8) (/4) ( 4 ) /4 4/4 m m/ Ejempl: 5 (- ) (/5) (- 5 ) /5 (-) 5/5 - - EJEMPLOS. Decir el vlr de k e cd cs: k Aplicd l defiició de ríz -ésim sbems que b, etces: k k8 k 4-Aplicd l defiició de ríz -ésim sbems que b, etces: (-) k -4 - k - 5 k5. Clcul ls ríces siguietes: 8 x -8 x (-) x - 5 x 5 x (5) x 5

7 .5. PROPIEDADES DE LOS RADICALES Prpiedd : p p, pues : p p p/ p / Simplificció de rdicles Ejempl: /4 / Reducció de rdicles ídice cmú Ejempl: *p Númer pr Prpiedd : b * b * b, pues: * b (*b) / / * b / * Extrcció de fctres fuer de u ríz Ejempl: 8 * * Prduct de rdicles del mism ídice Ejempl: 5* 0 5 * 0 00 Prpiedd : /, pues: b b b b b / / b (Aplicció de ls prpieddes, y ) Simplificció de prducts Ejempl: * 6 * 6 6 * 6 08 Ccietes de rdicles Ejempl:

8 Prpiedd 4: ( ) p p Pteci de u rdicl pues: ( ) p p p p Ejempl: ( ) 4 / 6 64 Prpiedd 5: m m * / m, pues: m / / m* ( ) m * Ríces de ríces Ejempl: 6.6. SUMA Y RESTA DE RADICALES Ds rdicles distits puede sumrse si es bteied sus expresies decimles prximds. Sl puede sumrse rdicles idétics. Pr ejempl: NO SE PUEDEN E cmbi si se pdrí ests css: * - 5 *

9 .7. RACIONALIZACIÓN DE RADICALES Al prces pr el cul hcems desprecer ls rdicles del demidr se les llm rcilizció de demidres. (+b) * (-b) b A l expresió - b se le llm cjugd de + b y vicevers. CASOS DE RACIONALIZACIÓN Ríces cudrds: Multiplicms rrib y bj pr l ríz del demidr. Otrs ríces: Ejempl: Ejempl: 5 7 * Rcilizms elevd el rdicd u úmer más * Sum y rests de ríces (Cjugd): Multiplicms rrib y bj pr el cjugd, es decir, si teems u rest multiplicms pr u sum y vicevers. Ejempl: 5 Cjugd 5 * ( 5) * ( )

10 .8. NÚMEROS APROXIMADOS. NOTACIÓN CIENTÍFICA APROXIMACIONES Y ERRORES Se llm cifrs sigifictivs ls que se us pr expresr u úmer prximd. Sól se debe utilizr quells cuy exctitud s cste y de md que se relevtes pr l que se dese trsmitir. Errr bslut de u medid prximd es l difereci etre el vlr rel y el vlr prximd. Errr bslut Vlr rel Vlr prximd El vlr exct, geerlmete, es desccid. Pr tt, tmbié se descce el errr bslut. L imprtte es pder ctrl: el errr bslut es mer que U ct del errr bslut se btiee prtir de l últim cifr sigifictiv utilizd Errr reltiv es el cciete etre el errr bslut y el vlr rel. Ejempl: Al medir u pisci se btiee litrs. Es decir dm, es decir 78,900 m. Per serí más rzble decir que tiee 79 m. Etces l últim cifr sigifictiv (9) desig uiddes de m. Etces el errr bslut es mer que medi metr cúbic (errr < 0.5 m ) El errr reltiv es E r < 79 < Ejempl: Dd el úmer,784, Clcul el errr bslut y reltiv l redderl ls cetésims.,78 El errr bslut es: E,784,78 0,004 0,004 El errr reltiv es E r 0,004 0, ,784

11 NOTACIÓN CIENTÍFICA Ls úmers e tció cietífic s quells que tiee u úmer deciml multiplicds pr u pteci de 0. El úmer deciml siempre tiee que ser myr igul que y mer que 0. L pteci de 0, siempre debe teer u expete eter. Si el expete es psitiv, se pe l prte deciml si l cm y se le pe cers Cuáts? Pues el expete mes el úmer de cifrs que hy después de l cm. Si el expete es egtiv, se pe 0, y después cers y después l prte deciml si l cm. Cuáts cers? Pues el expete mes el úmer de cifrs que hy después de l cm. Ejempls, ,8 0-0,

