( x) (0) ( y) (0) x x. a b a b. r r. a+ b a + b. a a. lim. x y x. LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 1 de 9

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( x) (0) ( y) (0) x x. a b a b. r r. a+ b a + b. a a. lim. x y x. LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 1 de 9"

Transcripción

1 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página de 9 Acotaciones usuales en el cálculo de límites: sen( ) cos( ) Popiedades: X X o X X o X X X + Y X + Y X oy X o Y i i i i a 0 si a 0 a a a b b a a a a a ab. a b a a b b a b a + b a b a b a+ b a + b a b a b si a > 0 b > 0 a+ b tenemos : a. b. Calcula el siguiente Limite: (, ) (0,0) Iteados ( ) (0)( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) Limites dieccionales: ecta m ( m) ( m) ( ) ( ) m m f ( m) m + m (, ) (0, m) ( ) (0) ( ) (0) El límite no eiste, depende del valo de m. Es deci, según la ecta po la que nos apoimemos al punto (0,0) tendíamos distintos valoes paa el ite ( L ), po ejemplo si m nos estaíamos moviendo po la ecta, el ite seia, L - /3, ahoa si el valo de m 3 nos estaíamos moviendo po la ecta 3, el ite seia, L - 8/9, al habe encontado dos caminos que conducen a ites difeentes en la esfea abieta con cento en (0,0), podemos afima que el ite no eiste.

2 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página de 9. Compoba que : Iteados (, ) (0,0) ( ) (0)( ) (0) ( ) (0) ( ) (0)( ) (0) ( ) (0) 5 + (0) (0) 0 Limites dieccionales: Recta m 5 5 m 5m 0 (, ) (0, m) ( ) (0) (0) + + ( m) + m Paábola a (, ) (0, ) (0) (0) 5 5 a 5a ( a ) + a a Eiste la posibilidad que el valo del límite sea ceo. Veificamos utilizando la definición: f( X) L < ε 0< X X0 < δ < ε 0 < (, ) (0,0) < δ Sabemos que: 5 + < ε 0 < + < δ < + + Po lo tanto: 5 < 5 + < 5δ + Hemos encontado un valo de δ > 0 paa ε > 0 po lo tanto ε 5δ δ ε 5 el límite es coecto. 3. Compoba aplicando la definición que el siguiente ite es coecto: (, ) (0,0) + sen 0 Debemos poba que: f( X) L < ε 0< X X0 < δ

3 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 3 de 9 + sen 0 < ε 0 < (, ) (0,0) < δ + sen < ε 0 < + < δ ( + ) ( + ) sen sen Po lo tanto Concluimos que: Sabemos que: + sen + + < δ ε δ δ ε sen Acotado Hemos encontado un valo de δ > 0 paa ε > 0 el límite es coecto. 4. Compoba aplicando la definición que el siguiente ite es coecto: (, ) (0,0) 4 ( f( X) L < ε 0< X X < δ 0 4 ( < ε 0< + < δ 4 ( ( Sabemos que: < + Po lo tanto: Po lo tanto ε 4δ δ ε 4 Hemos encontado un valo de δ > 0 paa ε > 0 el límite es coecto.

4 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 4 de 9 5. Compoba aplicando la definición que el siguiente ite es coecto: (+ 3 ) (, ) (,3) f( X) L < ε 0< X X < δ < ε 0< + 3 < δ + 3 ( + 3( 3) ( + 3( 3) ( + 3 ( 3) Tenemos que: ( < ( + ( 3 ) ( 3) < ( + ( 3) Po lo tanto: ( + 3( 3) < < 5X Lo que implica ε 5δ δ ε 5 Hemos encontado un valo de δ > 0 paa ε > 0 el límite es coecto 6. Compoba que el siguiente ite es coecto: (, ) (0,0) Iteados + 0 ( ) (0)( ) (0) + ( ) (0) + 0 ( ) (0)( ) (0) + ( ) (0) Limites dieccionales: Recta m + + m 0 + m + (, ) (0, m) ( ) (0) Paábola a (, ) (0, ) (0) a a + a