12 Opercies c tció cietífic Sum y rest: Pr sumr y/ restr e tció cietífic, debe teer l mism pteci de 0. Si es sí, debems perl e l mism pteci (Recmedble psrl l expete myr). Si querems per u expete más grde, mvems l cm hcí l izquierd tts veces cm se ecesri:, , Si querems per u expete más pequeñ, mvems l cm hcí l derech tts veces cm se ecesri: 0, , U vez que ls teems c l mism pteci, l que hcems es sumr y/ restr ls úmers decimles y dejr l pteci tl cul. Ejempl:, , (,5 +,04) 0 5, Multiplicció y divisió: E l multiplicció, se multiplic ls úmers decimles y se sum ls expetes de ls ptecis: Ejempl:(,5 0 5 ) x (, ) (,5,04) ( ), E l divisió, se divide ls úmers decimles y se rest ls expetes de ls ptecis: Ejempl:(0, 0 9 ) : (,4 0 5 ) (0, :,4) (0 9 : 0 5 ) 4, 0 4

13 .9. LOGARITMOS El lgritm de u úmer, e u bse dd, es el expete l cul se debe elevr l bse pr bteer el úmer. Sied l bse, x el úmer e y el lgritm. PROPIEDADES DE LOS LOGARITMOS. N existe el lgritm de cer.. El lgritm de es cer.. El lgritm e bse de es u. 4. Prduct de u lgritm. 5. Cciete de u lgritm. 6. Pteci de u lgritm.. 7. Ríz de u lgritm. 8. Cmbi de bse de u lgritm.

1. LOS NÚMEROS REALES

1. LOS NÚMEROS REALES TEMA NÚMEROS REALES -. LOS NÚMEROS REALES Númers rciles s ls que se puede per cm cciete de ds úmers eters. Su expresió deciml es exct periódic. Númers irrciles s ls rciles, es decir, ls que puede bteerse

Más detalles

1. LOS NÚMEROS REALES

1. LOS NÚMEROS REALES TEMA NÚMEROS REALES -. LOS NÚMEROS REALES Númers rciles s ls que se puede per cm cciete de ds úmers eters. Su expresió deciml es exct periódic. Númers irrciles s ls rciles, es decir, ls que puede bteerse

Más detalles

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!!

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!! Mtemátic 4º ñ Arte Ríz -ésim de u úmer Rdicció Llmms ríz -ésim de u úmer rel, y l simblizms, u úmer b defiid de l siguiete frm: b b > b, ℵ Si es pr, > 0, 0 Si es impr, b b, ℵ Númer rdicl 5 Ejempls: 04

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50 Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c Elbrd pr: Jhy Chquehuc Lizrrg Mtemátics Pre-Uiversitri. Hllr el ceficiete del mmi M ( ) si su grd es. Slució: empled l siguiete prpiedd de prduct de bses c u mism epete detr de l llve c c c M ( ) Orded

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el log de mte de id. Mtemátics plicds ls ciecis sociles I: NÚMEROS REALES pág. INTERVALOS Y SEMIRRECTAS. L ordeció de úmeros permite defiir lguos cojutos de úmeros que tiee u represetció geométric e l

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL

PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL E este teril de trbj se relizrá ejercicis pr verificr si ls prpieddes de ls ptecis c bse turl eter y expete turl se cuple cud l bse es u

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso.

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso. TEMA : NÚMEROS REALES. Clsificció de los úeros reles.. Itervlos y seirrects.. Vlor bsoluto de u úero rel.. Potecis y rdicles. Propieddes.. Clsificció de los úeros reles. No olvideos: ) Los úeros rcioles

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

Departamento de Matemáticas. I.E.S. Ciudad de Arjona 1º BAC UNIDAD Nº 1: NÚMEROS REALES

Departamento de Matemáticas. I.E.S. Ciudad de Arjona 1º BAC UNIDAD Nº 1: NÚMEROS REALES Deprteto de Mteátics. I.E.S. Ciudd de Arjo º BAC UNIDAD Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. Defiició: Llreos frcció u expresió teátic del tipo, siedo y úeros eteros uerdor y

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1 Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: Si POTENCIA DE UN NÚMERO N y R, etoces, es igul l producto de veces el úmero rel

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales. POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2

Más detalles

Capítulo 3. Potencias de números enteros

Capítulo 3. Potencias de números enteros Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se

Más detalles

Unidad 1: NÚMEROS REALES

Unidad 1: NÚMEROS REALES Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo Uidd : NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: L Lcircufere ci r d d El úero ríz de dos: d Cuál es l logitud de l digol? d

Más detalles

1.3.6 Fracciones y porcentaje

1.3.6 Fracciones y porcentaje Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este docueto es de distribució grtuit y lleg grcis Cieci Mteátic www.ciecitetic.co El yor portl de recursos eductivos tu servicio! Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El