5 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 5 de 9 Eiste la posibilidad que el valo del límite sea ceo. Veificamos utilizando la definición: f( X) L < ε 0< X X0 < δ < ε 0 < (, ) (0,0) < δ + + < ε 0 < + < δ Sabemos que: + < δ Po lo tanto debemos acota + < X < X < X X < δ Paa estos casos escogemos un valo de 0< δ abitaio, po ejemplo / < δ < < < Sumamos a cada miembo de la desigualdad: + < + < + 3 < + < 5 + < 3 Acotado Po lo tanto: + δ 4δ 3 < ε δ ε + ( 3 ) Hemos encontado un valo de δ > 0 paa ε > 0 3 δ min, ε 4 el límite es coecto. Limites Popuestos: a. Demosta ( utilizando definición, iteados, taectoias) que: (, ) (0,0) (, ) (0,0) b. Demosta ( utilizando definición) que: 0 + (, ) (0,0) (3 + ) 5 (, ) (,)

6 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 6 de 9 Los límites de funciones de vaias vaiables tienen las mismas popiedades con especto a las sumas, difeencias, poductos cocientes, que las funciones de una sola vaiable, como se muesta en el siguiente ejemplo. Calcule los siguientes límites. (, ) (, (, ) (4,4) Solución. Paa este límite, factoizamos el denominado; (, ) (, 3 3 (, ) (, (, ) (,. Paa este límite acionalizamos el denominado; ( ) (, ) (4,4) (, ) (4,4) (, ) (4,4) ( ) Eisten algunas técnicas que a veces esultan útiles en el cálculo de límites. El siguiente ejemplo ilusta el uso de coodenadas polaes en el cálculo de un límite. Ejemplo Use coodenadas polaes paa compoba que 0 + (, ) (0,0) Solución Sean (, θ ) las coodenadas polaes del punto (, ). Entonces, como (, ) ( sen. θ,.cos θ ) ( sen )( ) ( sen. θ) (.cosθ). θ.cos θ. senθ cosθ (, ) (0,0) sen. θ cosθ Pues, senθ.cosθ paa cualquie valo de θ

7 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 7 de 9 CONTINUIDAD: 7. Estudia la continuidad de f en el punto (0,0) + ( + + f(, ) si (, ) (0,0) + si (, ) (0,0) a. f( 0, 0) Eiste la función evaluada en (0,0). b. Calculemos el ite (, ) (0,0) + ( Iteados ( + )( ( + )( ( ) (0)( ) (0) ( ) (0) ( ) (0)( ) (0) ( ) (0) Limites dieccionales: Recta m ( + )( + + (, ) (0, m) ( ) (0) Paábola ( + m )( + m m a 4 ( + )( + + ( + a )( + a a (, ) (0, a) ( ) (0) Eiste la posibilidad que el valo del límite sea ceo. Veificamos utilizando la definición: f( X) L < ε 0< X X0 < δ + ( < ε 0 < (, ) (0,0) < δ + + ( < ε 0 < + < δ + (

8 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 8 de 9 Debemos acota tanto el numeado como el denominado. Sabemos: < X < δ < X < δ Escogemos un valo de 0< δ abitaio, po ejemplo /4 : < X < < X < < X < < X < ( ) ( ) ( ) ( ) + < + + < 4 4 < + < Sumamos : 3 + < + + < < Acotado: Po ota pate: + < + + < X + < X < δ < + δ δ 3δ < ε + δ 4 Hemos encontado un valo de δ > 0 paa ε > 0 c. Veificamos si: f(, ) 0 0 (, ) (0,0) + ( el límite es coecto Falso Po lo tanto la función pesenta una discontinuidad de tipo evitable. En (0,0). La etensión continua de la función seá: + ( + + f (, ) si (, ) (0,0) + 0 si (, ) (0,0) 8. Estudia la continuidad de f en : R si > f(, ) + e si a. La función es continua en : R {(, ) / } b. Falta eamina en los puntos de la ecta es deci: (, ) Paa el cálculo del límite debemos distingui dos egiones a a a R > la egión

9 LIMITES Y CONTINUIDAD Ing. Luis Di Stefano Página 9 de 9 > : : a a e e e (, ) ( a, a) + ( ) ( a) a ( ) ( a) a a (, ) ( a, a) ( L HOPITAL) Po lo tanto el límite eiste vale a, es deci la función es continua en los puntos Nota: Todos los ejecicios esueltos están sujetos a cualquie evisión ectificación

Cálculo diferencial e integral en una variable. Examen Febrero de 2018

Cálculo diferencial e integral en una variable. Examen Febrero de 2018 Cálculo difeencial e integal en una vaiable 2do semeste de 207 Examen Febeo de 208 Ejecicios: Múltiple opción (Total: 6 puntos) Ejecicio Sea f : [, + ) R una función continua tal que x R. Indique la opción

Más detalles

OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES . SUMA Y RESTA DE FUNCIONES OPERACIONES CON FUNCIONES Dadas g unciones eales de vaiable eal se deine la unción suma + g como: g g con Dom g Dom Dom g Es deci, la unción g hace coesponde a cada númeo eal

Más detalles

S11: Funciones continuas. Limites con dos variables.

S11: Funciones continuas. Limites con dos variables. S11: Funciones continuas. Limites con dos variables. Una función f() es continua en un punto interior a X si: 1) f = a B 2) f = A A = B = f(a) a + Discontinuidad de 1ª especie: A y B Si A = B f(a) (Discontinuidad

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007 Soluciones de los ejecicios del eamen Pacial de Pime cuso de Ingenieía de Telecomunicación - febeo de 7 Ejecicio a) Paa todo > sea f ) log e, y f ). Justifica que lím f ). Estudia el signo de la deivada

Más detalles

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0 Puebas de Aptitud paa el Acceso a la Univesidad SEPTIEMBRE 9 Matemáticas II ÁLGEBRA a [,5 puntos] Sean las matices A = b c, I = de oden Halla la elación ente los paámetos a, b y c paa que se veifique que

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0 Pueba de cceso a la Univesidad. JUNIO 0. Instucciones: Se poponen dos opciones y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A CASTILLA Y LEÓN / SEPTIEMBRE. LOGSE / MATEMÁTICAS II / EXAMEN CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se obsevaán fundamentalmente los siguientes aspectos: coecta utilización de los conceptos,

Más detalles

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a.

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a. Pueba de Acceso a la Univesidad. SEPTIEMBRE 00. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

y 2 dy dx = 1 x 2 dx y 2 dy = 1 9 sen 1. 0 x 3 y dy dx = 0 dx = 0. 6 = y=x 2 1 y [y 2 y 3 ] dy = 1 [ 1 1 e = cos y x sen x dx + π

y 2 dy dx = 1 x 2 dx y 2 dy = 1 9 sen 1. 0 x 3 y dy dx = 0 dx = 0. 6 = y=x 2 1 y [y 2 y 3 ] dy = 1 [ 1 1 e = cos y x sen x dx + π Solciones de poblemas de Cálclo (gpo - /6). Integales múltiples. a) b) c) ( + ) d d = e d d = [ e ] d d + d = d d = d + d =. [ e ] d = e = e. () cos d d = [ sen ] d = sen d = 9 sen.. a) log() d d = log

Más detalles

Calcular el rango de ( AB )T. (1 punto)

Calcular el rango de ( AB )T. (1 punto) Pueba de Acceso a la Univesidad. JUNIO. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes

Aplicaciones de la Optimización Convexa al análisis de redes Aplicaciones de la Optimización Convea al análisis de edes Intoducción Repaso de conceptos básicos de unciones de vaias vaiables y conveidad Repaso : Función deivada pacial La deivada pacial de con especto

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 )

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 ) Aplicaciones de la deivada MATEMÁTICAS II CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN.. Definiciones Se dice que una función f es ceciente en un punto si paa cualquie punto de un entono de, (, + ) se veifica:

Más detalles

Límites y continuidad. Juan Manuel Rodríguez Prieto

Límites y continuidad. Juan Manuel Rodríguez Prieto continuidad Juan Manuel Rodríguez Prieto Recuerdan el límite.2.98.96 sin() f().94.92.9.88.86.84 - -.8 -.6 -.4 -.2.2.4.6.8 .5 Recuerdan el límite sin() 2.5.49.48.47.46.45.44.43.42 - -.8 -.6 -.4 -.2.2.4.6.8

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x) 1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

Tema 8. FUNCIONES DE DOS VARIABLES. se presentan con notable frecuencia, así una función de producción q = f ( l,

Tema 8. FUNCIONES DE DOS VARIABLES. se presentan con notable frecuencia, así una función de producción q = f ( l, 1 Tema 8 FUNCIONES DE DOS VARIABLES Intoducción Las unciones de dos vaiables z = se pesentan con notable ecuenci así una unción de poducción q = ( l, k), el volumen de poducto obtenido q, depende de los