Más detalles

!!!""#""!!! !!!""#""!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2,

!!!#!!! !!!#!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2, Tem Nº ritmétic y álgebr! Obté co l clculdor:, y /y,0 bb ± /y -,0 cc [(--- ---] y /y, dd y ± /y 0,0 ee y /y, f y ± /y 0, gg 0,0 -/ 0,0 00 y ±,00 hh 0, 00 000 /y y ±,0 Epres e form epoecil: dd bb ee cc

Más detalles

Ejercicios para entrenarse

Ejercicios para entrenarse Uidd Potecis de úmeros reles Ejercicios pr etrerse Clcul ls siguietes expresioes: : 0 :. : 9 :. c)) - 0 -. d)) : : - 9 9 9 - /. Clcul ls siguietes expresioes: x x x x x : x x - x - /x. ( -x) x x x x x

Más detalles

Para ordenar números decimales debemos tener en cuenta la siguiente imagen:

Para ordenar números decimales debemos tener en cuenta la siguiente imagen: TEMA y NÚMEROS DECIMALES Y FRACCIONES. ORDENAR NÚMEROS DECIMALES Pr order úeros deciles deeos teer e cuet l siguiete ige: Lo que vos hcer es coprr priero l prte eter cifr cifr ver si so igules y si so

Más detalles

Matemáticas técnicas. Física Sexta edición Paul E. Tippens. Capítulo 2

Matemáticas técnicas. Física Sexta edición Paul E. Tippens. Capítulo 2 Cpítulo 2 Físic Sext edició Pul E. Tippes Mtemátics técics Números co sigo Repso de álgebr Expoetes y rdicles Notció cietífic Gráfics Geometrí Trigoometrí del triágulo rectágulo Números co sigo Regl de

Más detalles

El factor que se repite se llama base y el número de veces que aparece la base como factor se llama exponente

El factor que se repite se llama base y el número de veces que aparece la base como factor se llama exponente º ESO ACADÉMICAS UNIDAD.- POTENCIAS Y RAÍCES PROFESOR: RAFAEL NÚÑEZ NOGALES.- POTENCIAS Potecis de se positiv y expoete turl U poteci es u for siplificd de escriir u producto de fctores igules. Por ejeplo,

Más detalles

TEMA 1. NÚMEROS (REPASO)

TEMA 1. NÚMEROS (REPASO) TEMA. NÚMEROS (REPASO).. FACTORIZACIÓN MÚLTIPLOS: Sn múltipls de un númer tds quells que se btienen l multiplicrl pr cer pr culquier númer nturl. DIVISORES: Se dice que un númer b es divisr de tr númer,

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

Operaciones con fracciones

Operaciones con fracciones lsmtemtics.eu Pedro Cstro Orteg mteriles de mtemátics Uidd. Números reles. Logritmos Opercioes co frccioes Mtemátics I - º de Bchillerto Operció Sum c d + c + d d Rest (difereci) c d c d d Ejemplo + +

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

NÚMEROS REALES. nombre expresión desigualdad representación expresión desigualdad representación. [a, b] (, b]

NÚMEROS REALES. nombre expresión desigualdad representación expresión desigualdad representación. [a, b] (, b] Lo fudmetl de l uidd Nomre y pellidos:... Curso:... Fech:... NÚMEROS REALES NÚMEROS RACIONALES So los que se puede expresr como... ejemplo: 4, = NÚMEROS IRRACIONALES So quellos cuy expresió deciml.. ejemplo:

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles

; para i=1, 2,,m y j=1, 2,,n

; para i=1, 2,,m y j=1, 2,,n Mtrices y deterites MRICES U triz de x c eleets e se defie c u rregl de l fr dde,,, y, Iguldd de Mtrices Ávil Núñez Mrí del Rcí Rdríguez Chávez Rslb b b b b b b b b b Se M y M b ds trices del is rde, pdes

Más detalles

Una potencia es una forma abreviada de escribir un producto de factores iguales:

Una potencia es una forma abreviada de escribir un producto de factores iguales: POTENCIAS. POTENCIAS DE NÚMEROS ENTEROS U poteci es u for revid de escriir u producto de fctores igules E ls potecis, el fctor repetido se ll se, y el úero de veces que se repite, expoete. Al utilizr ls

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

Resúmenes de Matemáticas para Bachillerato NÚMEROS REALES. L d. Demostración de la irracionalidad de 2 :

Resúmenes de Matemáticas para Bachillerato NÚMEROS REALES. L d. Demostración de la irracionalidad de 2 : Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: p Lcircufere ci = p r = p d fi p = El úero ríz de dos: L d d Cuál es l logitud de l

Más detalles

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010 EXÁMENES CURSO CTUL. RESOLUCIÓN ISIDORO PONTE E.S.M.C, EXMEN: MPLICIÓN DE MTEMTICS Y TRIGONOMETRI ESFÉRIC (F.FEBRERO) CURSO:9/ de febrer de. )Dd l mtri, clcul: I ( I mtri idetidd) ) Clculms I I Clculms

Más detalles

Para ordenar números decimales debemos tener en cuenta la siguiente imagen:

Para ordenar números decimales debemos tener en cuenta la siguiente imagen: TEMA 2 - NÚMEROS DECIMALES 1. ORDENAR NÚMEROS DECIMALES Para rdenar númers decimales debems tener en cuenta la siguiente imagen: L que vams a hacer es cmparar primer la parte entera cifra a cifra a ver

Más detalles

Tema 1: NÚMEROS REALES.

Tema 1: NÚMEROS REALES. I.E.S. Slvdor Serro - Deprteto de Mteátics MATEMÁTICAS ACADÉMICAS º ESO - 0 / Te : NÚMEROS REALES. Actividdes pr preprr el exe: Teorí: Cotest si so cierts ls siguietes fircioes: Todo úero etero es turl.

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

TEMA 2: POTENCIAS. NÚMEROS APROXIMADOS POTENCIAS Potencias de exponente positivo. Recordemos el concepto de potencia de exponente positivo: m n a

TEMA 2: POTENCIAS. NÚMEROS APROXIMADOS POTENCIAS Potencias de exponente positivo. Recordemos el concepto de potencia de exponente positivo: m n a TEMA : POTENCIAS. NÚMEROS APROXIMADOS POTENCIAS Potecis de expoete positivo. Recordemos el cocepto de poteci de expoete positivo: Por ejemplo: (. ) 1 Recordemos ls propieddes de ls potecis: m 1) m m )

Más detalles

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario: EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer

Más detalles

EXPONENTES ( POTENCIAS Y RAÍCES )

EXPONENTES ( POTENCIAS Y RAÍCES ) EXPONENTES ( POTENCIAS Y RAÍCES Cursos ALBERT EINSTEIN - ONLINE Clle Mdrid Esqui c/ Av L Triidd LAS MERCEDES 9977 990 www. -eistei.co ALGEBRA es l prte de l teátic que estudi l ctidd e su for ás geerl,

Más detalles

( 2)( 2).( 2).( 2)

( 2)( 2).( 2).( 2) º ESO UNIDAD.- POTENCIAS Y RAÍCES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador.

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador. Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

3 Potencias y raíces de números

3 Potencias y raíces de números Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces

Más detalles

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando: Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día viernes 24 de junio en hojas de carpeta)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día viernes 24 de junio en hojas de carpeta) RAÍCES Y SUS PROPIEDADES Guí r el redizje (Presetr el dí vieres de juio e hojs de cret) NOMBRE DEL ESTUDIANTE: CURSO: RADICALES Se llm ríz -ésim de u úmero, y se escribe, u úmero b que elevdo de. 9 =,

Más detalles

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden.

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden. Clse : Sistems uméricos de úmeros reles Distiguir diferetes sistems uméricos de úmeros reles, sus opercioes, estructur lgebric y propieddes de orde. Clculr expresioes de úmeros reles usdo ls propieddes

Más detalles

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA Cipri Stig Zrgz Deprtmet de Mtemátics Diciembre de 2009 Ccepts Serie U serie de úmers reles es u pr rded (f g ; fa g) e el que f g es u sucesió de úmers

Más detalles

Radicales MATEMÁTICAS I 1

Radicales MATEMÁTICAS I 1 Rdicles MATEMÁTICAS I. POTENCIAS DE EXPONENTE FRACCIONARIO. RADICALES..- Cocepto de rdicció Ddo u úero rel R y N, l ecució x tiee: Si es ipr, y culquier úero, u úic solució que se deot por. Si es pr y

Más detalles

Departamento de Matemáticas 4º ESO Unidad 1 Números reales IES Diego Tortosa. Unidad 1: Números reales

Departamento de Matemáticas 4º ESO Unidad 1 Números reales IES Diego Tortosa. Unidad 1: Números reales Uidd 1: Números reles 1 Itroducció Los úmeros reles se represet co l letr R, y prece por l ecesidd de relizr cálculos más complejos y que e épocs como etre el siglo XVI y el XVII, se hcí ecesris uevs cifrs

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1. Números rcioles. Los úmeros reles. 1.1.1. Sucesivs mlicioes el cmo umérico. LOS NÚMEROS NATURALES. N= {1,2,,4,...} LOS NÚMEROS ENTEROS. Z ={...,-4,-,-2,-1,0,1,2,,4,...} LOS

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos

Más detalles

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + ) LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES

Más detalles

PROPIEDAD FUNDAMENTAL DE LOS RADICALES

PROPIEDAD FUNDAMENTAL DE LOS RADICALES Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.

Más detalles

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2 Solucioes de ls ctividdes Pági. Los resultdos so ) - ) -, -, π π π 0,. Los resultdos epresdos e otció cietífic so ) ) 0, 0, 0, 0, 0, 0 (0 0 - ),0 0 (,,) 0,0 (0,,) (0-0 ) 0,, 0 0 -, 0 -. Los resultdos so

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:.. GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz

Más detalles

Neper ( ) Lección 2. Potencias, radicales y logarítmos

Neper ( ) Lección 2. Potencias, radicales y logarítmos Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO cdémics FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( )

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Tem. Opercioes co úmeros reles Tem. Opercioes co Números Reles. Aproimció deciml de los úmeros reles.. Itroducció.. Tipos de proimcioes. Trucmieto y redodeo.. Cotrol del error cometido e ls proimcioes..

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Tem. Opercioes co úmeros reles Tem. Opercioes co Números Reles. Aproimció deciml de los úmeros reles.. Itroducció.. Tipos de proimcioes. Trucmieto y redodeo.. Cotrol del error cometido e ls proimcioes..

Más detalles

RADICALES: INTRODUCCIÓN

RADICALES: INTRODUCCIÓN RADICALES: INTRODUCCIÓN RAÍZ ENÉSIMA.- Ríz cudrd.- Ddo u úero rel, se defie su ríz cudrd, y se ot:, l úero rel b, ue l elevrlo l cudrdo dé, es decir: b b Ejelos.-, orue: ( ) ; y tbié:, orue: ( ). Luego:

Más detalles

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N) rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio

Más detalles

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros.

Exponentes. Es una combinación de variables y números que pueden estar conectados con signos operativos: +, -, x, /, entre otros. Epoetes Epresioes lgebrics E el curso de rzoieto teático se lizro coceptos básicos e lgebr se hiciero trduccioes del leguje verbl l leguje lgebrico vicevers. Recuerd lguos coceptos iporttes Es u cobició

Más detalles

Unidad 1 NÚMEROS REALES Y NÚMEROS COMPLEJOS

Unidad 1 NÚMEROS REALES Y NÚMEROS COMPLEJOS Mtemátic I. Ciclo técico profesiol. ITSA Atlático Profesor: Bls Torres Suárez. Versió.0 Uidd NÚMEROS REALES Y NÚMEROS COMPLEJOS Competecis desrrollr: Idetificr los diferetes cojutos uméricos que coform

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Aprendizajes esperados:

Aprendizajes esperados: Deprtmeto de Mtemátics Profesor: Guillermo Corbcho C. cüâxut wx äxä wx `tàxåöà vtá Octvos Básicos NOMBRES: PUNTAJE / 30 NOTA: Apredizjes esperdos: Aplicr regl de los sigos e l multiplicció y divisió de

Más detalles

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I TEMA : LOS NÚMEROS REALES LOS NÚMEROS REALES. CLASIFICACIÓN. Detro del cojuto de los úeros reles distiguios: NATURALES. Se desig co l letr N y so los úeros si deciles y positivos 0,,,,. ENTEROS. Se desig

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

4ºB ESO Capítulo 2: Potencias y raíces

4ºB ESO Capítulo 2: Potencias y raíces Mtemátics orietds ls eseñzs cdémics. ºB ESO Cpítulo : Potecis y ríces LibrosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de

Más detalles

4ºB ESO Capítulo 2: Potencias y raíces

4ºB ESO Capítulo 2: Potencias y raíces Mtemátics orietds ls eseñzs cdémics. ºB ESO Cpítulo : Potecis y ríces LibrosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

1º Bachillerato Capítulo 1: Números reales

1º Bachillerato Capítulo 1: Números reales Mtemátics Aplicds ls Ciecis Sociles I º Bchillerto Cpítulo : Ídice. NÚMEROS REALES.. NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES.. LA RECTA REAL.. VALOR ABSOLUTO. DISTANCIA EN LA RECTA REAL.. INTERVALOS

Más detalles