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

GUIA DE MATEMATICAS I, CAPITULO III

GUIA DE MATEMATICAS I, CAPITULO III UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICE-RECTORADO ACADEMICO DEPARTAMENTO DE CIENCIA Y TECNOLOGIA AREA DE MATEMATICAS GUIA DE MATEMATICAS I, CAPITULO III Prof. Orlando Baisdem Pérez Puerto Ordaz,

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Tema 7 Problemas métricos

Tema 7 Problemas métricos Tema 7 Poblemas méticos. Plano pependicula. Halla la ecuación del plano que contiene a los puntos A (- -) B ( -) es pependicula al plano. Los vectoes AB n (vecto nomal del plano ) uno de los puntos A o

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N.

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N. Cálculo Difeencial e Integal - Función invesa y límite. Faith J. Biceño N. Objetivos a cubi Función inyectiva. Función invesa. De nición fomal de límite. Límites lateales. Cálculo de límites. Código :

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim Sección. Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Matemáticas. Preparado por Dr. Eliseo Cruz Medina Mate 01. Ejercicios resueltos correspondientes al primer eamen parcial.

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA Cuso: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: ING. JORGE MONTAÑO PISFIL TEORÍA

Más detalles

Capitulo III. Capítulo III

Capitulo III. Capítulo III Cinemática y Dinámica de Máquinas. III. Métodos analíti de análisis cinemático Capitulo III Métodos analíti de análisis cinemático. 1 R Sancibián y. de Juan. Ing. Mecánica Cinemática y Dinámica de Máquinas.

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI.5 Límites laterales. Cálculo de límites. Límites en el infinito. Límites infinitos Límites

Más detalles

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I Unidad 2. Tigonometía 2.7 Cuvas paaméticas Cuvas paaméticas Supongamos que en un plano catesiano dibujamos una cuva, y que el punto de la cuva coespondiente al instante t se denota po P(t) entonces, como

Más detalles

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior. Firma NÚMERO DE MATRÍCULA: PARALELO:..

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior. Firma NÚMERO DE MATRÍCULA: PARALELO:.. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA SEGUNDA EVALUACION DE FISICA C FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al fima este compomiso,

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

Objetivos El alumno conocerá y aplicará diferentes métodos de solución numérica para la resolución de sistemas de ecuaciones lineales.

Objetivos El alumno conocerá y aplicará diferentes métodos de solución numérica para la resolución de sistemas de ecuaciones lineales. PÁCTICA SOLUCIÓN NUMÉICA DE SISTEMAS DE ECUACIONES LINEALES (PATE I) Objetivos El alumno conoceá aplicaá difeentes métodos de solución numéica paa la esolución de sistemas de ecuaciones lineales. Elaboada

Más detalles

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS ELIMINATORIA, 14 de abil de 007 PROBLEMAS 1) Un númeo positivo tiene la popiedad de que su doble es una unidad más gande que él, cuántos divisoes positivos tiene? a) 1 b) c) 3 d) No se puede detemina )

Más detalles

Tema 5.3: Teorema de Bloch-Landau. Teorema (pequeño) de Picard

Tema 5.3: Teorema de Bloch-Landau. Teorema (pequeño) de Picard Tema 5.3: Teoema de Bloch-Landau. Teoema (pequeño) de Picad Facultad de Ciencias Expeimentales, Cuso 008-09 Enique de Amo, Univesidad de Almeía Picad demostó (en 879) que las funciones enteas no constantes

Más detalles

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Ingeniería Matemática Guía Semana 3 Diferenciabilidad y derivadas. Sean Ω

Más detalles

Psicometría. 25/06/2013 Foro Asignatura. Junio 2012

Psicometría. 25/06/2013 Foro Asignatura. Junio 2012 Código asignatua Nombe asignatua 601060 Psicometía Fecha alta y oigen Convocatoia 5/06/013 Foo Asignatua Junio 01 JUNIO 01 GRADO 1ª EMANA 1. Los test en los que el esultado depende del dominio de los sujetos

Más detalles

EXAMEN TEMA 2:Funciones de varias variables

EXAMEN TEMA 2:Funciones de varias variables GRUPO 4Mb (16-17) CÁLCULO ETSI Informática (UPM) 8 de Junio - 217 Tiempo: 2 horas Nombre y Apellidos: Nº de Matrícula: Pr 1 Pr 2 Pr3 Pr4 Nota EXAMEN TEMA 2:Funciones de varias variables 2x 3 y 3 +yx 2

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Aplicación de los Residuos al cálculo de Integrales Reales

Aplicación de los Residuos al cálculo de Integrales Reales Aplicación de los Residuos al cálculo de Integales Reales A continuación, se haá un estudio sobe cietos tipos de integales eales que pesentan una equivalencia con las integales complejas sobe caminos ceados,

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

Práctica 8: Carta de Smith

Práctica 8: Carta de Smith Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.

Más detalles

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático

Más detalles

TEST. (20 puntos) Tiempo 30 minutos

TEST. (20 puntos) Tiempo 30 minutos Mat II (GIB) - 3/4/207 Prueba (EC). 45 puntos (= 45 % NOTA FINAL) Apellidos............................................. Nombre...................... DNI..........................Grupo..........................Tiempo

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

Tema 4.- La economía abierta

Tema 4.- La economía abierta Tema 4.- La economía abieta -Intoducción -Los flujos intenacionales de capitales y mecancías -El ahoo y la invesión en una pequeña economía abieta -Los tipos de cambio La economía ceada popociona modelos

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos página 1/11 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos Hoja 2. Problema 1 Resuelto por Sara Aparicio (noviembre 2014) 1. Estudiar la continuidad y derivabilidad

Más detalles

π r. Cada círculo menor es de radio 2. Por

π r. Cada círculo menor es de radio 2. Por Pueba CNU Venezuela, Septiembe de 004. Modelo. Soluciones. < Si, y z son enteos positivos, tales que z. Cuál de las siguientes epesiones es mayo que? z ( ) ( ) a) z b) z c) z d) z e) = ( ) < ( ) = < Solución:

Más detalles

Cálculo Diferencial e Integral - Plano cartesiano. Funciones. Farith J. Briceño N.

Cálculo Diferencial e Integral - Plano cartesiano. Funciones. Farith J. Briceño N. Cálculo Difeencial e Integal - Plano catesiano. Funciones. Fait J. Biceño N. Objetivos a cubi Código : MAT-CDI. Plano catesiano. Distancia ente dos untos. Punto medio de un segmento. De nición de luga

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07 SOLUCIONES Límites continuidad de funciones de varias variables 6-7 Determinar las guientes funciones son acotadas: a z sen ( + ) cos( - e ), sen ( + ) cos( - e ), luego, es acotada: b z sen + sen Es acotada,

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

3) (1p) Estudia la posición relativa de recta y plano.

3) (1p) Estudia la posición relativa de recta y plano. CURSO 007-008. 16 de mayo de 008. 1) (1p) Si A(x 1,y 1,z 1 ) y B(x,y,z ) son dos puntos del espacio, demuesta que [AB ]=(x -x 1,y -y 1,z -z 1 ). ) (1p) Deduce la ecuación vectoial de la ecta. ) (1p) Estudia

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes.

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes. Espacios vectoiales. Popiedades. Antes de ve la definición, estudiemos unos ejemplos de espacios vectoiales paa ve las popiedades comunes. R 2 =RxR={(x,y)/x,y R} conjunto de todos los paes de númeos eales

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

MOVIMIENTOS EN EL PLANO 1- VECTORES

MOVIMIENTOS EN EL PLANO 1- VECTORES 1 MOVIMIENTOS EN EL PLANO 1- VECTORES Las medidas de magnitudes ectoiales son los ectoes. Un ecto se epesenta gáficamente po una flecha que a desde el punto llamado oigen al etemo. La longitud del ecto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

SOLUCIONES rectas-planos

SOLUCIONES rectas-planos SOLUCIONES ectas-planos x + y z. Ecuación de la ecta que pasa po A(,, ) y se apoya en las ectas x y + z x z + s y 4 y. Ecuación de la ecta que pasa po (,, ) es paalela al plano π x + y 4z + y está en x

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

GUÍA N 7 CÁLCULO I. cuando x tiende al valor a y expresamos

GUÍA N 7 CÁLCULO I. cuando x tiende al valor a y expresamos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 7 CÁLCULO I Profesor: Carlos Ruz Leiva LÍMITE DE FUNCIONES Considere una función f () que esté definida

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles